Способ получения алюмината кальция

Изобретение относится к области химии и может быть использовано при получении алюмината кальция, который используют при получении катализаторов низкотемпературной конверсии монооксида углерода водяным паром. Способ получения алюмината кальция включает смешение гидроксида кальция с порошоком металлического алюминия, причем на стадии смешения добавляют воду в количестве 19-40% от содержания ее в смеси. Полученную смесь подвергают механической активации, а полученный продукт подвергают термообработке однократно при 700-900°С. Заявленное изобретение позволяет увеличить удельную поверхность в 1,57-1,67 раза, сократить число технологических стадий, исключить образование сточных вод. 1 табл.

 

ОБЛАСТЬ ТЕХНИКИ

Изобретение относится к области химической технологии и может быть использовано для получения гидроксиалюминатов и шпинелей металлов II-группы, применяемых для приготовления катализаторов и носителей.

УРОВЕНЬ ТЕХНИКИ

Известен способ получения алюмината магния для производства керамики, основанный на прокаливании смеси сульфатов магния и алюминия в присутствии фторидов металлов (А.С. СССР №1196333, МКИ С01F 7/16, заявл. 30.12.83, опубл. 07.12.85, бюл. №45).

Существенным недостатком аналога является выделение вредных газообразных отходов при термообработке исходной смеси

Известен способ приготовления кальцийалюминатного материала путем смешения извести и щелочного раствора алюмината натрия, выдерживания его в течение 1-5 часов при 15-90°С, фильтрации, промывки осадка от щелочей и обжига. Данный способ отличается тем, что с целью получения высокоосновных алюминатов кальция, обладающих вяжущими свойствами, обжиг ведут при 1000-1100°С в течение 1-3 часов (А.с. №854905, С04В 7/32, опубл. 15.08.81, Б.И. №30, 1981 г.).

К недостаткам аналога следует отнести трудоемкость и большую продолжительность технологического процесса, необходимость применения большого количества воды для промывки, которую в дальнейшем необходимо очищать.

Известен способ получения алюмината металла, включающий смешение исходных компонентов, взятых в стехиометрическом отношении, механическую активацию и термообработку, причем при подготовке смеси исходных компонентов в нее вводят затравку алюмината, соответствующего получаемому, приготовленную смесь подвергают сначала предварительной механической активации в центробежной планетарной мельнице с последующей термообработкой при 700-900°С, а затем повторной механической активации и термообработке при 1200-1400°С (Патент РФ №2108292, опубл. 10.04.1998, бюл. №10).

К недостаткам аналога следует отнести низкую удельную поверхность получаемого алюмината, необходимость введения в состав исходной смеси затравки, значительная продолжительность технологического процесса приготовления и энергоемкость процесса, из-за наличия стадии высокотемпературной прокалки образцов, требующей применения высокотемпературных печей.

Наиболее близким к предлагаемому изобретению по технической сущности и достигаемому результату, то есть прототипом является способ получения гидроалюмината кальция, включающий обработку реагента, содержащего оксид алюминия, известью с последующим отделением образовавшегося осадка, который затем промывают горячей водой и подвергают термообработке при 290-510°С в течение 1-10 часов (А.С. СССР SU 704019, опубл. 30.12.1986, бюл. №48).

К недостаткам прототипа следует отнести недостаточно высокую удельную поверхность получаемого продукта, многостадийность технологического процесса, необходимость применения большого количества воды для промывки осадков, которую в дальнейшем необходимо очищать.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Задачей изобретения является создание способа получения алюмината кальция, применяемого для производства катализаторов и носителей с более высокой удельной поверхностью при сокращении количества технологических операций и исключении образования сточных вод, содержащих примеси.

Поставленная задача решена в предлагаемом способе получения алюмината кальция, включающем смешение гидроксида кальция с алюминийсодержащим компонентом с добавлением воды, причем в качестве алюминийсодержащего компонента используют порошок металлического алюминия, воду добавляют в количестве 19-40% от содержания ее в смеси, полученную смесь подвергают механической активации, а полученный продукт подвергают термообработке однократно при 700-900°С

СВЕДЕНИЯ, ПОДТВЕРЖДАЮЩИЕ ВОЗМОЖНОСТЬ ОСУЩЕСТВЛЕНИЯ ИЗОБРЕТЕНИЯ

Пример 1

Для приготовления продукта по предлагаемому способу используют порошок металлического алюминия, гидроксид кальция и воду.

При получении 100 г алюмината кальция в барабан вибрационной мельницы VM-4 загружают 34,2 г металлического алюминия, 46,8 г гидроксида кальция и добавляют 19 г (19 мас.%) воды и активируют в течение 60 минут. Затем полученный продукт прокаливают в течение 6 часов при температуре 900°С. Состав продукта

Аl2О3·СаО.

Пример 2

Для получения 100 г алюмината кальция приготавливают смесь, состоящую из 41,5 г порошка металлического алюминия, 28,5 г гидроксида кальция Ca(OH)2 и 32 г (31,3 мас.%) воды, которую затем загружают в барабан вибрационной мельницы VM-4 и подвергают обработке в течение 60 минут. Далее полученный продукт прокаливают в течение 6 часов при температуре 700°С. Состав продукта 2Аl2O3·СаО.

Пример 3

Для получения 100 г алюмината кальция приготавливают смесь, состоящую из 37,9 г порошка металлического алюминия, 37,6 г гидроксида кальция и добавляют 30 г (28,4 мас.%) воды. Полученную смесь загружают в барабан вибрационной мельницы VM-4 и активируют в течение 60 минут. Далее полученный продукт прокаливают в течение 6 часов при температуре 800°С. Состав продукта Аl2О3·СаО, 2Аl2O3·СаО.

Пример 4

Для получения 100 г алюмината кальция приготавливают смесь, состоящую из 37,9 г порошка металлического алюминия, 37,6 г гидроксида кальция и добавляют 50,4 г (40,0 мас.%) воды. Полученную смесь загружают в барабан вибрационной мельницы VM-4 и активируют в течение 60 минут. Далее полученный продукт прокаливают в течение 6 часов при температуре 900°С. Состав продукта Аl2О3·СаО, 2Аl2O3·СаО.

Измерение удельной поверхности проводили методом низкотемпературной адсорбции (десорбции) аргона на гелиево-аргоновой смеси с точностью не ниже 15% на сорбтометре «Цвет 211» по методике, изложенной в работе: Физико-химическое применение газовой хроматографии. / А.В.Киселев, А.В.Иогансен, К.И.Сакодынский и др. - М.: Химия, 1973. - 256 с.

Результаты проведенных испытаний представлены в таблице.

Пример № Количество технологических операций Удельная поверхность, м2
1 3 6,4
2 3 7,0
3 3 6,9
4 3 6,8
Прототип 6 4,2

Из таблицы видно, что использование заявленного изобретения позволяет повысить удельную поверхность алюмината кальция в 1,53-1,67 раза и сократить в два раза число технологических операций. Кроме того, изобретение исключает образование сточных вод, содержащих вредные примеси.

Способ получения алюмината кальция, включающий смешение гидроксида кальция с алюминийсодержащим компонентом, причем на стадии смешения добавляют воду, отличающийся тем, что в качестве алюминийсодержащего компонента используют порошок металлического алюминия, воду добавляют в количестве 19-40% от содержания ее в смеси, полученную смесь подвергают механической активации и полученный продукт подвергают термообработке однократно при 700-900°С.



 

Похожие патенты:
Изобретение относится к областям фармацевтической промышленности и цветной металлургии. .

Изобретение относится к цветной металлургии и может быть использовано в производстве глинозема для получения крупнокристаллического трехкальциевого гидроалюмината из промышленных алюминатных растворов, содержащих соли NaCl, Na2CO3 и Na2 SO4.
Изобретение относится к гидратированному гидроксоалюминату магния и способу его получения. .
Изобретение относится к области получения неорганических соединений на основе алюминия, которые могут быть широко использованы в различных областях техники в качестве катализаторов, пигментов, огнеупорных материалов и т.д.

Изобретение относится к области неорганической химии и предназначено для модификации пигментов, преимущественно двуокиси титана, а также свинцового крона, железоокисных пигментов, может быть использовано при производстве лакокрасочных материалов, пластмасс и других веществ, потребляющих пигменты.

Изобретение относится к области неорганической химии и может быть использовано при обработке пигментов, главным образом двуокиси титана, а также литопона, свинцового крона, железоокисных пигментов.

Изобретение относится к области цветной металлургии и может быть использовано в производстве алюмината магния, пригодного к применению в технологии керамических изделий.

Изобретение относится к технологии получения теплоизоляционных материалов и может быть использовано при изготовлении изделий, стойких в химически агрессивных средах, в том числе, в области высоких температур, до 2100оС.

Изобретение относится к производству глинозема, в частности к получению твердого раствора ангидрида серной и/или угольной кислоты в четырехкальциевом гидроалюминате.

Изобретение относится к области получения неорганических веществ, в частности к способу совместного получения алюминатов кальция и фосфора
Изобретение относится к области химии

Изобретение относится к области химии

Изобретение относится к химической, нефтехимической, газовой отраслям. Газоплотную керамику со структурой майенита предложено использовать в качестве молекулярного фильтра для селективного извлечения гелия из гелийсодержащих газовых смесей. Технический результат: селективное и непрерывное извлечение гелия из содержащих его газовых смесей при комнатной температуре. 2 ил., 2 табл.
Изобретение может быть использовано в химической промышленности. Композиция из водонерастворимого магнийсодержащего соединения и гидроксида алюминия содержит ультрадисперсные химические соединения Mg6Al2(OH)16(NO3)2·4H2O или Mg6Al2(OH)16Cl2·4H2O при следующем соотношении компонентов, мас.%: ультрадисперсные химические соединения Mg6Al2(OH)16(NO3)2·4H2O или Mg6Al2(OH)16Cl2·4H2O 10,00-99,99, ультрадисперсный гидроксид алюминия 0,01-90,00. Композиция пригодна для производства керамики и для использования в качестве модифицирующей добавки в резиновые смеси. Изобретение позволяет повысить износостойкость резиновых изделий. 5 пр.

Изобретение относится к цветной металлургии и может быть использовано для синтеза активных добавок и для глубокой очистки алюминатных растворов глиноземного производства от органических примесей и кремнезема. Способ получения гидрокарбоалюминатов щелочноземельных металлов включает температурную обработку природного магнийсодержащего сырья, выбранного из брусита, магнезита и доломита, при 500-700°С 120-240 мин для активирования его магнезиальной части. Затем осуществляют его взаимодействие при активном перемешивании со щелочным алюминатным раствором в течение 5-60 минут при температуре 80±5°С. Технический результат - повышение степени и скорости формирования гидрокарбоалюминатов щелочноземельных металлов за счёт образования активного метастабильного комплекса Mg-O, повышение энергоэффективности процесса. 3 ил., 3 пр., 4 табл.

Изобретение относится к производству глинозема, в частности к обескремниванию алюминатных растворов в производстве глинозема из высококремнистого алюминиевого сырья. Способ обескремнивания алюминатных растворов заключается в получении алюмо-кальциевого компонента, двухстадийном обескремнивании алюминатно-щелочных растворов с использованием в качестве интенсифицирующей добавки полученного алюмо-кальциевого компонента, сгущении и фильтрации продуктов обескремнивания, осветлении обескремненного раствора, согласно изобретению получение указанного алюмо-кальциевого компонента проводят обработкой карбоната кальция природного и/или искусственного происхождения алюминатно-щелочным раствором при молярном отношении CaO:Al2O3=1,0÷2,0. Изобретение позволяет снизить расход энергоресурсов, утилизировать производственные отходы карбоната кальция, снизить потребление природных ресурсов и выбросов диоксида углерода в атмосферу, получить глинозем высшего качества марки Г-00, а также повысить технико-экономических показатели производства глинозема из высококремнистого сырья. 1 ил., 9 пр.
Наверх