Плазматрон водно-пленочного внутреннего охлаждения



Плазматрон водно-пленочного внутреннего охлаждения
Плазматрон водно-пленочного внутреннего охлаждения
H05H1/34 - Плазменная техника (термоядерные реакторы G21B; ионно-лучевые трубки H01J 27/00; магнитогидродинамические генераторы H02K 44/08; получение рентгеновского излучения с формированием плазмы H05G 2/00); получение или ускорение электрически заряженных частиц или нейтронов (получение нейтронов от радиоактивных источников G21, например G21B,G21C, G21G); получение или ускорение пучков нейтральных молекул или атомов (атомные часы G04F 5/14; устройства со стимулированным излучением H01S; регулирование частоты путем сравнения с эталонной частотой, определяемой энергетическими уровнями молекул, атомов или субатомных частиц H03L 7/26)
H05H1/28 - Плазменная техника (термоядерные реакторы G21B; ионно-лучевые трубки H01J 27/00; магнитогидродинамические генераторы H02K 44/08; получение рентгеновского излучения с формированием плазмы H05G 2/00); получение или ускорение электрически заряженных частиц или нейтронов (получение нейтронов от радиоактивных источников G21, например G21B,G21C, G21G); получение или ускорение пучков нейтральных молекул или атомов (атомные часы G04F 5/14; устройства со стимулированным излучением H01S; регулирование частоты путем сравнения с эталонной частотой, определяемой энергетическими уровнями молекул, атомов или субатомных частиц H03L 7/26)

Владельцы патента RU 2384984:

Государственное образовательное учреждение высшего профессионального образования "Ульяновский государственный технический университет" (RU)

Изобретение относится к устройствам для создания струи плазмы температурой свыше 30000 К и может быть использовано преимущественно для быстрой резки металла. Плазматрон водно-пленочного внутреннего охлаждения содержит неподвижный стержневой электрод 1, электродную камеру 2 с тангенциальными отверстиями 3 и холодильную камеру 4 с отверстием 5 для подвода воды и отверстием 6 для отвода воды. Плазматрон водно-пленочного внутреннего охлаждения снабжен сопловым газовым каналом 7, внутренняя 8 и внешняя 9 стенки которого образуют канал 10 вододисперсного охлаждения с кольцевым коллектором 11 и кольцевой направляющей 12. Изобретение позволяет повысить эффективность охлаждения плазматрона, увеличить срок его службы и снизить гидравлические потери. 1 з.п. ф-лы, 2 ил.

 

Изобретение относится к устройствам для создания струи плазмы температурой свыше 30000 К и может быть использовано преимущественно для быстрой резки любого металла в условиях завода, в полевых условиях, в условиях побережья или морских шельфов под водой.

Наиболее близким устройством того же назначения к заявленному изобретению по совокупности признаков является дуговой плазматрон Авдеевых, содержащий неподвижный стержневой электрод, электродную камеру с тангенциальными отверстиями, в которой размещен рабочий конец стержневого электрода, холодильную камеру с отверстием для подвода воды и с отверстием для отвода воды (см. пат. РФ №2212773, фиг.1), принятый за прототип.

К причинам, препятствующим достижению указанного ниже технического результата при использовании известного дугового плазматрона Авдеевых, принятого за прототип, относится то, что охлаждение и управление плазмой осуществляется недостаточно эффективно и из-за конструктивных особенностей электродной камеры создается большое аэродинамическое сопротивление.

Сущность изобретения заключается в повышении эффективности управления плазмой и охлаждения плазмотрона при использовании вододисперсного охлаждения, улучшении аэродинамических характеристик устройства.

Технический результат - повышение эффективности охлаждения плазмотрона, увеличение срока его службы, снижение гидравлических потерь.

Указанный технический результат при осуществлении изобретения достигается тем, что плазматрон водно-пленочного внутреннего охлаждения содержит неподвижный стержневой электрод, электродную камеру с тангенциальными отверстиями, в которой размещен рабочий конец неподвижного стержневого электрода, холодильную камеру с отверстием для подвода воды и с отверстием для отвода воды, особенность заключается в том, что он снабжен соединенным с электродной камерой сопловым газовым каналом, наружная и внутренняя стенки которого представляют собой канал водно-дисперсного охлаждения, сообщающийся с одной стороны с кольцевым коллектором, а с другой стороны с сопловым газовым каналом через кольцевую направляющую.

Плазматрон водно-пленочного внутреннего охлаждения по п.2 отличается от плазмотрона по п.1 тем, что конструкция электродной камеры обтекаемой формы с низким аэродинамическим сопротивлением.

На чертежах представлено:

на фиг.1 - прототип плазмотрона;

на фиг.2 - предлагаемый плазмотрон водно-пленочного внутреннего охлаждения.

Сведения, подтверждающие возможность осуществления изобретения с получением вышеуказанного технического результата, заключаются в следующем.

Плазматрон водно-пленочного внутреннего охлаждения содержит неподвижный стержневой электрод 1, электродную камеру 2 с тангенциальными отверстиями 3, в которой размещен рабочий конец стержневого электрода 1, холодильную камеру 4 с отверстием 5 для подвода воды и с отверстием 6 для отвода воды, сопловой газовый канал 7, наружная 8 и внутренняя 9 стенки которого представляют собой канал 10 водно-дисперсного охлаждения, сообщающийся с одной стороны с кольцевым коллектором 11, а с другой стороны с сопловым газовым каналом 7 через кольцевую направляющую 12.

Неподвижный стержневой электрод 1, электродная камера 2, холодильная камера 4, сопловая газовая камера 7, канал 10 водно-дисперсного охлаждения соосно закреплены в корпусе плазматрона. К кольцевому коллектору 11 подключается устройство для подачи воды. Вывод для подключения стержневого электрода 1 к источнику электропитания, источник инертного или восстановительного газа и штуцер для его подключения к электродной камере 2, источник электропитания, корпус плазматрона, источники воды на чертеже не показаны.

Работа предлагаемого плазматрона водно-пленочного внутреннего охлаждения осуществляется следующим образом.

Неподвижный стержневой электрод 1, расположенный внутри электродной камеры 2 с тангенциальными отверстиями 3 для подачи инертного или восстановительного газа, подключается к источнику электропитания. Охлаждение неподвижного стержневого электрода 1 осуществляется в холодильной камере 4 водой, поступающей через отверстие 5 для подвода воды и удаляемой через отверстие 6 для отвода воды. В электродной камере 2 устанавливается вихревой поток инертного или восстановительного газа, служащий для стабилизации дуги и направляемый из электродной камеры 2 в сопловой газовый канал 7. Наружная стенка 8 и внутренняя стенка 9 соплового газового канала 7 образуют канал 10 водно-дисперсного охлаждения. Сопловой газовый канал 7 используется для стабилизации плазмы за счет впрыска водно-дисперсной смеси из канала 10 водно-дисперсного охлаждения, поступающей в канал 10 водно-дисперсного охлаждения через кольцевой коллектор 11. Управление потоком водно-дисперсной смеси, поступающей в сопловой газовый канал 7, осуществляется посредством кольцевой направляющей 12.

Частицы дисперсной фазы водно-дисперсной смеси создают защитную пленку внутри соплового газового канала 7, вблизи стенки 9, защищая ее от теплового излучения плазмы. При этом происходит перераспределение поля давления среды, что ведет к стабилизации плазмы.

Таким образом, осуществляется эффективное охлаждение плазмотрона, управление плазмой.

Плазматрон водно-пленочного внутреннего охлаждения по п.2 отличается от плазмотрона по п.1 тем, что конструкция электродной камеры обтекаемой формы с низким аэродинамическим сопротивлением. Это позволяет снизить потери давления в устройстве.

1. Плазматрон водно-пленочного внутреннего охлаждения, содержащий неподвижный стержневой электрод, электродную камеру с тангенциальными отверстиями, в которой размещен рабочий конец неподвижного стержневого электрода, холодильную камеру с отверстием для подвода воды и с отверстием для отвода воды, отличающийся тем, что он снабжен соединенным с электродной камерой сопловым газовым каналом, наружная и внутренняя стенки которого представляют собой канал водно-дисперсного охлаждения, сообщающийся с одной стороны с кольцевым коллектором, а с другой стороны с сопловым газовым каналом через кольцевую направляющую.

2. Плазматрон по п.1, отличающийся тем, что конструкция электродной камеры обтекаемой формы с низким аэродинамическим сопротивлением.



 

Похожие патенты:

Изобретение относится к вакуумно-дуговому источнику плазмы и может найти применение для нанесения различного рода металлических покрытий на поверхность изделий. .

Изобретение относится к плазменной технике, а именно к трансформаторным плазмотронам низкотемпературной плазмы, и может быть использовано в плазмохимии и металлургии для проведения различных плазмохимических процессов, а также в лазерной технике.

Изобретение относится к области электротехники и может быть использовано, в частности, в электродуговых устройствах для получения низкотемпературной плазмы. .

Изобретение относится к области генерации неравновесной низкотемпературной плазмы при атмосферном давлении и может быть использовано при создании плазмохимических источников, активирующих при атмосферном давлении газовую среду и поверхности различных материалов.

Изобретение относится к электротехнике и может применяться при создании индуктивных накопителей энергии, а также магнитных экранов, защищающих космонавтов от космического ионизирующего излучения.

Изобретение относится к области космической техники и может быть использовано при наземных испытаниях и эксплуатации электрореактивных двигателей (ЭРД) различной мощности, например холловских плазменных двигателей, и электрореактивных двигательных установок (ЭРДУ) на их основе.

Изобретение относится к вакуумно-дуговому источнику плазмы и может найти применение для нанесения различного рода металлических покрытий на поверхность изделий. .

Изобретение относится к плазменной технике, а именно к трансформаторным плазмотронам низкотемпературной плазмы, и может быть использовано в плазмохимии и металлургии для проведения различных плазмохимических процессов, а также в лазерной технике.

Изобретение относится к области электротехники и может быть использовано, в частности, в электродуговых устройствах для получения низкотемпературной плазмы. .

Изобретение относится к области генерации неравновесной низкотемпературной плазмы при атмосферном давлении и может быть использовано при создании плазмохимических источников, активирующих при атмосферном давлении газовую среду и поверхности различных материалов.

Изобретение относится к электротехнике и может применяться при создании индуктивных накопителей энергии, а также магнитных экранов, защищающих космонавтов от космического ионизирующего излучения.

Изобретение относится к области космической техники и может быть использовано при наземных испытаниях и эксплуатации электрореактивных двигателей (ЭРД) различной мощности, например холловских плазменных двигателей, и электрореактивных двигательных установок (ЭРДУ) на их основе.

Изобретение относится к строительству и может быть использовано для быстрого и экономного, недорогого и совершенного по большинству параметров жилья
Наверх