Многослойный детектор

Изобретение относится к регистрации рентгеновского и гамма излучений, к определению их энергетического спектра, к медицинской рентгеновской томографии, к неразрушающему контролю материалов и изделий радиографическим и томографическим методами, к обнаружению источников ионизирующих излучений, к контролю содержимого багажа на контрольно-пропускных пунктах. Технический результат - повышение эффективности регистрации, понижение порога обнаружения источника излучений, расширение спектрометрических возможностей за счет применения набора пластин и последующей математической обработки количества поступивших с них сигналов, снятие требования об использовании сцинтилляционных материалов, отличающихся спектром оптического излучения. В многослойном детекторе пластины сцинтиллятора выполнены с переменной толщиной, увеличивающейся по мере удаления от источника, а фотоприемные устройства расположены на боковых поверхностях каждой пластины сцинтиллятора или над стыками пластин. 1 з.п. ф-лы, 3 ил.

 

Изобретение относится к регистрации рентгеновского и гамма-излучений, к определению их энергетического спектра, к медицинской рентгеновской томографии, к неразрушающему контролю материалов и изделий радиографическим и томографическим методами, к обнаружению источников ионизирующих излучений, к контролю содержимого багажа на контрольно-пропускных пунктах.

Известен детектор проникающих излучений, содержащий волоконный модуль, собранный из сцинтиллирующих оптических волокон, оптическую систему регистрации излучения, выходящего из торцов этих волокон.

Волоконный модуль выполнен в виде комбинированного люминесцентного экрана-преобразователя, сцинтиллирующие волокна которого составлены из последовательно соединенных отрезков различных типов сцинтиллирующих материалов. Оптическая система содержит отклоняющее зеркало и не менее двух оптических каналов, выполненных в виде последовательно расположенных вдоль оси канала входного проекционного объектива со светофильтром, усилителя изображения, масштабирующего объектива, с которого световой поток попадает на ПЗС-матрицу. Патент Российской Федерации №2290666, МПК: G01T 1/20, G01N 23/02, 2006 г.

Известен детектор со сцинтилляторами различного типа с различными спектрами излучения и фотоприемниками. Сцинтиллятор выполнен составным и содержит не менее двух составных элементов различного типа с различными спектрами излучения, установленных последовательно, на одном из торцов составного сцинтиллятора установлено такое же количество фотоприемников со спектральными чувствительностями или светофильтрами, согласованными с соответствующим типом составного элемента сцинтиллятора. Для регистрации быстрых нейтронов использован пластиковый сцинтиллятор, для регистрации тепловых нейтронов сцинтиллятор изготовлен из кристалла 6LiF, а для регистрации рентгеновских и гамма-квантов сцинтиллятор изготовлен из кристалла NaI(Tl). Патент Российской Федерации на полезную модель №76141, МПК: G01T 1/20, 2008 г.

Известен многослойный детектор, содержащий два разных сцинтиллятора, светящиеся в двух диапазонах длин волн, расположенных последовательно друг за другом. Первый служит для регистрации мягкого рентгеновского излучения, второй - для регистрации жесткой компоненты. Первый элемент сцинтиллятора включает гадолиний, и имеет толщину от 0.03 мм до 0.06 мм; второй элемент сцинтиллятора включает отдельный кристаллический вольфрамат кадмия толщиной от 2 мм до 3 мм. Один из оптических датчиков включает кремниевый фотодиод. Полная толщина элементов сцинтиллятора от 1.0 мм до 10.0 мм. Общая толщина сцинтиллирующих кристаллов достаточна для поглощения 99% всего излучения. Патент США №7388208, МПК: G01T 1/00, 2008 г. Прототип.

Основным недостатком аналогов и прототипа является неполное разделение сигналов, возникающих в фотоприемнике.

Недостатками являются также низкая чувствительность обнаружения источников ионизирующих излучений из-за наличия собственных шумов фотоприемных устройств, невозможность учета вклада рассеянного в детекторе излучения, необходимость использования только прозрачных сцинтилляторов, отличающихся в необходимой степени спектром оптического излучения.

Изобретение устраняет недостатки аналога и прототипа. Техническим результатом изобретения является повышение эффективности регистрации, понижение порога обнаружения источника излучений, расширение спектрометрических возможностей за счет применения набора пластин и последующей математической обработки количества поступивших с них сигналов, снятие требования об использовании сцинтилляционных материалов, отличающихся спектром оптического излучения, упрощение конструкции.

Технический результат достигается тем, что в многослойном детекторе, содержащем пластины сцинтиллятора, внешние поверхности которых покрыты слоями защитного материала и приемники оптического излучения, пластины сцинтиллятора выполнены с переменной толщиной, увеличивающейся по мере удаления от источника, а фотоприемные устройства расположены на боковых поверхностях пластин сцинтиллятора.

Фотоприемные устройства, за исключением первого и последнего, расположены на границах боковых поверхностей между смежными пластинами.

Сущность изобретения поясняется на фиг.1, 2 и 3.

На фиг.1 схематично представлен многослойный детектор, где 1 - пластины сцинтилляторов, 2, 21 - фотоприемные устройства, X - направление излучения. Поверхности пластин покрыты светоотражающим материалом, а вся конструкция помещена в светозащищенный корпус.

На Фиг.2 схематично представлен многослойный детектор, где: 1 - пластины сцинтилляторов, 2, 21 - фотоприемные устройства, расположенные на границах боковых поверхностей между смежными пластинами, X - направление излучения. Такое расположение фотоприемников позволяет уменьшить их количество.

На фиг.3 представлена в качестве примера реализации двухканальная схема обработки сигналов, где 1 - пластины сцинтилляторов; 2, 21 - фотоприемные устройства, 3 и 31 - аналоговые усилители; 4 и 41 - аналоговых выходов; 5 и 51 - дискриминаторы с регулируемыми порогами дискриминации; 6 - схема совпадений.

Устройство работает следующим образом.

Излучение в виде рентгеновского или гамма-кванта направляют на торец первой пластины 1 сцинтилляционного многослойного детектора.

В результате фотоэффекта, или комптоновского рассеяния, или в результате рождения электрон-позитронной пары квант вызывает сцинтилляционную вспышку в одной или нескольких пластинах 1 одновременно.

Свет от сцинтилляционной вспышки через боковые поверхности пластин 1 поступает на фотоприемные устройства 2 и 21, в которых под его действием возникает электрический сигнал.

Сигналы с фотоприемников 2 и 21 (кремниевых фотоумножителей) поступают на аналоговые усилители 3 и 31.

Затем аналоговый сигнал поступает на дискриминаторы 5 и 51 с регулируемыми порогами дискриминации (Фиг.3).

Логические сигналы с дискриминаторов 5 и 51 идут на схему совпадений 6.

Если на обоих входах схемы совпадений 6 появляются сигналы, схема совпадений 6 вырабатывает сигнал, который хранится в выходном регистре схемы.

Внешний контроллер (не показан) опрашивает выходные регистры схемы совпадений 6 и в случае наличия в них сигнала (запроса) считывает сигналы с аналоговых выходов 4 и 41 (как опция) и передает их в компьютер для оцифровки и суммирования.

Собранные данные направляют в амплитудный анализатор, в котором накапливают амплитудный спектр сигнала для данной пластины 1.

События, произошедшие в одной или нескольких пластинах 1, разделяют по времени прихода запроса. Количество сигналов запроса с каждой пластины 1 и амплитудный спектр сигнала по окончании регистрации анализируют и с помощью компьютерной программы производят восстановление спектра излучения.

Все логические схемы выполнены в стандарте ЭСЛ. В качестве дискриминаторов 5 и 51 использованы микросхемы AD 96687 ВР, а в качестве схемы совпадений 6 использована микросхема HEL (MC10LD1).

В случае достаточно большого поперечного сечения пластин 1 возможно одновременное появление сцинтилляционного сигнала (множественное событие) в нескольких пластинах 1 по следующим причинам:

- в результате комптоновского рассеяния кванта в одной из пластин 1, попадания этого кванта в другую пластину 1 и повторного рассеяния или фотоэффекта в нем;

- пробега электрона, возникающего при взаимодействии рентгеновского кванта с материалом сцинтиллятора в одной пластине 1, с другими пластинами 1.

Идентификация таких событий и пластин 1, в которых они произошли, проводится путем анализа времени прихода запроса со всех пластин 1.

Если сигналы поступили в интервале времени T≤L/c, где L - длина детектора вдоль направления излучения X, с - скорость света, то события вызваны одним квантом.

Определение энергии этого кванта проводят на основании анализа амплитуды сигналов, поступивших с соответствующих пластин 1.

При достаточно малом поперечном сечении количество событий, поступивших одновременно с нескольких пластин 1, может быть пренебрежимо мало.

В случае достаточно большого размера пластин 1 возможно одновременное появление сцинтилляционного сигнала (множественное событие) в нескольких пластинах 1 по следующим причинам:

- в результате комптоновского рассеяния кванта в одной из пластин 1, попадания этого кванта в другую пластину 1 и повторного рассеяния или фотоэффекта в нем;

- пробега электрона, возникающего при взаимодействии рентгеновского кванта с материалом сцинтиллятора в одной пластине 1, в другие пластины 1.

Идентификация таких событий и пластин 1, в которых они произошли, проводится путем анализа времени прихода запроса со всех пластин 1. Если сигналы поступили в интервале времени T≤L/c, где L - длина детектора вдоль направления излучения X, с - скорость света, то события вызваны одним квантом. Учет таких событий осуществляется при восстановлении энергетического спектра излучения.

При достаточно малом поперечном сечении количество событий, поступивших одновременно с нескольких пластин 1, пренебрежимо мало.

Для восстановления спектра излучения источника решается система интегральных уравнений

где Qi - количество запросов с i-го слоя (пластины) многослойного детектора; n - число слоев; Si(E) - чувствительность i-го слоя к потоку квантов с энергией Е; φ(Е) - искомая энергетическая зависимость падающего на детектор потока квантов. Система уравнений (1) решается с использованием итерационного метода минимизации направленного расхождения (МНР) (Тараско М.З. Метод минимума направленного расхождения в задачах поиска распределений. Препринт ФЭИ №1446. Обнинск, 1983).

1. Многослойный детектор, содержащий пластины сцинтиллятора, внешние поверхности которых покрыты слоями защитного материала, и приемники оптического излучения, отличающийся тем, что пластины сцинтиллятора выполнены с переменной толщиной, увеличивающейся по мере удаления от источника, а фотоприемные устройства расположены на боковых поверхностях пластин сцинтиллятора.

2. Многослойный детектор по п.1, отличающийся тем, что фотоприемные устройства, за исключением первого и последнего, расположены на границах боковых поверхностей между смежными пластинами.



 

Похожие патенты:

Детектор // 2377601
Изобретение относится к области регистрации ионизирующих излучений с помощью сцинтилляционных детекторов. .

Изобретение относится к области регистрации радиационных излучений сцинтилляционными детекторами. .

Годоскоп // 2371740
Изобретение относится к области обнаружения радиоактивных материалов и источников. .

Изобретение относится к области обнаружения радиоактивных материалов и источников с помощью радиационных детекторов с пластмассовым сцинтиллятором. .

Изобретение относится к области регистрации ионизирующих излучений, к области обнаружения источника ионизирующего излучения на контрольно-пропускных пунктах, железнодорожных станциях, в аэропортах, таможенных службах и т.д.

Изобретение относится к области приборостроения и может быть использовано для регистрации излучений радиационными методами. .

Изобретение относится к области регистрации ионизирующих излучений, к области обнаружения источника ионизирующего излучения на контрольно-пропускных пунктах, железнодорожных станциях, в аэропортах, таможенных службах и т.д.

Изобретение относится к области приборостроения и может найти применение для дистанционного обнаружения и контактной идентификации радиоактивных веществ. .

Изобретение относится к области термоэкзоэлектронной дозиметрии электронных пучков; может быть использовано для контроля радиационной обстановки в местах испытания и функционирования импульсных электронных пушек и электронно-лучевой техники.

Изобретение относится к детектированию ядерных излучений и может быть использовано в области нейтронной радиографии, ядерной физике, атомной энергетике, машиностроении, строительстве и других отраслях.

Изобретение относится к регистрации рентгеновского и гамма-излучений, к определению их энергетического спектра, к медицинской рентгеновской томографии, к неразрушающему контролю материалов и изделий радиографическим и томографическим методами, к обнаружению источников ионизирующих излучений, к контролю содержимого багажа на контрольно-пропускных пунктах

Изобретение относится к области детектирования ядерных излучений, в частности, быстрых нейтронов

Изобретение относится к фотоприемным устройствам для черенковских РИЧ-детекторов (RICH-Ring Imaging Cherenkov), регистрирующих кольцевое черенковское излучение, и может быть использовано в экспериментах в области физики элементарных частиц высоких энергий (ионов, каонов и протонов) для определения их зарядов и скоростей в широком диапазоне их импульсов и для их идентификации

Изобретение относится к области регистрации ионизирующих излучений и может быть использовано для обнаружения и идентификации опасных материалов как активными, так и пассивными методами на контрольно-пропускных пунктах, железнодорожных станциях, в аэропортах, пунктах таможенного досмотра, публичных местах и т.д

Изобретение относится к детектору нейтронов для детектирования нейтронов в областях с существенным - или -излучением, содержащему чувствительный к нейтронам кристалл-сцинтиллятор (10), обеспечивающий сигнал захвата нейтрона, который сильнее сигнала захвата -излучения, с энергией 3 МэВ, полупроводниковый фотодетектор, оптически соединенный с кристаллом-сцинтиллятором, причем кристалл-сцинтиллятор и полупроводниковый фотодетектор (20) выбирают таким образом, чтобы время сбора полного заряда для сигналов сцинтиллятора в полупроводниковом фотодетекторе превышало время сбора полного заряда для сигналов, генерируемых непосредственно детектированием ионизирующего излучения в полупроводниковом фотодетекторе, детектор нейтронов также содержит устройство сэмплирования сигналов детектора, устройство (35) обработки цифровых сигналов, средство, которое отличает сигналы непосредственно из полупроводникового фотодетектора, индуцированные - или -излучением и по меньшей мере частично поглощаемые полупроводниковым фотодетектором, от сигналов света, поступающих в полупроводниковый фотодетектор, испускаемые кристаллом-сцинтиллятором после захвата по меньшей мере одного нейтрона, путем разделения по форме импульса, используя различие между временем сбора полного заряда для сигналов сцинтиллятора от времени сбора полного заряда для сигналов, генерируемых прямым детектированием ионизирующего излучения в полупроводниковом фотодетекторе, и средство, которое отличает индуцированные нейтронами сигналы от индуцированных -излучением сигналов в кристалле-сцинтилляторе путем разделения разных сигналов по высоте их импульса, используя различие между количеством фотонов, сгенерированных нейтроном и -излучением, в интересующей области

Годоскоп // 2416112
Изобретение относится к области регистрации ионизирующих излучений и может быть использовано для обнаружения радиоактивных материалов и источников

Изобретение относится к сцинтилляционным детекторам для регистрации ионизирующих излучений, обнаружения источников излучений, определения направления на них и их идентификации, для измерения спектра быстрых нейтронов

Изобретение относится к области детекторов радиоактивного излучения сцинтилляционного типа для использования в скважинном каротажном инструменте

Изобретение может быть использовано в медицинских томографах, при неразрушающем контроле в промышленности, для обеспечения безопасности при осмотре личного имущества, в физике высоких энергий. Сцинтиллятор для детектирования нейтронов содержит кристалл фторида металла из ряда, включающего LiCaAlF6, LiSrAlF6, LiYF4, служащий в качестве матрицы, в котором содержание атомов 6Li в единице объема (атом/нм3) от 1,1 до 20. Кристалл имеет эффективный атомный номер от 10 до 40 и содержит, по меньшей мере, один вид лантаноида, выбранного из группы, состоящей из церия, празеодима и европия. Нейтронный детектор содержит указанный сцинтиллятор и фотодетектор. Для получения кристалла фторида металла расплавляют смесь, составленную из фторида лития, фторида указанного металла, имеющего валентность 2 или выше, и фторида лантаноида, и выращивают монокристалл из расплава. Сцинтиллятор по изобретению имеет высокую чувствительность к нейтронному излучению и пониженный фоновый шум, связанный с γ-лучами. 3 н. и 3 з.п. ф-лы, 4 ил., 3 табл.
Наверх