Способ визуализации динамических процессов в жидкостях и газах

Изобретение относится к оптическому приборостроению и предназначено для исследования оптических неоднородностей в прозрачных средах и получения изображения градиентных объектов. Способ заключается в подсвечивании реальной среды импульсным излучением неодимового лазера 1, пространственно-временной селекции излучения обратного рассеяния затвором 7 телевизионной камеры 4, синхронизированным с импульсным режимом лазера, получении изображения в плоскости ПЗС-матрицы 5 телевизионной камеры с конечного расстояния, определяемого заданным режимом временной селекции, ограничении боковых пучков в фокальной плоскости объектива 3 телевизионной камеры для увеличения контрастности изображения. Далее производят наблюдение и регистрацию полученного изображения на дисплее персонального компьютера. Процесс наблюдения осуществляют через иллюминатор 10. Изобретение позволяет получать изображения оптических неоднородностей среды с больших расстояний в динамическом режиме и в неограниченном объеме исследуемой среды. 1 з.п. ф-лы, 1 ил.

 

Предлагаемое техническое решение относится к оптическому приборостроению, а именно к способам и устройствам для исследования оптических неоднородностей в прозрачных средах и получения изображения градиентных объектов.

Известны способы получения изображения оптических неоднородностей в средах, основанные на теневом методе визуализации прозрачных неоднородностей (Л.А. Васильев. «Теневые методы», М., Наука, 1969 г.; Н.Г.Ерлов. «Оптика моря», Гидрометеоиздат, Л., 1980 г.).

Недостатком известных способов и различных модификаций устройств, их реализующих, является низкая разрешающая способность оптической системы, обусловленная особенностями визуализации прозрачных неоднородностей, принципиально присущими теневому методу вследствие наличия теневого ножа.

Наиболее близким к предлагаемому по технической сути является решение, описанное в патенте РФ на изобретение №2344409, приоритет от 02.10.2007 г. Известный способ реализуется с помощью устройства, содержащего систему излучения, иллюминаторы, ограничивающие просмотровый объем, отражатель, проекционные объективы, формирующие изображения на ПЗС-матрице телевизионной камеры.

Недостатком этого решения является ограниченный просмотровый объем среды, поскольку устройство необходимо помещать непосредственно в место нахождения исследуемых неоднородностей, а также необходимость выноса отражателя за борт судна, что усложняет процесс измерения.

Техническим результатом предлагаемого способа является получение изображения оптических неоднородностей среды с больших расстояний в динамическом режиме и в неограниченном объеме исследуемой среды.

Это достигается тем, что способ визуализации динамических процессов в жидкостях и газах, включающий метод пространственно-временной селекции лазерного излучения, отличается тем, что в заявляемом способе для визуализации неоднородностей среды используют обратное рассеяние лазерного излучения, для чего осуществляют подсвечивание реальной среды импульсным излучением лазера, затем производят пространственно-временную селекцию излучения обратного рассеяния затвором телевизионной камеры, синхронизированным с импульсным режимом лазера, получают изображение в плоскости ПЗС-матрицы телевизионной камеры с конечного расстояния, определяемого заданным режимом пространственно-временной селекции, ограничивают боковые пучки в фокальной плоскости объектива телевизионной камеры для увеличения контрастности изображения и далее производят наблюдение и регистрацию полученного изображения.

Преимущества предлагаемого способа заключаются в возможности получения изображения неоднородностей среды с большого расстояния от устройства, в возможности изменения дистанции до исследуемого среза водной среды, в отсутствии необходимости размещения элементов конструкции устройства в исследуемой среде.

Сущность изобретения поясняется чертежом, где представлена функциональная схема устройства, с помощью которого реализуется предлагаемый способ.

Способ реализуют следующим образом.

Устройство представляет собой телевизионную систему с лазерной подсветкой с пространственно-временной селекцией. Оно содержит источник 1 излучения - неодимовый лазер с λ=0,532 мкм, работающий в импульсном режиме с регулируемой частотой, поворотное устройство 2, состоящее из двух зеркал и обеспечивающее совмещение оси лазерного луча и длиннофокусного объектива 3 телевизионной камеры 4 с ПЗС-матрицей 5, диафрагмой 6, установленной в фокальной плоскости объектива, и затвором 7 телевизионной камеры, синхронизированным с импульсным режимом лазера. Телевизионная камера 4 соединена с персональным компьютером 8 и дисплеем 9. Процесс наблюдения осуществляют через герметичный иллюминатор 10, конструктивно связанный с телевизионной системой.

Процесс измерения производят следующим образом.

Луч лазера 1 через поворотные зеркала 2, обеспечивающие совмещение оси луча с оптической осью объектива 3 и иллюминатор 10, освещает исследуемую среду. Рассеянное назад излучение проходит через иллюминатор 10 и фокусируется объективом 3 в фокальной плоскости, где установлена диафрагма 6, ограничивающая боковые пучки, обеспечивая повышение контраста изображения. Изображение формируется в плоскости ПЗС-матрицы 5 телевизионной камеры 4. Затвор 7 телевизионной камеры открывается с задержкой Δt относительно фронта импульса лазера, что обеспечивает пространственно-временную селекцию обратного рассеянного излучения из ближней зоны, уменьшая фоновую засветку, тем самым увеличивая контраст изображения. Регулировкой времени задержки Δt обеспечивается получение изображения толщи среды на разных расстояниях. При изменении расстояния до наблюдаемого объема обеспечивается дополнительная фокусировка изображения, поскольку ПЗС-матрица должна находиться в плоскости, сопряженной с плоскостью наблюдения. Сигнал телевизионной камеры 4 выводится на дисплей 9 персонального компьютера 8 как в динамическом режиме, так и в режиме стоп-кадра.

Использование заявленного решения, по сравнению со всеми известными средствами аналогичного назначения, обеспечивает следующие преимущества:

- получение изображения неоднородностей среды с большого расстояния в динамическом режиме;

- возможность изменения дистанции до исследуемого среза среды;

- исключение влияния вибраций среды на элементы прибора и соответственно на качество изображения.

Результаты проведенных исследований могут быть использованы при создании устройств наблюдения градиентных объектов различного происхождения.

1. Способ визуализации динамических процессов в жидкостях и газах, заключающийся в освещении исследуемой среды излучением лазера, фокусировке излучения в фокальной плоскости объектива телевизионной камеры и формировании изображения в плоскости ПЗС-матрицы телевизионной камеры, отличающийся тем, что используют обратное рассеяние импульса излучения лазера, ограничивают боковые пучки в фокальной плоскости объектива телевизионной камеры, а затвор телевизионной камеры открывают с задержкой относительно фронта импульса лазера, которую регулируют для получения изображений толщи среды на разных расстояниях для пространственно-временной селекции излучения обратного рассеяния.

2. Способ по п.1, отличающийся тем, что импульсное лазерное излучение генерируют с помощью неодимового лазера.



 

Похожие патенты:

Изобретение относится к методам исследования свойств материалов, предназначенных преимущественно для объемной голографической записи информации. .

Изобретение относится к оптическому приборостроению, а именно к оптико-электронным приборам, основанным на методе Фуко-Теплера и используемым для исследования градиента показателя преломления оптически прозрачных сред (жидкостей, газов).

Изобретение относится к бесконтактным оптическим методам измерения физических параметров прозрачных объектов. .

Изобретение относится к оптическим теневым приборам, осуществляющим анализ теневой картины. .

Изобретение относится к измерительной технике в оптике, основанной на интерференции света, преимущественно к устройствам для измерения радиационно- и фотоиндуцированных изменений показателя преломления прозрачных сред, возникающих в результате внешнего воздействия, и может быть использовано при исследовании воздействия на оптические материалы высокоскоростных потоков частиц различного происхождения, а также потоков мощного электромагнитного излучения от мягкого рентгена до дальнего ИК.

Изобретение относится к области исследования оптическими методами прозрачных неоднородностей и может быть использовано при анализе гидродинамических явлений, изучении конвективных потоков при теплообмене, контроле качества оптического стекла и т.д.

Изобретение относится к области гидрологии и гидроакустики и может быть использовано для определения глубины залегания слоя скачка в натурном водоеме. .

Изобретение относится к оптическим теневым приборам, регистрирующим пульсации градиента показателя преломления исследуемой оптически прозрачной среды. .

Изобретение относится к измерительной технике, а именно к фотометрии для контроля агрегационной способности частиц коллоидных систем в широких областях техники

Изобретение относится к волоконно-оптическим устройствам (сенсорам), предназначенным для анализа состава и концентрации газообразных и жидких веществ, а также тонких слоев молекул, на основе планарных и цилиндрических полых световодов, включая полые микроструктурированные волноводы

Изобретение относится к области сельского хозяйства

Изобретение относится к области оптических измерений и предназначено для измерения показателя преломления газовых сред

Изобретение относится к контролю качества бетонов, растворов и цементного камня

Изобретение относится к оптике для визуализации фазовых (прозрачных) объектов и может быть использовано при исследовании газовых потоков, контроля качества оптических элементов. Устройство содержит одномодовый лазер, объектив, самонаводящийся фильтр Цернике, установленный в задней фокальной плоскости объектива, систему регистрации изображений. Самонаводящийся фильтр Цернике выполнен в виде слоя поглощающего вещества толщиной, не превышающей длины перетяжки сфокусированного пучка зондирующего излучения, обладающего свойством уменьшения коэффициента поглощения под действием излучения в результате эффекта просветления. В качестве источника излучения используют лазер непрерывного действия или импульсный лазер с возможностью включения излучения на заданный промежуток времени, при этом импульс излучения включают с опережением начала времени экспозиции на время, необходимое для наведения фильтра, и выключают после окончания времени экспозиции регистрирующего устройства. Изобретение обеспечивает возможность использования фазоконтрастного метода на установках, характеризующихся наличием вибраций. 3 ил.

Изобретение относится к области бесконтактного измерения плотности пористого материала с использованием измерения коэффициента преломления материала посредством оптической когерентной томографии. При помощи метода оптической когерентной томографии определяют оптический путь, соответствующий прохождению через объект, выполненный из пористого материала и который является сферическим и полым, светового луча, используемого для осуществления указанного метода, определяют толщину объекта, определяют коэффициент преломления пористого материала на основании оптического пути и толщины и определяют плотность пористого материала на основании определенного коэффициента преломления. Изобретение обеспечивает повышение точности вычисления плотности. 2 з.п. ф-лы, 7 ил., 1 табл.

Изобретение относится к области оптических измерений и предназначено для измерения изменений показателя преломления и двойного лучепреломления, вызванных нелинейными эффектами. Система состоит из фемтосекундного лазера (FS), фотонного оптического волокна (SF), двух оптических каналов (KO1, KO2) и интерферометрической системы, в частности, в виде интерферометра VAWI. Первый оптический канал (KO1) включает в себя монохроматор (MCR) с конденсатором (K), образующим луч измерения. Монохроматор (MCR) на входе соединяется с фотонным оптическим волокном (SF). Система зеркал второго оптического канала (KO2) включает в себя подвижное зеркало (ZP), которое изменяет длину оптического пути второго луча во втором оптическом канале (KO2). Испытуемый материал (M) помещается в область измерения, расположенную на пересечении луча измерения и второго луча, передаваемого через оптический канал (KO2). Изобретение обеспечивает повышение точности измерений параметров оптических материалов в областях, меньших нескольких микрометров. 4 з.п. ф-лы, 1 ил.

Изобретение относится к области медицины, а именно к клинической лабораторной диагностике, и описывает способ оценки функционального состояния лимфоцита человека. Способ включает в себя исследование in vitro методом интерференционной микроскопии отдельных лимфоцитов периферической крови, при этом из суспензии клеток крови донора выделяют первую пробу, микроскопируют в интерференционном микроскопе для получения изображения мононуклеара в виде зон оптической плотности в проекциях отдельных органелл и измеряют последовательно следующие параметры: цитоплазматический индекс, значения фазовой толщины, площади, эквивалентных диаметров, фазового объема, рефрактерности у следующих органелл лимфоцита: внешняя граница периферийной части цитоплазмы, плотная часть цитоплазмы, хондриом, ядро и ядрышко, затем у этого же донора из суспензии лимфоцитов выделяют вторую пробу и после действия на суспензию лимфоцитов внешнего фактора их повторно микроскопируют в интерференционном микроскопе, измеряют вышеуказанные параметры указанных органелл лимфоцита, после чего образуют второй набор значений фазовой толщины, сравнивают параметры первого и второго наборов значений фазовой толщины, оценку функционального состояния лимфоцита человека производят по коэффициентам корреляции с указанием процентов вероятности. Способ обеспечивает повышение точности прогнозирования иммунного отклика пациента на действие фармакологического препарата, снижение вероятности нежелательных побочных эффектов и сокращение времени исследования и стоимости диагноза. 1 з.п. ф-лы, 2 табл., 12 ил.

Устройство может быть использовано для исследования быстропротекающих процессов в газах и других прозрачных средах, например в ударных волнах. Устройство содержит источник монохроматического излучения, два прозрачных плоскопараллельных окна, между которыми находится исследуемая среда, нож Фуко, регулируемую по ширине щель, перпендикулярную кромке ножа Фуко, фотоприемник, запоминающее устройство. Угол падения луча света на входное окно больше нуля. Кромка ножа Фуко расположена параллельно направлению движения неоднородности или градиенту изменения показателя преломления. По изменению сигнала фотоприемника судят об изменении оптических свойств исследуемой среды. Регистрируется смещение луча в направлении, перпендикулярном градиенту изменения показателя преломления, в зависимости от показателя преломления среды в сечении. Технический результат - возможность определения показателя преломления исследуемой среды в известном сечении устройства. 3 ил.
Наверх