Углерод-углеродный композиционный материал

Изобретение относится к медицине, в частности к ортопедии, и может быть использовано при изготовлении эндопротезов суставов человека и других изделий, а также в различных областях техники. Углерод-углеродный композиционный материал (УУКМ) с наполнителем в виде слоев углеродной ткани имеет пироуглеродную матрицу, которая дополнительно содержит бор. При этом компоненты в его матрице находятся в следующем соотношении, мас.%: бор 1-19; пироуглерод - остальное. Кроме того, в наполнитель УУКМ между слоями углеродной ткани могут дополнительно вводиться слои сетки из титана. Изобретением достигается повышение физико-механических свойств углерод-углеродных композиционных материалов. 1 з.п. ф-лы, 2 табл.

 

Предлагаемое изобретение относится к медицине, в частности к ортопедии, и может быть использовано при изготовлении эндопротезов суставов человека и других изделий, а также в различных областях техники.

Использование углерод-углеродных композиционных материалов (УУКМ), обладающих уникальными термическими, механическими, эрозионными и радиационными свойствами, биологической совместимостью с тканями человеческого организма, открывает широкие возможности в дальнейшем развитии авиакосмической и машиностроительной техники, металлургии, реакторостроения и медицины. Эти свойства в частности позволяют повысить качество изделий, применяемых в ортопедической практике, при лечении переломов костей, в стоматологии.

К промышленным УУКМ относятся материалы на основе объемных армирующих структур из углеродных полиакрилонитрильных, гидратцеллюлозных и пековых волокон, связанных пироуглеродной, коксовой и гибридной матрицей [1].

В УУКМ, где армирующая структура и матрица выполнены из углерода, армирующий наполнитель применяется в виде дискретных волокон, непрерывных нитей или жгутов, войлоков, тканей, объемных структур (порошков). Природа и свойства углеродной матрицы, как и наполнителя, в основном и определяют свойства УУКМ. Матрица объединяет в одно целое армирующие элементы (волокна или порошок) в композиционном материале, позволяет материалу наилучшим образом воспринимать различного рода внешние нагрузки. Матрица принимает участие в создании несущей способности композита, обеспечивая передачу усилий на наполнитель.

От матрицы зависят сохранение свойств материала при длительном хранении, тепловые свойства, стойкость к воздействию высоких температур и агрессивных сред, электрические свойства, эрозионная стойкость, коэффициент трения материала и его радиационная стойкость.

Наиболее часто в качестве матрицы применяют пироуглерод, кокс каменноугольного и нефтяного пеков и стеклоуглерод [1].

Известен углерод-углеродный композиционный материал с пироуглеродной матрицей и наполнителем в виде слоев углеродной ткани, используемый в медицине [2]. Этот материал, выбранный нами в качестве прототипа, получают в результате связывания углеродных волокон ткани углеродом в среде метана (CH4) при нагревании до температур выше 1000°С. При такой температуре метан разлагается на углерод и водород. Газообразный водород улетучивается, а углерод, осаждаясь, соединяет углеродные волокна. Физико-механические свойства данного УУКМ приведены в таблице 1.

Целью изобретения является повышение физико-механических свойств углерод-углеродных композиционных материалов, используемых в медицине и технике, а также повышение их рентгеноконтрастности.

Указанная цель достигается тем, что углерод-углеродный композиционный материал (УУКМ) с наполнителем в виде слоев углеродной ткани имеет пироуглеродную матрицу, которая дополнительно содержит бор. При этом компоненты в его матрице находятся в следующем соотношении, мас.%: бор 1-19; пироуглерод - остальное. Кроме того, для еще большего повышения физико-механических свойств и придания материалу рентгеноконтрастности в наполнитель УУКМ между слоями углеродной ткани могут дополнительно вводиться слои сетки из титана.

Известных технических решений с сочетанием признаков, сходных с признаками, отличающими заявляемое решение от прототипа, не выявлено. Перечисленные отличия предлагаемого УУКМ сообщают ему ряд важных преимуществ по сравнению с прототипом.

Введение в матрицу дополнительно бора позволяет повысить физико-механические свойства матрицы не менее чем в 1,5 раза. Это происходит за счет того, что в матрице наряду с пироуглеродом образуются карбиды бора, которые и увеличивают прочность матрицы.

Так, например, известны изотропные пироуглероды:

- углеродный нанокомпозит [3] (далее по тексту УН) - пироуглеродный материал, получаемый путем совместного пиролиза углеводородов с галогенидами тугоплавких металлов;

- пирографит изотропный [4] (далее по тексту ПГИ) - пироуглеродный материал, получаемый путем пиролиза углеводородов.

УН и ПГИ имеют однородную, изотропную, мелкокристаллическую структуру и равную плотность. Их отличие только в наличии в структуре УН бора в виде карбидов с содержанием бора - (10-20) мас.%, что приводит к повышению физико-механических свойств более чем в 1,5 раза. Физико-механические свойства УН и ПГИ приведены в таблице 2.

УН благодаря своим уникальным свойствам (высокая плотность, прочность, износостойкость, биологическая совместимость с кровью и тканями организма) нашел применение в медицине. Из него изготавливают основные элементы искусственных клапанов сердца. К настоящему времени в мире изготовлены, поставлены и успешно функционируют сотни тысяч искусственных клапанов сердца.

По физико-механическим характеристикам, а также по результатам испытаний на токсикологию и тромборезистентность все материалы, содержащие бор в интервале 10-20 мас.% и изотропный пироуглерод - остальное, удовлетворяют требованиям, предъявляемым к материалу для эндопротезов. Поэтому выбранное соотношение компонентов в матрице обеспечивает применение УУКМ для медицины.

Для еще большего повышения физико-механических свойств УУКМ и придания материалу рентгеноконтрастности в наполнитель предлагается вводить слои титановой сетки. Температура плавления титана 1677°С, а температура получения УУКМ около 1000°С, поэтому титановая сетка практически сохранит свои свойства в структуре УУКМ, сделав его более прочным и рентгеноконтрастным.

Реализуют предлагаемое изобретение следующим образом.

Для получения УУКМ из промышленного графита (марки ГМЗ, ГЭ или другой марки с аналогичными свойствами) изготавливают оправки-нагреватели в виде труб с размерами, соответствующими размерам внутреннего пространства электровакуумной установки (наружный диаметр и длина оправки-нагревателя соответствуют внутреннему диаметру и длине требуемой заготовки).

В качестве исходного материала для наполнителя используют углеродные ткани (например, марок «Урал», «ТГН-2М» или других с аналогичными свойствами). Они выпускаются промышленностью в виде лент шириной 500 мм и длиной 10-40 м. Исходное сырье - вискоза. Плотность углеродных волокон в указанных тканях колеблется в пределах 1,16-1,5 г/см3.

Для предотвращения пылеобразования рулоны углеродной ткани предварительно замачивают в воде, а затем наматывают на оправку-нагреватель до получения необходимой толщины слоя. В процессе намотки излишки ткани по ширине ленты отрезаются. Плотность намотки контролируется натяжением ткани и составляет 0,5 г/см3 (по углеродному волокну).

Оправки-нагреватели с намотанной углеродной тканью сушат в сушильном шкафу при 120-140°С в течение 6-8 часов.

Термоградиентное газофазное уплотнение сформованных таким образом заготовок производят в электровакуумной установке. В установку загружают одновременно от одной до четырех заготовок, которые ставят друг на друга и зажимают между верхним и нижним токоподводами.

Газофазное уплотнение производят следующим образом. В потоке природного газа и паров треххлористого бора (BCl3) прямым пропусканием тока сборку нагревают до достижения температуры на внешней поверхности графитовых оправок-нагревателей 1000°С. Затем температуру непрерывно повышают и после достижения на внешней поверхности заготовок 1050°С процесс прекращают. При этом компоненты в матрице УУКМ в зависимости от определенного соотношения подаваемых газов будут находиться в следующем соотношении, мас.%: бор 1-19; пироуглерод - остальное.

После завершения процесса уплотнения и охлаждения сборки внутри установки до комнатной температуры ее извлекают из камеры пиролиза и разделяют на составные части. Уплотненные заготовки при помощи пресса снимают с оправок-нагревателей, которые затем повторно используют для последующих насыщений подобных заготовок.

Снятые с оправок-нагревателей углерод-углеродные заготовки обрабатывают на токарном станке до получения геометрической формы, соответствующей заданной.

Для еще большего повышения физико-механических свойств УУКМ и придания материалу рентгеноконтрастности в наполнитель между слоями углеродной ткани укладывают слои сетки из титана. Далее процесс получения УУКМ аналогичен описанному выше.

Пример 1.

Состав матрицы УУКМ: бор 2 мас.% и пироуглерод 98 мас.%. Материал с таким составом матрицы имеет следующие физико-механические свойства:

Плотность, кг/м3 1520
Прочность на изгиб, МПа 160

Пример 2.

Состав матрицы УУКМ: бор 19 мас.% и пироуглерод 81 мас.%. Материал с таким составом матрицы имеет следующие физико-механические свойства:

Плотность, кг/м3 1600
Прочность на изгиб, МПа 220

Пример 3.

Состав матрицы УУКМ с добавлением слоев сетки из титана: бор 1 мас.%, титан 20 мас.% и пироуглерод 79 мас.%. Материал с таким составом матрицы имеет следующие физико-механические свойства:

Плотность, кг/м3 1700
Прочность на изгиб, МПа 240

Физико-механические свойства УУКМ с упрочненной матрицей приведены в таблице 1.

Использование предлагаемого УУКМ для изготовления эндопротезов и других изделий для медицины позволит повысить их физико-механические свойства и, как следствие, повысить качество медицинской помощи пациентам. Кроме того, повышение рентгеноконрастности позволит проводить контроль качества операций по эндопротезированию изделий из УУКМ.

Таблица 1
Физико-механические свойства углерод-углеродных композиционных материалов
Свойства УУКМ(прототип) УУКМ по предлагаемому изобретению
Плотность, кг/м3 1400-1500 1500-1700
Легирующий элемент матрицы нет В
Прочность при сжатии, МПа 150-400 200-500
Прочность при изгибе, МПа 100-160 150-240
Прочность при растяжении, МПа 50-120 80-200
Таблица 2
Физико-механические свойства изотропных пироуглеродов
Свойства Пирографит изотропный Углеродный нанокомпозит
Плотность, кг/м3 1800-2100 1800-2100
Легирующий элемент нет В
Микротвердость, кг/мм2 40-70 70-140
Модуль упругости, ГПа 13-15 20-25
Прочность при изгибе, МПа 100-150 250-450

Источники информации

1. Бушуев Ю.Г., Персин М.И. и Соколов В.А. Углерод-углеродные композиционные материалы: Справочник. - М.: Металлургия, 1994-127 с.

2. (Прототип) Использование углерод-углеродных композиционных материалов в медицине: http://www.carbon.com.ua.

3. Патент RU №2163105 С1, A 61 F 2/24, 20.02.2001.

4. Белик Р.В. Исследования в области технологии производства изделий из пирографита. Инв. №ГИПХ 1440, 1968.

1. Углерод-углеродный композиционный материал с наполнителем в виде слоев углеродной ткани и пироуглеродной матрицы, отличающийся тем, что пироуглеродная матрица дополнительно содержит бор в следующем соотношении, мас.%:

Бор 1-19
Пироуглерод Остальное

2. Углерод-углеродный композиционный материал по п.1, отличающийся тем, что в наполнитель между слоями углеродной ткани дополнительно вводятся слои сетки из титана.



 

Похожие патенты:
Изобретение относится к области ветеринарии, в частности к средствам и способам лечения гнойно-некротических заболеваний конечностей животных, таких как некробактериоз, копытная гниль, гнойные пиодерматиты, ляминиты, язвы Рустергольца и др.

Изобретение относится к преобразователям энергии электромагнитного излучения в электрическую энергию и может быть использовано в производстве солнечных элементов.

Изобретение относится к средствам индивидуальной защиты. .

Изобретение относится к приборам, преобразующим энергию электромагнитного излучения в электрическую, и может быть использовано в производстве солнечных фотоэлектрических элементов (СФЭ).

Изобретение относится к области СВЧ техники, конкретно к твердотельным оптическим источникам формирования СВЧ колебаний фототока, и может быть использовано в аппаратуре систем обработки информации различного назначения для оптической генерации и управления пространственно-временными характеристиками СВЧ сигнала.

Изобретение относится к полевым транзисторам с использованием аморфного оксида для активного слоя. .

Изобретение относится к нанотехнологическому оборудованию и предназначено для замкнутого цикла производства новых изделий наноэлектроники. .

Изобретение относится к области физики и может быть использовано для анализа материалов с помощью биохимических электродов. .

Изобретение относится к способу извлечения из водных растворов солей щелочных металлов и серебра. .

Изобретение относится к углеродным нанотрубкам в различных комбинациях. .

Изобретение относится к области лазерной техники, используемой в нанотехнологических целях, а именно к способам наноструктурирования объемных биосовместимых наноматериалов под действием лазерного облучения.
Изобретение относится к области медицины, а именно к челюстно-лицевой хирургии, и может быть использовано для устранения костных дефектов. .
Изобретение относится к области медицины, а именно к челюстно-лицевой хирургии, и может быть использовано для устранения костных дефектов. .
Изобретение относится к области медицины, а именно к челюстно-лицевой хирургии, и может быть использовано для устранения костных дефектов. .
Изобретение относится к области медицины, а именно к челюстно-лицевой хирургии, и может быть использовано для устранения костных дефектов. .

Изобретение относится к медицинской технике и может быть использовано при изготовлении искусственных клапанов сердца. .
Изобретение относится к медицине, а именно к области композиционных материалов для изготовления эндопротезов при использовании композиционного материала для замещения костной ткани.

Изобретение относится к области медицины, а именно к челюстно-лицевой хирургии, и может быть использовано для устранения костных дефектов. .

Изобретение относится к медицине, а именно к фтизиортопедии, и может быть использовано для хирургического лечения туберкулезного спондилита. .

Изобретение относится к медицине и может быть использовано для изготовления костных протезов и восстановительной хирургии. .
Изобретение относится к области медицины, а именно к челюстно-лицевой хирургии, и может быть использовано для устранения костных дефектов. .
Наверх