Способ сооружения фундамента под машины и устройство фундамента под машины

Группа изобретений относится к строительству, а именно к области массивного и рамного фундаментостроения для производственных машин. Способ сооружения фундамента под машины заключается в заглублении подошвы массивного армированного железобетонного фундамента прямоугольной или призматической в плане формы в грунтовое основание на его высоты, но не менее 1 м, его гидроизоляции от вредного воздействия агрессивных грунтовых вод и расположении центра тяжести машины и центра тяжести площади подошвы фундамента на одной вертикали, при этом опорную поверхность фундамента принимают площадью, рассчитываемой по приведенной зависимости. Опорную поверхность фундамента, прямоугольную в плане, выполняют с подошвой сферической выпуклой формы, при этом по приведенным зависимостям определяют радиус, угол сектора упругого полуконтакта сферы с грунтом, давление структурной прочности грунта на растяжение, критическое давление под центром сферы, причем сферу фундамента заглубляют. Опорную сферическую поверхность предохраняют от смещений с проворотом и от опрокидывания под действием внешней динамической нагрузки путем увеличения краевой горизонтальной опорной части прямоугольного в плане фундамента, выступающей за края сферической опорной центральной поверхности, либо путем анкеровки фундамента к грунту сваями. Также предложено устройство фундамента под машины. Технический результат состоит в повышении несущей способности, увеличении срока службы. 2 н. и 2 з.п. ф-лы, 15 ил.

 

Группа изобретений относится к области массивного и рамного фундаментостроения, конкретно к фундаментам, возводимым на грунтовых основаниях и работающим под динамической нагрузкой неуравновешенных сил инерции движущихся частей машин.

Известен способ сооружения фундамента под машины, заключающийся в заглублении массивного армированного железобетонного фундамента прямоугольной или призматической балочной формы в грунтовое основание на высоты, но не менее 1 м, при гидроизоляции от вредного воздействия агрессивных грунтовых вод и расположении центра тяжести машины и центра тяжести площади подошвы фундамента на одной вертикали, при этом плоскую опорную поверхность фундамента принимают площадью где Еупр. - модуль упругости грунта; ко - коэффициент формы фундамента в плане, µо - коэффициент Пуассона грунта, Cz - коэффициент упругого равномерного сжатия, при расчетном давлении на грунтовое основание р=Супр.·Syпp., где Syпp. - упругая деформация основания, Супр. - коэффициент упругости грунта, принимаемый равным (Супр.=Cz) коэффициенту упруго равномерного сжатия грунта (Cz), (Супр.ф=2Cz) коэффициенту упруго неравномерного сжатия, (Супр.х=0,7Cz) коэффициенту упругого сдвига, F - площадь подошвы фундамента [1].

Существенным недостатком известного способа сооружения фундамента является их установка на плоское подготовленное грунтовое основание плоской опорной поверхностью. При этом плоском контакте фаза упругого контактного взаимодействия оказывается незначительной по интервалу давлений контактного взаимодействия, определяемому с большой погрешностью по графику S=f(p) испытания грунта штампом статическими нагрузками.

Технологический результат по способу сооружения фундамента под машины, заключающийся в заглублении массивного армированного железобетонного фундамента прямоугольной или призматической балочной в плане формы в грунтовое основание на высоты, но не менее 1 м, при гидроизоляции от вредного воздействия агрессивных грунтовых вод и расположении центра тяжести машины и центра тяжести площади подошвы фундамента на одной вертикали, при этом опорную поверхность фундамента принимают площадью где Еупр. - модуль упругости грунта, ко - коэффициент формы фундамента в плане, µo - коэффициент Пуассона грунта, Cz - коэффициент упругого равномерного сжатия, достигается тем, что опорная поверхность фундамента прямоугольной в плане выполняют с подошвой сферической формы радиусом , где d - диаметр отпечатка заглубленной сферы на поверхности грунта, - угол сектора упругого полуконтакта сферы с грунтом, - давление структурной прочности грунта на растяжение, φ - угол внутреннего трения и с - удельное сцепление грунта, - критическое давление под центром сферы, среднее допускаемое давление на упругое грунтовое основание рассчитывают как где - радиус эпюры контактных напряжений под центром сферы, f=1-cosψупр., при этом сферу фундамента заглубляют на величину S=(d/2)[(1-cosψупр.)/sinψупр.] при ее осадке где Eо - модуль объемной деформации грунта, при этом опорную сферическую поверхность предохраняют от смещений с проворотом и от опрокидывания под действием внешней динамической нагрузки путем увеличения краевой горизонтальной опорной части прямоугольного в плане фундамента, выступающей за края сферической опорной центральной поверхности, либо путем анкеровки фундамента к грунту сваями. Технологический результат по способу достигается также тем, что опорную поверхность подошвы фундамента призматической балочной формы выполняют выпуклой цилиндрической длиной с возможным полусферическим окончанием, при этом радиус цилиндра принимают равным Rц.=в/(2sinψynp.), в - ширина отпечатка цилиндра, а цилиндр заглубляют на глубину S=(в/2)[(1-cosψупр.)/sinψупр.] при среднем допускаемом давлении на упругое грунтовое основание цилиндра - среднее давление под обрезанными торцами цилиндра, при осадке грунта Sц=2в·рц.у.(1-µо2)/(πЕо) под цилиндром, где Ео - модуль объемной деформации, а цилиндрическую опорную поверхность погружают в предварительно углубленную цилиндрическую выемку в грунте с радиусом Rц. на глубину S=(в/2)[(1-cosψупр.)/sinψупр.], причем цилиндрическую опорную поверхность предохраняют от продольного смещения и бокового опрокидывания под действием внешней нагрузки путем увеличения продольной горизонтальной опорной части призматического балочного фундамента, выступающей за края цилиндрической опорной поверхности, либо путем анкеровки фундамента к грунтовому основанию сваями.

Известно устройство фундамента под машины, выполненного в виде жесткой опорной фундаментной плиты или жесткого сплошного призматического блока с выемками, шахтами и отверстиями для размещения и крепления машины и обеспечения удобств при ее обслуживании, фундамент выполнен с плоской опорной поверхностью прямоугольной или балочной формы и изготовлен из армированного железобетона или обожженного кирпича на цементном растворе, а центр тяжести машины и центр тяжести площади подошвы фундамента находятся на одной вертикали, при этом глубина заглубления фундамента в грунтовое основание составляет высоты надземной части и не менее 1 м при гидроизоляции от вредного воздействия агрессивных грунтовых вод, при этом опорная площадь плоской опорной поверхности F={Еупр./[ко·Cz·(1-µo2)]}2, где Еупр. - модуль упругости грунта, ко - коэффициент формы фундамента в плане, µо - коэффициент Пуассона грунта, Cz - коэффициент упругого равномерного сжатия [1].

Недостатком известного устройства фундамента под машины является его плоская опорная поверхность, характеризующаяся весьма малым диапазоном давления контактного упругого взаимодействия с грунтовым основанием. При этом границы упругого контактного взаимодействия жесткого фундамента различной плоской формы с грунтовыми основаниями приблизительно устанавливаются только по данным штампоопытов.

Технический результат по устройству фундамента под машины, выполненному в виде заглубленной в грунтовое основание на высоты, но не менее 1 м, массивной армированной железобетонной фундаментной плиты прямоугольной или призматической балочной в плане формы при гидроизоляции ее от вредного воздействия агрессивных грунтовых вод и расположении центра тяжести машины и центра тяжести площади подошвы фундамента на одной вертикали, с площадью опорной поверхности, равной F={Еупр./[ко·Cz·(1-µo2)]}2 где Еупр. - модуль упругости грунта, ко - коэффициент формы фундамента в плане, µо - коэффициент Пуассона грунта, Cz - коэффициент упругого равномерного сжатия, с выемками, шахтами и отверстиями для размещения и крепления машины и обеспечения удобств при ее обслуживании, достигается тем, что прямоугольный в плане фундамент выполнен с опорной фундаментной плитой выпуклой сферической формы с радиусом где d - диаметр отпечатка заглубленной сферы на поверхности углубленного грунта, - угол сектора упругого полуконтакта сферы с грунтом, - давление структурной прочности грунта на растяжение, φ - угол внутреннего трения и с - удельное сцепление грунта, - критическое давление под центром сферы, при среднем допускаемом давлении на упругое грунтовое основание где - радиус эпюры контактных напряжений под центром сферы, f=1-cosψупр., и при заглублении сферы в основание и ее осадке на глубину при этом горизонтальная опорная часть плиты выполнена выступающей за края сферической опорной поверхности, либо оснащенной анкерными сваями. При этом технический результат по предлагаемому устройству достигается тем, что балочный фундамент выполнен в виде единой протяженной цилиндрической без или с концевыми полусферическими опорными поверхностями с радиусом цилиндра Rц=в/(2 sinψупр.), где в - ширина отпечатка заглубленного цилиндра, при среднем допускаемом давлении на упругое грунтовое основание

где - длина цилиндра,

- среднее давление под торцами цилиндра, и заглублении цилиндра в основание и его осадке на глубину где Ео - модуль объемной деформации грунта, при этом горизонтальная опорная часть призматического балочного фундамента выполнена выступающей за края цилиндрической опорной поверхности либо оснащена анкерными сваями.

Группа изобретений поясняется графическими материалами, где на фиг.1 изображена фундаментная прямоугольная плита двухцилиндрового компрессора со сферической центральной и горизонтальной угловой опорной поверхностью, на фиг.2 - вид А фиг.1 (сверху), на фиг.3 - вид Б фиг.1 (слева), на фиг.4 - фундаментная прямоугольная плита стенового типа под турбогенератор с цилиндрической поверхностью, заканчивающейся по концам полусферической поверхностью, и горизонтальными опорными поверхностями по бокам, на фиг.5 - вид В фиг.4 (сверху), на фиг.6 - вид Г фиг.5 (слева), на фиг.7 - фундаментная прямоугольная плита под горизонтальный поршневой компрессор с цилиндрической опорной поверхностью длиной ; на фиг.8 - вид Д фиг.7 (сверху), на фиг.9 - вид Е фиг.7 (слева), на фиг.10 - расчетная схема краевой и центральной «критической» нагрузки (рц.кр.) при максимально упругом фазовом состоянии грунта; на фиг.12 - схема развития контактных давлений под жестким цилиндром переменного радиуса при постоянной ширине пятна контакта (в=const) и при постоянном радиусе цилиндра (Rц.=const) в упругом фазовом состоянии грунта; на фиг.13 - объемная эпюра упругих контактных давлений по длине жесткого цилиндра и на его торцах в грунтовом основании; на фиг.14 - зависимость среднего давления максимальной упругости в грунте под жестким цилиндром конечной длины ; на фиг.15 - эпюры давлений максимального упругого состояния грунта под жесткой сферой.

Пример 1 реализации способа и устройства. Устройство фундамента под машины выполнено в виде заглубленной в грунтовое основание на высоты, но не менее 1 м массивной армированной железобетонной фундаментной плиты 1 прямоугольной (фиг.1, 2) или квадратной в плане формы при гидроизоляции ее от вредного воздействия агрессивных грунтовых вод и расположении центра тяжести машины 2 и центра тяжести площади подошвы фундамента на одной вертикали с площадью опорной поверхности F={Еупр./[ко·Cz·(1-µо2)]}2, где Еупр. - модуль упругости грунта, ко - коэффициент формы фундамента в плане, µo - коэффициент Пуассона грунта, Cz - коэффициент упругого равномерного сжатия, с выемками 3, шахтами 4 и отверстиями 5 для размещения и крепления машины 2 и обеспечения удобств при ее обслуживании. При этом прямоугольный в плане фундамент выполнен с опорной фундаментной плитой 1 выпуклой сферической формы 6 (фиг.3, 6) с радиусом где d - диаметр отпечатка заглубленной сферы 6 (фиг.15) на поверхности углубленного грунта, - угол сектора упругого полуконтакта (фиг.15) сферы с грунтом, - давление структурной прочности грунта на растяжение, φ - угол внутреннего трения и с - удельное сцепление грунта, - критическое давление под центром сферы, при среднем допускаемом давлении (фиг.14) на упругое грунтовое основание

f=1-cosψупр., rу.=Rсф.ц.кр. - радиус эпюры контактных напряжений под центром сферы 6 и при заглублении сферы 6 в грунт и ее осадке (фиг.15) на глубину при этом горизонтальная опорная часть 7 плиты выполнена выступающей за края сферической опорной поверхности 6, либо оснащенной анкерными сваями 8.

Способ сооружения фундамента под машины реализуется следующим образом. В грунте отрывают на высоты фундамента, но не менее 1 м, шурф прямоугольной или цилиндрической (не показано) в плане формы и углубляют его дно по радиусу сферы где d - диаметр отпечатка сферической поверхности 6 фундаментной плиты 1 (фиг.1) на дне шурфа - угол сектора упругого полуконтакта сферы (фиг.3, 15) с грунтом, - давление структурной прочности грунта на растяжение, φ - угол внутреннего трения и с - удельное сцепление грунта, - критическое давление под центром сферы, и на подготовленное дно шурфа устанавливают опорной сферической поверхностью 6 фундаментную плиту 1 прямоугольной (фиг.3) или квадратной в плане формы при ее гидроизоляции от вредного воздействия агрессивных грунтовых вод и расположении центра тяжести машины 2 и центра тяжести площади подошвы фундамента на одной вертикали, причем опорную поверхность фундаментной плиты 1 принимают площадью где Еупр. - модуль упругости грунта, ко -коэффициент формы фундамента в плане, µо - коэффициент Пуассона грунта, Cz - коэффициент упругого равномерного сжатия, а среднее допускаемое давление на упругое грунтовое основание рассчитывают как где - радиус эпюры контактных напряжений под центром сферы, f=1-cos ψупр., при этом сферу заглубляют на величину S=(d/2)[(1-cosψупр.)/sinψупр.] при ее осадке где Ео - модуль объемной деформации грунта, при этом опорную сферическую поверхность 6 предохраняют от смещений с проворотом и от опрокидывания под действием внешней динамической нагрузки путем увеличения краевой горизонтальной опорной части прямоугольного в плане фундамента, выступающей за края сферической опорной центральной поверхности 6, либо путем анкеровки фундамента к грунту сваями 8 (фиг.4).

Пример 2 реализации способа и устройства. Устройство фундамента под машины выполнено в виде заглубленной в грунтовое основание на высоты, но не менее 1 м, массивной армированной железобетонной фундаментной плиты 1 прямоугольной (фиг.4, 5) или призматической (фиг.7, 8) балочной в плане формы при гидроизоляции ее от вредного воздействия агрессивных грунтовых вод и расположении центра тяжести машины 2 и центра тяжести площади подошвы фундамента на одной вертикали с площадью опорной поверхности, равной где Еупр. - модуль упругости грунта, ко - коэффициент упругого равномерного сжатия, с выемками 3, шахтами 4 и отверстиями 5 (фиг.4, 5, 7, 8) для размещения и крепления машины 2 и обеспечения удобств при ее обслуживании. При этом прямоугольный в плане балочный фундамент выполнен в виде единой протяженной цилиндрической (фиг.7, 9) без или с концевыми полусферическими (фиг.4, 6) опорными поверхностями 6 с радиусом цилиндра Rц.=в/(2sinψупр.), в - ширина отпечатка заглубленного цилиндра, - угол сектора упругого полуконтакта (фиг.10, 12) цилиндра с грунтом, - давление структурной прочности на растяжение, φ - угол внутреннего трения и с - удельное сцепление грунта, - критическое давление под центром цилиндра (фиг.11) на длине , при среднем допускаемом давлении (фиг.13) на грунтовое основание

- среднее давление под торцами цилиндра, и заглублении цилиндра в грунт и его осадке на глубину где Ео - модуль объемной деформации грунта, при этом горизонтальная опорная часть 7 призматического балочного фундамента выполнена выступающей за края цилиндрической опорной поверхности 6 либо оснащена анкерными сваями 8 (фиг.9).

Способ сооружения фундамента под машины реализуется следующим образом. В грунте отрывают на высоты фундамента, но не менее 1 м, шурф прямоугольной в плане формы длиной (фиг.7, 8) и углубляют его дно по радиусу цилиндра 6 (фиг.6, 9) Rц.=в/(2·sinψупр.), в - ширина отпечатка цилиндра, цилиндр 6 заглубляют на глубину S=(в/2) [(1-cos ψупр.)/sin ψупр.] при среднем допускаемом давлении на упругое грунтовое основание (фиг.14)

- среднее давление под обрезанными торцами цилиндра 6 (фиг.13), при осадке грунта Sц.=2в·рц.у.(1-µо2)/(πЕо) под цилиндром, где Ео - модуль объемной деформации, а цилиндрическую опорную поверхность 6 погружают в предварительно подготовленную цилиндрическую выемку в грунте с радиусом Rц. на глубину S=(в/2)[(1-cosψупр.)/sinψупр.], причем цилиндрическую опорную поверхность 6 фундамента предохраняют от продольного смещения и бокового опрокидывания под действием внешней динамической нагрузки путем увеличения горизонтальной опорной части 7 (фиг.6) прямоугольного или призматического балочного фундамента, выступающей за края цилиндрической опорной поверхности 6, либо путем анкеровки фундамента к грунтовому основанию сваями 8.

Сферическая или цилиндрическая опорная поверхность заглубленных фундаментов машин существенно увеличивает упругую несущую способность грунта при теоретически установленном угле (ψупр.) их полуконтакта для заданных параметров φ и с грунта.

Предложенные устройства фундаментов машин гарантируют упругое взаимодействие с их грунтовым основанием с существенным увеличением срока службы.

Источники информации

1. Лалетин Н.В. Основания и фундаменты. - М.: Высшая школа, 1964. - С.200-214 (прототип по способу и устройству).

1. Способ сооружения фундамента под машины, заключающийся в заглублении подошвы массивного армированного железобетонного фундамента прямоугольной или призматической в плане формы в грунтовое основание на его высоты, но не менее 1 м, его гидроизоляцию от вредного воздействия агрессивных грунтовых вод и расположении центра тяжести машины и центра тяжести площади подошвы фундамента на одной вертикали, при этом опорную поверхность фундамента принимают площадью , где Еупр. - модуль упругости грунта, ко - коэффициент формы фундамента в плане, µo - коэффициент Пуассона грунта, Cz - коэффициент упругого равномерного сжатия, отличающийся тем, что опорную поверхность фундамента прямоугольную в плане выполняют с подошвой сферической выпуклой формы радиусом , где d - диаметр отпечатка заглубленной сферы на поверхности грунта, - угол сектора упругого полуконтакта сферы с грунтом, - давление структурной прочности грунта на растяжение, φ - угол внутреннего трения и с - удельное сцепление грунта, - критическое давление под центром сферы, при этом сферу фундамента заглубляют на величину S=(d/2)[(1-cosψупр.)/sinψупр.], причем опорную сферическую поверхность предохраняют от смещений с проворотом и от опрокидывания под действием внешней динамической нагрузки путем увеличения краевой горизонтальной опорной части прямоугольного в плане фундамента, выступающей за края сферической опорной центральной поверхности, либо путем анкеровки фундамента к грунту сваями.

2. Способ по п.1, отличающийся тем, что опорную поверхность подошвы фундамента призматической балочной формы выполняют выпуклой цилиндрической длиной l с возможным полусферическим окончанием, при этом радиус цилиндра принимают равным Rц.=в/(2sinψупр.), в - ширина отпечатка цилиндра, цилиндр заглубляют на глубину S=(в/2)[(1-cos ψупр.)/sinψупр.] при среднем допускаемом давлении на упругое грунтовое основание цилиндра

- среднее давление под обрезанными торцами цилиндра, при осадке грунта Sц.=2в·рц.у.(1-µo2)/(πEo) под цилиндром, где Ео - модуль объемной деформации, а цилиндрическую опорную поверхность погружают в предварительно подготовленную цилиндрическую выемку в грунте с радиусом Rц. на глубину S=(в/2)[(1-cosψупр.)/sinψупр.], причем цилиндрическую опорную поверхность фундамента предохраняют от продольного смещения и бокового опрокидывания под действием внешней динамической нагрузки путем увеличения продольной горизонтальной опорной части прямоугольного или призматического балочного фундамента, выступающей за края цилиндрической опорной поверхности, либо путем анкеровки фундамента к грунтовому основанию сваями.

3. Устройство фундамента под машины, выполненное в виде массивной армированной железобетонной фундаментной плиты прямоугольной или призматической в плане формы, заглубленной в грунтовое основание на величину ее высоты, но не менее 1 м, гидроизолированной от вредного воздействия агрессивных грунтовых вод, с возможностью расположения центра тяжести машины и центра тяжести площади подошвы фундамента на одной вертикали, с площадью опорной поверхности, равной F={Eупр./[ко·Cz·(1-µо2)]}2, где Еупр. - модуль упругости грунта, ко - коэффициент формы фундамента в плане, µo - коэффициент Пуассона грунта, Cz - коэффициент упругого равномерного сжатия, с выемками, шахтами и отверстиями и для размещения и крепления машины и обеспечения удобств при ее обслуживании, отличающееся тем, что прямоугольный в плане фундамент выполнен с опорной фундаментной плитой выпуклой сферической формы с радиусом , где d - диаметр отпечатка заглубленной сферы на поверхности углубленного грунта, - угол сектора упругого полуконтакта сферы с грунтом, - давление структурной прочности грунта на растяжение, φ - угол внутреннего трения и с - удельное сцепление грунта, - критическое давление под центром сферы, при этом горизонтальная опорная часть плиты выполнена выступающей за края сферической опорной поверхности, либо оснащенной анкерными сваями.

4. Устройство по п.3, отличающееся тем, что балочный фундамент выполнен в виде единой протяженной цилиндрической без или с концевыми полусферическими опорными поверхностями с радиусом цилиндра Rц.=в/(2sinψупр.), где в - ширина отпечатка заглубленного цилиндра, - угол сектора упругого полуконтакта цилиндра с грунтом, - давление структурной прочности на растяжение, φ - угол внутреннего трения и с - удельное сцепление грунта, - критическое давление под центром цилиндра на длине l, при среднем допускаемом давлении на упругое грунтовое основание

- среднее давление под торцами цилиндра, и заглублении цилиндра в грунт, и его осадке на глубину
где Ео - модуль объемной деформации грунта, при этом горизонтальная опорная часть призматического балочного фундамента выполнена выступающей за края цилиндрической опорной поверхности, либо оснащена анкерными сваями.



 

Похожие патенты:

Изобретение относится к средствам защиты от вредного влияния вибрации и может быть использовано в строительстве, в частности в устройствах виброизолированных фундаментов под машины и оборудование с динамическими нагрузками.

Изобретение относится к средствам защиты от вредного влияния вибрации и может быть использовано в строительстве, в частности в устройствах виброизолированных фундаментов под машины и оборудование с динамическими нагрузками.

Изобретение относится к средствам защиты от вредного влияния вибрации и может быть использовано в строительстве, в частности, в устройствах виброизолированных фундаментов под машины и оборудование с динамическими нагрузками.

Изобретение относится к средствам защиты от вредного влияния вибрации и может быть использовано в строительстве, в частности в устройствах виброизолированных фундаментов под машины и оборудование с динамическими нагрузками.

Изобретение относится к средствам защиты от вредного влияния вибрации и может быть использовано в строительстве, в частности в устройствах виброизолированных фундаментов под машины и оборудование с динамическими нагрузками.

Изобретение относится к средствам защиты от вредного влияния вибрации и может быть использовано в строительстве, в частности в устройствах виброизолированных фундаментов под машины и оборудование с динамическими нагрузками.

Изобретение относится к области электромашиностроения, преимущественно к крупным электрическим машинам, а более конкретно к фундаментным плитам, предназначенным для установки на них турбогенераторов и гидрогенераторов.

Изобретение относится к строительству и может быть использовано для нового строительства и при реконструкции зданий и сооружений в любых инженерно-геологических условиях.

Изобретение относится к области строительства, а именно к способам установки анкерных болтов в фундаментах для крепления технологического оборудования, включая машины и оборудование с динамическими нагрузками.

Изобретение относится к области монтажа технологического оборудования и может быть использовано при подливке бетонной смеси под оборудование

Группа изобретений относится к строительству, а именно к возведению оснований под тяжеловесную конструкцию, вибрирующую в процессе работы, например турбину, генератор и т.д. Способ изготовления бетонной платформы, на которой фиксируют поддерживаемый объект, включает этап создания опалубки, содержащей пару бетонных боковых стенок и бетонную нижнюю панель, которая соединяет указанную пару бетонных боковых стенок. Этап установки опалубки на множество колонн. Этап заливки бетона в опалубку, которая установлена на множестве колонн. Технический результат состоит в снижении трудоемкости и материалоемкости. 6 н. и 4 з.п. ф-лы, 9 ил.

Изобретение относится к средствам для размещения транспортабельных электроразрядных газовых лазеров, а также может быть применено и для других электроразрядных высоковольтных передвижных устройств. Опорно-несущая конструкция для транспортабельного электроразрядного лазера содержит фундаментный блок и ванну. Фундаментный блок выполнен в виде рамы из труб прямоугольного сечения, с размещенной на ней и жестко скрепленной с ней плитой. Трубы в раме расположены в продольном и поперечном направлениях, причем трубы одного направления расположены на расстоянии друг от друга и жестко связаны с трубами другого направления. Ванна закреплена на раме, плита герметично закреплена над ванной, наполненной жидким диэлектриком, при этом в плите выполнено сквозное отверстие, расположенное над ванной. Технический результат состоит в обеспечении высокой прочности и жесткости конструкции при минимальных габаритах и массе, позволяющей работать лазеру даже при интенсивных механических нагрузках, возникающих во время транспортирования, увеличении степени мобильности и функциональности лазера, повышении надежности и увеличении ресурса работы лазера, обеспечении технологичности конструкции, снижение стоимости изготовления. 2 ил.

Изобретение относится к аттракционам и может быть использовано в ручной дворовой карусели в зимнее время. Техническим результатом изобретения является упрощение управления карусели изнутри. Фундамент подшипниковой опоры карусели содержит подшипниковую опору и фундамент, расположенный в грунте. Причем фундамент выполнен сборно-разборным и содержит, по меньшей мере, три фундаментные плиты стянутые резьбовыми стяжками, между двумя нижними которых свободно расположены распорные кольца с клиньями, образующими замкнутую круговую систему. При этом каждое распорное кольцо выполнено взаимодействующим через клиновые пары с двумя клиньями с возможностью увеличения периметра замкнутой круговой системы в сторону грунта. 2 ил.

Изобретение относится к анкерному устройству для анкерного крепления рабочей машины, в частности крана на фундаменте. Устройство содержит четырехугольную анкерную раму для размещения рабочей машины. Анкерная рама в каждой из своих угловых точек соединена по меньшей мере через одну четырехгранную трубу по меньшей мере с одной контрплитой, и через четырехгранную трубу пропущен по меньшей мере один работающий на растяжение элемент для разъемной анкеровки анкерной рамы с контрплитой или контрплитами. Достигается надежность анкерного устройства. 5 н. и 14 з.п. ф-лы, 10 ил.

Изобретение относится к средствам защиты от вредного влияния вибрации и может быть использовано в строительстве, в частности в устройствах виброизолированных фундаментов под машины и оборудование с динамическими нагрузками. Виброизолированный фундамент включает ванну, размещенный в ней с зазором относительно стенок и днища фундаментный блок и виброизоляторы в виде установленных на днище ванны подпружиненных катковых опор и прикрепленных к ним нижними концами наклонных стержней, на верхние концы которых оперт фундаментный блок. Фундаментный блок оперт на верхние концы стержней свободно, его нижняя поверхность в зоне контакта со стержнями выполнена с цилиндрическими выемками, образующая каждой из которых ориентирована горизонтально и перпендикулярно соответствующему стержню. Катковые опоры соединены между собой пружиной и со стороны, обращенной к стенкам ванны, оснащены буферными элементами, при этом нижняя кромка каждой выемки фундаментного блока выполнена с упором и к верхней ее кромке прикреплена одним концом дополнительная пружина, другой конец которой соединен с верхним концом соответствующего стержня, а суммарная жесткость дополнительных пружин меньше жесткости основной пружины. Основная пружина, связывающая между собой катковые опоры, выполнена в виде цилиндрической пружины, которая состоит из двух частей со встречно направленными концами, одна часть из которых имеет витки прямоугольного сечения, а другая часть пружины выполнена полой, при этом встречно направленный конец первой части размещен в полости второй, зазоры сегментного профиля контактирующих частей пружины заполнены антифрикционной смазкой. На конце второй части пружины установлена уплотнительная манжета для предотвращения утечки смазки, а первую часть винтовой пружины, выполненную с витками прямоугольного сечения с закругленными кромками, охватывает трубка из демпфирующего материала, например полиуретана. Зазоры в первой части винтовой пружины, выполненной с витками прямоугольного сечения, которую охватывает трубка из демпфирующего материала, заполнены крошкой из фрикционного материала. Зазоры в первой части винтовой пружины, выполненной с витками прямоугольного сечения, которую охватывает трубка из демпфирующего материала, заполнены крошкой из фрикционного материала, выполненного из композиции, включающей следующие компоненты при их соотношении, мас.%: смесь резольной и новолачной фенолоформальдегидных смол в соотношении 1:(0,2-1,0) 28÷34 волокнистый минеральный наполнитель, содержащий стеклоровинг или смесь стеклоровинга и базальтового волокна в соотношении 1:(0,1-1,0) 12÷19 графит 7÷18 модификатор трения, содержащий технический углерод в виде смеси с каолином и диоксидом кремния 7÷15 баритовый концентрат 20÷35 тальк 1,5÷3,0 Технический результат состоит в повышении эффективности гашения колебаний, снижении динамических нагрузок на нижнее строение фундамента. 2 ил.

Изобретение относится к средствам защиты от вредного влияния вибрации и может быть использовано в строительстве, в частности в устройствах виброизолированных фундаментов под машины и оборудование с динамическими нагрузками. Виброизолирующий фундамент с инерционными массами включает верхнее и нижнее строение и установленные между ними виброизоляторы с пружинными опорами и размещенными в сферических оболочках с зазором шарами, имеющими взаимодействующие с верхним строением шипы. Каждый виброизолятор снабжен, по крайней мере, тремя рычагами и установленными на нижнем строении направляющими для них, причем одни концы рычагов шарнирно соединены с оболочкой, а другие выполнены с противовесами и последовательно соединены между собой пружинами, в зазоре между шаром и оболочкой размещены тела качения, а противовесы закреплены на рычагах с возможностью фиксированного перемещения. Пружина содержит цилиндрическую винтовую пружину, состоящую из двух частей со встречно направленными концами, одна часть из которых имеет витки прямоугольного сечения, а другая часть пружины выполнена полой, при этом встречно направленный конец первой части размещен в полости второй, зазоры сегментного профиля контактирующих частей пружины заполнены антифрикционной смазкой. На конце второй части пружины установлена уплотнительная манжета для предотвращения утечки смазки, а первую часть винтовой пружины, выполненную с витками прямоугольного сечения с закругленными кромками, охватывает трубка из демпфирующего материала, например полиуретана. Зазоры в первой части винтовой пружины, выполненной с витками прямоугольного сечения, которую охватывает трубка из демпфирующего материала, заполнены крошкой из фрикционного материала, зазоры в первой части винтовой пружины, выполненной с витками прямоугольного сечения, которую охватывает трубка из демпфирующего материала, заполнены крошкой из фрикционного материала, выполненного из композиции, включающей следующие компоненты, при их соотношении, мас. %: смесь резольной и новолачной фенолоформальдегидных смол в соотношении 1:(0,2-1,0) 28÷34; волокнистый минеральный наполнитель, содержащий стеклоровинг или смесь стеклоровинга и базальтового волокна в соотношении 1:(0,1-1,0) 12÷19; графит 7÷18; модификатор трения, содержащий технический углерод в виде смеси с каолином и диоксидом кремния, 7÷15; баритовый концентрат 20÷35; тальк 1,5÷3,0. Технический результат состоит в повышении эффективности гашения колебаний, снижении динамических нагрузок на нижнее строение фундамента. 3 ил.

Изобретение относится к средствам защиты от вредного влияния вибрации и может быть использовано в строительстве, в частности в устройствах виброизолированных фундаментов под машины и оборудование с динамическими нагрузками. Виброизолированный фундамент с пневматической системой виброизоляции включает фундаментную ванну, заполненную сжатым газом, опорный блок, размещенный в фундаментной ванне, упругий элемент, выполненный в виде тора, заполненного сжатым газом и размещенного между боковыми поверхностями фундаментной ванны и опорного блока, и трубопровод подачи сжатого газа. Опорный блок выполнен полым с дросселирующими отверстиями, сообщающими его полость с полостью фундаментной ванны и с полостью тора. Трубопровод подачи сжатого газа заведен в полость опорного блока и на авторегулятор поддержания уровня верхней поверхности опорного блока, при этом к его нижней поверхности жестко закреплено дополнительное демпфирующее устройство, выполненное полым в виде каркаса, имеющего эквидистантную форму с опорным блоком, расположенное между опорным блоком и днищем фундаментной ванны, на которое каркас опирается через сетчатые шайбовые демпферы и полость которого соединена с полостью опорного блока через дросселирующее отверстие. Технический результат состоит в повышении эффективности гашения колебаний, снижении динамических нагрузок на нижнее строение фундамента здания. 1 з.п. ф-лы, 2 ил.

Изобретение относится к области опорных конструкций для установки элементов оборудования на бетонной плите. Система для закрепления элемента (1) оборудования, устанавливаемого на бетонной плите (2), содержит по меньшей мере один поднятый относительно плиты (2) и сформированный за одно целое с ней блок (31, 32), металлическую ленту (310), ограничивающую вертикальные стенки блока (31, 32), и размещенную поверх упомянутого блока (31, 32) металлическую опору (35, 35') для соединения со стойкой (12) устанавливаемого на бетонной плите (2) элемента (1) оборудования, при этом упомянутая опора (35, 35') выполнена с загнутыми книзу краями (351) по своей периферии, выполненными с возможностью охвата ими металлической ленты (310) и прикрепленными к ней посредством сварки. Использование изобретения позволяет сократить время установки элементов оборудования на бетонной плите при сохранении точности его позиционирования. 2 н. и 7 з.п. ф-лы, 4 ил.

Изобретение относится к средствам защиты от вредного влияния вибрации и может быть использовано в строительстве, в частности, в устройствах виброизолированных фундаментов под машины и оборудование с динамическими нагрузками. Амортизирующая стойка фундамента под оборудование включает обойму, установленную на нижнем строении с зазором относительно верхнего строения, и размещенный в обойме стержень, стойка снабжена пружиной, размещенной между верхним и нижним строениями и охватывающей обойму, которая выполнена из коаксиальных верхней наружной и нижней внутренней с установленными на ее верхнем торце блоками секций, а стержень выполнен с шарнирно прикрепленной к его нижнему концу пятой, которая посредством тросов, огибающих блоки, подвешена к нижней части верхней секции обоймы. Пружина, установленная между нижним и верхним строениями фундамента, выполнена в виде комбинированной пружины со встроенным демпфером, содержащая цилиндрическую винтовую пружину, состоящую из двух частей со встречно направленными концами, одна часть из которых имеет витки прямоугольного сечения, а другая часть пружины выполнена полой. Встречно направленный конец первой части размещен в полости второй, зазоры сегментного профиля контактирующих частей пружины заполнены антифрикционной смазкой. На конце второй части пружины установлена уплотнительная манжета для предотвращения утечки смазки, а первую часть винтовой пружины, выполненную с витками прямоугольного сечения с закругленными кромками, охватывает трубка из демпфирующего материала, например полиуретана. Зазоры в первой части винтовой пружины, выполненной с витками прямоугольного сечения, которую охватывает трубка из демпфирующего материала, заполнены крошкой из фрикционного материала, выполненного из композиции, включающей следующие компоненты, при их соотношении, в мас.%: смесь резольной и новолачной фенолоформальдегидных смол в соотношении 1:(0,2-1,0) 28÷34% волокнистый минеральный наполнитель, содержащий стеклоровинг или смесь стеклоровинга и базальтового волокна в соотношении 1:(0,1-1,0) 12÷19% графит 7÷18% модификатор трения, содержащий технический углерод в виде смеси с каолином и диоксидом кремния 7÷15% баритовый концентрат 20÷35% тальк 1,5÷3,0% Технический результат состоит в повышении эффективности гашения колебаний, снижении динамических нагрузок на нижнее строение фундамента. 2 ил.
Наверх