Устройство для исследования устойчивости движения капель



Устройство для исследования устойчивости движения капель
Устройство для исследования устойчивости движения капель
Устройство для исследования устойчивости движения капель
Устройство для исследования устойчивости движения капель
Устройство для исследования устойчивости движения капель
Устройство для исследования устойчивости движения капель
B01L99 - Оборудование общего назначения для химических или физических лабораторий (аппаратура для медицинских и фармацевтических целей A61; устройства для промышленных целей и лабораторная аппаратура, конструкция и отличительные признаки которой сравнимы с промышленной аппаратурой, см. классы, соответствующие области применения промышленной аппаратуры, в частности классы B01 и C12; устройства для разделения или перегонки B01D; устройства для смешивания или перемешивания B01F; распылители B05B; сита B07B; пробки, втулки для закупорки B65D; разлив жидкостей вообще B67; вакуумные насосы F04; сифоны F04F 10/00 клапаны, запорные краны F16K; трубы, трубные соединения

Владельцы патента RU 2394649:

Государственное образовательное учреждение высшего профессионального образования Томский государственный университет (ТГУ) (RU)

Изобретение относится к исследованию устойчивости капель при их движении в жидкой или газообразной вязкой среде. Устройство включает сосуд с вязкой жидкостью, расположенную над сосудом капельницу и систему визуализации, причем сосуд выполнен цилиндрической формы и расположен соосно с валом электродвигателя с возможностью вращения в горизонтальной плоскости, а капельница, закрепленная на валу двигателя, смещена от оси вращения на расстояние не более 0.25 радиуса сосуда, причем диаметр капли и угловая скорость вращения сосуда находятся в заданном соотношении. Достигается повышение эффективности устройства и информативности исследования. 5 ил.

 

Изобретение относится к области разработки установок для лабораторных исследований физических и химических процессов, в частности исследования устойчивости капель при их движении в жидкой или газообразной вязкой среде.

Процессы деформации и потери устойчивости капель в потоке, приводящие к их дроблению, играют важную роль в гидро-газодинамике двухфазных течений [1]. Эти процессы имеют очевидное практическое значение в метеорологии (формирование спектра размеров капель атмосферных осадков [2]), в двигателестроении (дисперсность капель горючего в двигателях внутреннего сгорания и жидкостных ракетных двигателях [3]), в задачах экологии (формирование облака токсичных компонентов жидких ракетных топлив при разделении ступеней ракет-носителей [4]) и в целом ряде других отраслей техники и технологии.

Известны устройства для исследования неустойчивости Кельвина-Гельмгольца [1], приводящей к дроблению капли аэродинамическими силами при достижении критического значения числа Вебера, характеризующего отношение сил динамического напора к силам поверхностного натяжения:

,

где ρ - плотность среды, в которой движется капля;

u - скорость движения капли;

D -диаметр капли;

σ - коэффициент поверхностного натяжения вещества капли.

Эти устройства основаны на измерении скорости и размера капель, а также на их визуализации при движении в кольцевом двухфазном потоке, в плоском конфузоре, в ударных волнах, в волнах разрежения, во вспененном водно-глицериновом растворе [5].

Известны устройства для исследования неустойчивости Рэлея-Тейлора [1], приводящей к деформации и дроблению капли за счет ее ускорения при достижении критического значения числа Бонда, характеризующего отношение массовых сил к силам поверхностного натяжения:

где ρk - плотность вещества капли;

- модуль вектора ускорения массовых сил.

Исследования неустойчивости Рэлея-Тейлора показали, что наибольший теоретический и практический интерес представляет режим движения капли, характеризующийся малыми значениями числа Рейнольдса Re≤1 и значениями числа Бонда, близкими к критическому значению Во*=40÷90 [1, 6-9]. В указанной области чисел Бонда происходит потеря устойчивости капли, сопровождающаяся ее деформацией, колебаниями и, в конечном счете, разрушением.

Известные устройства для исследования неустойчивости Рэлея-Тейлора [6] принципиально не отличаются от перечисленных выше устройств для изучения неустойчивости Кельвина-Гельмгольца.

Наиболее близким по технической сущности является устройство, в котором в процессе гравитационного осаждения капли ртути в вязкой жидкости измеряется ее скорость и осуществляется визуализация методом видео- или киносъемки деформации и дробления капли [10]. При этом размер капли и физические характеристики пары жидкостей (капли и вязкой жидкости, в которой она движется) необходимо выбрать таким образом, чтобы при осаждении капли значение числа Бонда было близко к критическому Во~Во=40÷90, а число Рейнольдса Re≤1.

Однако данное устройство [10] не позволяет исследовать устойчивость движения капли в указанном диапазоне чисел Рейнольдса и Бонда, так как при этом необходимо получить достаточно крупные начальные сферические капли ртути диаметром не менее D=(9÷15) мм, что практически осуществить невозможно.

Техническим результатом настоящего изобретения является разработка устройства для исследования устойчивости капель в вязком потоке в области малых значений числа Рейнольдса Re≤1 при режимах движения, соответствующих возникновению неустойчивости Рэлея-Тейлора, то есть при значениях числа Бонда Во~Во=40÷90.

Технический результат изобретения достигается тем, что разработано устройство для исследования устойчивости движения капель, включающее сосуд с вязкой жидкостью, расположенную над сосудом капельницу и систему визуализации, отличающееся тем, что сосуд выполнен цилиндрической формы и расположен соосно с валом электродвигателя с возможностью вращения в горизонтальной плоскости, а капельница, закрепленная на валу двигателя, смещена от оси вращения на расстояние не более 0.25 радиуса сосуда, причем диаметр капли D и угловая скорость вращения сосуда n находятся в следующем соотношении:

,

а коэффициент динамической вязкости жидкости выбирается из соотношения

Здесь n - угловая скорость вращения сосуда (число оборотов в секунду);

R - радиус сосуда;

Во* - критическое значение числа Бонда в диапазоне Во*=40÷90;

D - диаметр капли;

ρk, σ - плотность и коэффициент поверхностного натяжения вещества капли;

g - ускорение свободного падения;

ρ, μ - плотность и коэффициент динамической вязкости жидкости, в которой движется капля.

Полученный положительный эффект изобретения связан с тем, что гравитационное осаждение капли в поле ускорения силы тяжести g дополняется ее радиальным движением в поле ускорения центробежной силы инерции ωцб, возникающей при вращении сосуда с жидкостью [11]. При этом входящее в число Бонда (1) ускорение массовых сил со будет равно

где k=ωцб/g - степень перегрузки (отношение ускорения центробежных сил инерции ωцб к ускорению свободного падения g).

Величина k связана с угловой скоростью вращения сосуда n (число оборотов в секунду) соотношением

где r - радиальная координата капли.

На Фиг.1 приведены результаты расчетов размера капель, обеспечивающих заданные значения числа Бонда (Во*=40 и Во*=90) в зависимости от степени перегрузки k, проведенных для капель ртути (ρk=13550 кг/м3, σ=0.3 Н/м) по формуле, полученной из (1), (2):

Как следует из Фиг.1, при гравитационном осаждении капель (прототип), что соответствует значению k=0, необходимы начальные размеры капель ртути D=14.2 мм (для Bo*=90) и D=9.5 мм (для Bo*=40). Сферические капли таких размеров получить невозможно. При увеличении угловой скорости вращения сосуда (или связанной с ней степени перегрузки k) требуемые исходные размеры капель снижаются, например, при k=5 до значений D=6.3 мм (для Bo*=90) и D=4.2 мм (для Bo*=40). При дальнейшем увеличении степени перегрузки эти размеры будут еще меньше, и капли требуемого размера можно получить с помощью обычной капельницы.

Из уравнений (1)-(3) следует формула для расчета угловой скорости вращения сосуда n, обеспечивающей заданный режим движения капли (заданное значение Bo* при определенном значении радиальной координаты r=r*):

Для детального изучения устойчивости капли в области значений числа Бонда Bo~Bo* значение r* выбрано равным r*=0.5R, где R - радиус сосуда. Это обеспечивает изучение поведения капли при Bo<Bo* (r<r*) и при Bo>Bo* (r>r*). С учетом этого, уравнение (5) примет вид

Расстояние капельницы от оси вращения Rk должно быть не более 0.25R. Это обеспечивает изучение поведения капли как при Bo<Bo*, так и при Bo>Bo*.

Для обеспечения режима движения капли при числах Рейнольдса Re≤l необходимо использовать жидкость с определенным значением коэффициента динамической вязкости μ, которое находится из условия

,

где μ - коэффициент динамической вязкости жидкости, в которой движется капля.

При этом

Из уравнения движения капли в поле ускорения массовых сил ω следует формула для квазистационарной скорости капли u при Re=1:

Подставляя (8) в (7), получим необходимое значение коэффициента динамической вязкости:

Подставляя в (9) ускорение массовых сил ω с учетом (2), (3) и полагая r*=0.5R получим:

Таким образом, формулы (6), (10) позволяют выбрать параметры установки (диаметр начальных капель D, угловую скорость вращения n, коэффициент динамической вязкости жидкости μ), обеспечивающие при заданных значениях R, σ, ρk, ρ требуемый режим движения капли:

Bo~Bo*=40÷90, Re≤1.

Пример реализации заявляемого устройства приведен на Фиг.2. Устройство состоит из цилиндрического сосуда 1 радиусом R с вязкой жидкостью 2, расположенного соосно с валом электродвигателя 3 с возможностью вращения в горизонтальной плоскости. Из капельницы 4, закрепленной на валу двигателя на расстоянии Rk от оси вращения, начальная капля 5 поступает в сосуд с вязкой жидкостью. При этом капля 6 движется в радиальном направлении к периферии сосуда и одновременно движется вниз под действием силы тяжести. В процессе движения капли 6 ее деформация регистрируется скоростной видеокамерой 7.

Эффективность заявляемого устройства, схема которого приведена на Фиг.2, определяли проведением расчетов режимов движения капли, для следующей пары жидкостей - ртуть (капля) и водно-глицериновый раствор (вязкая жидкость в которой движется капля).

Расчеты проводились для следующих значений параметров:

ρk=13550 кг/м3; ρ=1260 кг/м3; 0.3 H/м; R=0.15 м; k=1÷8; Bo=40÷90.

Результаты расчетов для Bo*=40 и Bo*=90 представлены на Фиг.1, 3-5.

На Фиг.1 приведены результаты расчетов начального размера капель, обеспечивающих заданные значения числа Бонда в зависимости от степени перегрузки k, проведенных по формуле (4).

На Фиг.3 приведены зависимости скорости квазистационарного движения капли при Re=1 от степени перегрузки k для заданных значений числа Бонда, рассчитанные по формуле (8).

На Фиг.4 приведены зависимости требуемой угловой скорости вращения n от степени перегрузки k для заданных значений числа Бонда, рассчитанные по формуле (3).

На Фиг.5 приведены зависимости требуемого коэффициента динамической вязкости рабочей жидкости от степени перегрузки k для заданных значений числа Бонда, рассчитанные по формуле (10).

С помощью приведенных графиков можно определить параметры устройства, обеспечивающие заданный режим движения капли.

Рассмотрим, в частности, режим движения при Bo*=40. Из Фиг.1 следует, что, например, при k=8 требуемый начальный диаметр капли составляет D=3.35 мм. Из Фиг.3 следует, что для k=8 и D=3.35 мм скорость квазистационарного движения капли u=0.38 м/с. Из Фиг.4 следует, что для k=8 и r*=R/2=0.075 м требуемая угловая скорость вращения n=5.15 оборотов в секунду. Из Фиг.4 следует, что требуемое значение коэффициента динамической вязкости рабочей жидкости ρ=1.6 Па·с.

Подставляя полученные значения рассчитанных параметров в формулы для расчета чисел Бонда и Рейнольдса, получим:

Bo*=40; Re=1.

Таким образом, заявляемое устройство обеспечивает исследование устойчивости движения капли в вязкой жидкости в заданном диапазоне значений критериев подобия - чисел Рейнольдса и Бонда.

В качестве рабочей жидкости можно использовать, например, водно-глицериновые растворы, вязкость которых варьируется в широких пределах в зависимости от процентного содержания воды и температуры окружающей среды [12]. В частности, значение μ=1.6 Па·с соответствует коэффициенту динамической вязкости водно-глицеринового раствора, содержащего 4 мас.% воды при температуре +10°С. При этом требуемый диаметр капель не превышает D=(2÷4) мм, что обеспечивает возможность их получения известными способами, например, с помощью обычной капельницы.

Литература

1. Нигматулин Р.И. Динамика многофазных сред. Ч.1 - М.: Наука, 1987. - 464 с.

2. Матвеев А.Т. Основы общей метеорологии. - Л.: Гидрометеоиздат, 1965. - 874 с.

3. Васильев А.П., Кудрявцев В.М., Кузнецов В.А. и др. Основы теории и расчета жидкостных ракетных двигателей. - М.: Высшая школа, 1983. - 703 с.

4. Александров Э.Л. Поведение жидких ракетных топлив в атмосфере. // Экологические проблемы и риски воздействий ракетно-космической техники на окружающую среду / справочное пособие / Под ред. Алдушина В.В., Козлова С.И., Петрова А. В. М.: АНКИЛ, 2000. - 600 с.

5. Шрайбер А.А. Многофазные полидисперсные течения с переменным фракционным составом дискретных включений. // Итоги науки и техники. Комплексные и специальные разделы механики. - М.: ВИНИТИ, 1988. Т.3. С.3-80.

6. Гонор А.Л., Ривкинд В.Я. Динамика капли. // Итоги науки и техники. Механика жидкости и газа. - М.: ВИНИТИ, 1982. Т.17. С.86-159.

7. Васенин И.М., Архипов В.А., Бутов В.Г., Глазунов А.А., Трофимов В.Ф. Газовая динамика двухфазных течений в соплах. - Томск: Изд-во Том. ун-та, 1986. - 286 с.

8. Harper E.Y., Grube G.W., I-Dee Chang. On the breakup of accelerating liquid drops // J. Fluid Mech. - 1972. - Vol.52. - Part 2. - pp.565-591.

9. Бэтчелор Д. Введение в динамику жидкости. - М.: Мир, 1973. - 758 с.

10. Архипов В.А., Васенин И.М., Трофимов В.Ф., Шереметьева У.М. Режимы деформации и дробления жидко-капельных аэрозолей. // Оптика атмосферы и океана. - 2006. - Т.19. - №6. - С.526-529.

11. Иродов И.Е. Основные законы механики. - М.: Высшая школа, 1985. - 248 с.

12. Неволин Ф.В. Химия и технология производства глицерина. - М.: Химия, 1954.

Устройство для исследования устойчивости движения капель, включающее сосуд с вязкой жидкостью, расположенную над сосудом капельницу и систему визуализации, отличающееся тем, что сосуд выполнен цилиндрической формы и расположен соосно с валом электродвигателя с возможностью вращения в горизонтальной плоскости, а капельница, закрепленная на валу двигателя, смещена от оси вращения на расстояние не более 0,25 радиуса сосуда, причем диаметр капли и угловая скорость вращения сосуда находятся в следующем соотношении:
,
а коэффициент динамической вязкости жидкости выбирается из соотношения
,
где n - угловая скорость вращения сосуда (число оборотов в секунду);
R - радиус сосуда;
Во* - критическое значение числа Бонда в диапазоне Во*=40÷90;
D - диаметр капли;
ρk, σ - плотность и коэффициент поверхностного натяжения вещества капли;
g - ускорение свободного падения;
ρ, µ - плотность и коэффициент динамической вязкости жидкости.



 

Похожие патенты:

Изобретение относится к лабораторному оборудованию, которое широко используется в учебных заведениях (см., например, Д.В.Штеренлихт

Изобретение относится к портативному анализатору для исследования пробы биологической жидкости на предмет значимой с медицинской точки зрения составляющей и может быть использовано в медицине. Анализатор включает корпус с магазином, имеющим отделения для размещения используемых для анализа диагностических полосок или тест-полосок, имеющих зону для биологической жидкости и контактные элементы для передачи сигнала на процессор анализирующего устройства. Анализирующее устройство выполнено с щелевидным приемником для используемой диагностической или тест-полоски. Также анализатор содержит индикаторное устройство для отображения не менее одного результата анализа. Магазин или диагностические полоски или тест-полоски в магазине выполнены с электронными элементами, содержащими сведения о маркировке номера партии и калибровочных параметрах. В корпусе размещен ретранслятор для считывания указанных параметров с электронных элементов и передачи их в процессор анализирующего устройства. Магазин выполнен в виде закрываемого крышкой понижения задней стенки корпуса, образующего плоскую поверхность, на которой выполнены выступы, разделяющие плоскую поверхность понижения на отделения для размещения диагностических полосок или тест-полосок, расположенных параллельно не менее чем в один ряд. Магазин может быть выполнен в виде параллелепипедной формы блока, закрепляемого на поверхности понижения задней стенки корпуса или на задней части корпуса. При этом в закрываемом крышкой блоке выполнены выступы, разделяющие дно блока на отделения для размещения диагностических полосок или тест-полосок, расположенных параллельно не менее чем в один ряд. Магазин также может быть выполнен в виде параллелепипедной формы блока, помещаемого в выполненной в корпусе полости, загрузочное отверстие которой выведено в боковую или заднюю стенку и оснащено крышкой. При этом в этом блоке выполнены выступы, разделяющие дно блока на отделения для размещения диагностических полосок или тест-полосок. Причем в корпусе размещено приемо-передающее устройство ближнего радиуса действия, выполненное с функцией получения сигналов от ретранслятора и процессора анализирующего устройства для передачи-приема данных в беспроводном режиме на оснащенное блоком приема-передачи медицинское оборудование или компьютеризированное средство, или средство мобильной связи, или мобильный телефон. Достигаемый технический результат заключается в более эффективном использовании пространства портативного анализатора, обеспечении простого обращения с подаваемыми диагностическими полосками и простой реализации их хранения внутри прибора. 12 ил.

Изобретение относится к исследованию деформации капель аэродинамическими силами и может быть использовано в лабораторных установках для исследования физических и химических процессов. Стенд для исследования деформации капель аэродинамическими силами включает вертикально расположенную капельницу с капилляром, систему подачи обдувающего падающую каплю встречного потока воздуха и систему визуализации. Система подачи потока воздуха содержит батарею баллонов со сжатым воздухом, соединенную трубопроводом через редуктор, регулирующий вентиль и расходомер, с входом цилиндрического патрубка, установленного соосно с капельницей. В патрубке расположен формирователь потока, выполненный в виде не менее шести симметрично расположенных по радиусам патрубка пластин. Система визуализации включает видеокамеру, расположенную с возможностью регистрации исходной сферической капли на срезе капельницы, и две скоростные видеокамеры, расположенные с возможностью регистрации скорости и деформации падающей капли в перпендикулярных плоскостях в выходном сечении патрубка. Диаметр капилляра, диаметр исходной сферической капли, диаметр и длина патрубка, скорость потока воздуха и число Вебера определяются по заданным алгебраическим формулам. Техническим результатом изобретения является повышение эффективности устройства и информативности исследования. 4 ил., 4 табл.
Наверх