Плазменно-ионный комбинированный воздушно-реактивный двигатель

Изобретение предназначено для использования в аэрокосмической технике в качестве маршевых и стационарных двигателей как источник электроэнергии для аэрокосмических аппаратов. Плазменно-ионный комбинированный воздушно-реактивный двигатель содержит диффузор, рабочую камеру, конфузор и устройство подачи рабочей среды в камеру. Двигатель снабжен плазменным генератором, размещенным вокруг рабочей камеры, устройством, генерирующим переменное магнитное поле, и ядерным импульсным подкритическим реактором. Последний соединен с накопителем нейтронов и нейтронным каскадным умножителем, сообщен с кольцевым генератором электрического тока в виде полого кольца и представляет собой энергетический модуль. Реактор также соединен с ионизаторами рабочей среды, связан ними с бортовым и внешним источниками этой среды. Источники рабочей среды соединены с помощью каналов ввода рабочей среды с полостью рабочей камеры - ускорителем заряженных частиц. Изобретение позволяет повысить удельную энерговооруженность и КПД тяги. 2 з.п. ф-лы, 2 ил.

 

Изобретение предназначено для использования в аэрокосмической технике в качестве маршевых и стационарных двигателей как источник электроэнергии для аэрокосмических аппаратов.

Известные плазменно-ионные двигатели имеют камеры для ионизации рабочей среды и ускорители заряженных частиц (патент Российской Федерации RU 2246035 ИОННЫЙ ДВИГАТЕЛЬ КОШКИНА, патент РФ №2162624, патент РФ №2162958).

Двигатели такого типа имеют существенные недостатки: большие затраты электроэнергии на ионизацию рабочего тела и получение плазмы снижают общий КПД и увеличивают потребление электроэнергии. Раздельное проектирование двигателей и источников электроэнергии не позволяет в полной мере решать все базовые проблемы плазменно-ионных двигателей, такие как удельная мощность на единицу массы двигателя, которая определяет максимальную скорость и истекание рабочей среды, соответственно, КПД и максимальную полезную нагрузку, а также время перелетов космических аппаратов с низкой орбиты на геостационарную орбиту.

Технической задачей и положительным результатом изобретения является создание плазменно-ионного комбинированного воздушно-реактивного двигателя на кольцевых генераторах, обладающего высокой удельной энерговооруженностью и КПД тяги.

Этот двигатель, за счет конструкции плазменно-ионного комбинированного воздушно-реактивного двигателя содержащий диффузор, рабочую камеру, конфузор, устройство подачи рабочей среды в камеру, снабжен плазменным генератором, устройством, генерирующим переменное магнитное поле, размещенным вокруг рабочей камеры, ядерным импульсным подкритическим реактором, соединенным с накопителем нейтронов и нейтронным каскадным умножителем и сообщенным с кольцевым генератором электрического тока, выполненным в виде полого кольца, представляющим энергетический модуль, реактор также соединен с ионизаторами рабочей среды, связан ими с бортовым и внешним источниками этой среды, соединенными с помощью каналов ввода рабочей среды с полостью рабочей камеры - ускорителем заряженных частиц. Плазменно-ионный комбинированный воздушно-реактивный двигатель снабжен несколькими модулями, включающими кольцевой генератор электрического тока, ядерный импульсный подкритический реактор, накопителями нейтронов и нейтронными каскадными умножителями. Рабочая камера, ее конфузор и диффузор имеют возможность реверсивной работы за счет оснащения рабочей камеры с двух ее сторон каналами ввода рабочей ионизированной среды, оснащенными управляемыми клапанами.

В электрореактивных двигателях, как и в двигателях на химическом топливе, сила тяги F связана с параметрами потока рабочего тела в следующем соотношении: F=mu, где m - удельный расход рабочего тела и u - средняя скорость его истечения. Реактивная мощность, выделяющаяся в виде кинетической энергии струи рабочего тела, записывается как Рстр=mu2. Тяговый КПД двигательной установки, в которой используются электрические двигатели, равен мощности струи Рстр к электрической мощности, подводимой от источника питания: ηд.устрвх. Уравнение можно записать следующим образом: ηд.у=F2/2mРвх. Удельный импульс реактивного двигателя Iуд=u/g0 где g0 - ускорение силы тяжести (9,8 м/с2). Уравнение можно переписать в виде ηд.у=F g0 Iуд/2Рвх или F/Рвх=2ηд.у/g0Iуд. Соотношение является основным уравнением для электроракетных двигательных установок, связывающим между собой тягу и подводимую электрическую мощность. Тяговый КПД двигательной установки ηд.у, учитывающий все виды потерь энергии при получении тяги, можно в свою очередь представить в виде произведения нескольких КПД, характеризирующих отдельные виды потерь в установке. ηд.упр·ηдв где ηпр - КПД энергопреобразователя, а ηдв - КПД движителя ("Знание - сила" №5 1959 год 5; Космические двигатели: состояние и перспективы. М.: МИР 1988).

На фиг.1 показана конструктивная схема двигателя; на фиг.2 - общий вид этого двигателя. Плазменно-ионный комбинированный воздушно-реактивный двигатель содержит: каскадные нейтронные умножители 1, накопитель нейтронов 2, импульсный подкритический ядерный реактор 3, кольцевой генератор 4, узел наложения магнитного поля 5, ионизирующую камеру 6, узел подачи рабочей среды 7 для образования плазмы 8, кольцевой канал 9 подачи рабочей среды, ускоритель заряженных частиц 10, разгоняемые ионизированные частицы плазмы 11, в рабочем канале образовавшуюся высокоскоростную струю 12, где набегающий в канал 11 поток воздуха 13 смешивается с высокоионизированными частицами плазмы в объеме струи (фиг.1), диффузор 14(15) и конфузор 15(14) для работы двигателя в реверсивных направлениях. Двигатель содержит несколько энергоблоков 16 для набора мощности. Управляемые клапаны 17 служат для изменения подачи рабочей среды в тот-9 или иной-9 канал, а также имеет переключатель 18 подачи рабочей среды и переключатель 19 ускорителя 10 для реверсивной роботы двигателя и изменения направления тяги.

Предлагаемый двигатель работает следующим образом: нейтронные каскадные умножители 1 подают пучки тепловых нейтронов в накопители нейтронов 2, откуда через равные промежутки времени выпускаются дискретные высокоплотные пучки нейтронов (1018-1019 нейтрон в сек), которые подаются в импульсный подкритический ядерный реактор 3. В результате интенсивных ядерных реакций высвобождается большое количество тепловой энергии (100 МВт) за 104-доли секунды, генерируется ударная волна внутри кольцевого генератора 4, которая перемещает магнитную или токопроводящую среду, заполняющую кольцевой генератор, при наложении магнитного поля 5 запасенная кинетическая энергия преобразуется в электрическую. С помощью импульсного подкритического ядерного реактора образуют мощное ионизирующее излучение, его направляют в ионизирующую камеру 6, через которую пропускают внешнюю или запасенную среду 7, в результате чего образуется высокоионизированная плазма 8, которая подается через кольцевой канал 9 к ускорителю заряженных частиц 10, на который также подают электрическую мощность от кольцевых генераторов, состоящих из нескольких энергоблоков 16, в результате ускорения ионизированных частиц плазмы 11 заряженные частицы сталкиваются с нейтральными частицами, вызывая их ионизацию, а ускорение ионов возникает вследствие взаимодействия тока, протекающего по плазме с магнитным полем ускорителя, что приводит к увеличению числа заряженных частиц и образованию высокоскоростной струи 12 и тяги двигателя в газовой среде (в атмосфере планеты), где набегающий поток воздуха 13 смешивается в диффузоре 14 с высокоионизированной плазмой и попадает в ускоритель заряженных частиц, где ионы ускоряются с образованием новых ионов и вылетают в конфузор 15, поскольку истекающая плазма состоит из ионов и электронов, дополнительного устройства для нейтрализации струи не требуется. Так в режиме полета в атмосфере плазменно-ионный комбинированный воздушно-реактивный двигатель имеет максимальный расход рабочей среды и оптимальную скорость истечения рабочего тела, а в стратосфере средний расход рабочей среды и среднюю скорость истечения, в космосе минимальный расход и максимальную скорость истечения. С целью увеличения объемов получаемой плазмы и электрической мощности, подаваемой на ускоритель, двигатель содержит несколько энергоблоков 16. Меняя направление подачи рабочей среды при помощи клапанов 17 и переключателя подачи рабочей 18, а также меняя направление работы ускорителя при помощи переключателя 19, можно реверсировать тягу двигателя.

Плазменно-ионный комбинированный воздушно-реактивный двигатель применим как маршевый двигатель для летательных аппаратов типа самолетов, так и для одноступенчатых космических аппаратов.

1. Плазменно-ионный комбинированный воздушно-реактивный двигатель, содержащий диффузор, рабочую камеру, конфузор, устройство подачи рабочей среды в камеру, отличающийся тем, что он снабжен плазменным генератором, устройством, генерирующим переменное магнитное поле, размещенным вокруг рабочей камеры, ядерным импульсным подкритическим реактором, соединенным с накопителем нейтронов и нейтронным каскадным умножителем и сообщенным с кольцевым генератором электрического тока, выполненным в виде полого кольца, представляющий энергетический модуль реактор также соединен с ионизаторами рабочей среды, связан ими с бортовым и внешним источником этой среды, соединенными с помощью каналов ввода рабочей среды с полостью рабочей камеры ускорителем заряженных частиц.

2. Плазменно-ионный комбинированный воздушно-реактивный двигатель по п.1, отличающийся тем, что он снабжен несколькими модулями, включающими кольцевой генератор электрического тока, ядерный импульсный подкритический реактор, накопителями нейтронов и нейтронными каскадными умножителями.

3. Плазменно-ионный комбинированный воздушно-реактивный двигатель по п.1, отличающийся тем, что рабочая камера, ее конфузор и диффузор имеют возможность реверсивной работы за счет оснащения рабочей камеры с двух ее сторон каналами ввода рабочей ионизированной среды, оснащенными управляемыми клапанами.



 

Похожие патенты:

Изобретение относится к эксплуатируемой преимущественно в условиях космического вакуума измерительной технике, предназначенной для определения расхода рабочего тела (ксенона), подаваемого из баков реактивных двигательных установок космических аппаратов.

Изобретение относится к космической технике. .

Изобретение относится к области энергетики. .

Изобретение относится к области космической техники и может быть использовано при наземных испытаниях и эксплуатации электрореактивных двигателей. .

Изобретение относится к области космической техники и может быть использовано при наземных испытаниях и эксплуатации электрореактивных двигателей (ЭРД) различной мощности, например холловских плазменных двигателей, и электрореактивных двигательных установок (ЭРДУ) на их основе.

Изобретение относится к способам и устройствам эксплуатации электрореактивных плазменных двигателей. .

Изобретение относится к электрореактивным двигателям импульсного действия на жидких рабочих средах, использующих электронно-детонационный тип разряда. .

Изобретение относится к электроракетным двигателям. .

Изобретение относится к реактивной технике, а именно к конструкции воздушно-реактивных двигателей, и может быть использовано в качестве двигательных установок маломерных летательных аппаратов.

Изобретение относится к пульсирующим реактивным двигателям и может быть использовано как двигатель для привода летательных аппаратов и различных машин

Изобретение относится к двигателестроению, в частности к двигателям реактивным авиационным, ракетным, камера детонационно-пульсирующего сгорания которого способна развивать гиперзвуковые скорости распространения пламени с условным ростом в сторону бесконечного увеличения. Техническим результатом изобретения является дальнейшее совершенствование и повышение эффективности работы известных детонационно-пульсирующих тяговых модулей, освоение принципиально новой технологии их работы. Сущность изобретения заключается в дальнейшем совершенствовании технологии использования разреженного пространства, образующегося после отражения ударной волны от рабочей поверхности полусферического резонатора (известный эффект Гартмана-Шпренгера), с тем чтобы увеличить рабочий объем разрежения для последующего его заполнения паровоздушной или другой газовой топливной смесью во взрывоопасной концентрации с целью получения нескольких взрывных объемов подряд с их взаимно усиливающим наложением друг на друга в продольном направлении летательного аппарата (в направлении единственно имеющейся степени свободы), с целью дальнейшего осуществления возможности одновременного самовоспламенения части топливной смеси в замкнутом объеме одного из них, которое обеспечивает условную возможность роста скорости распространения пламени в сторону бесконечного увеличения. Гиперзвуковой воздушно-реактивный двигатель имеет детонационно-пульсирующую конусно-круговую камеру сгорания, объемлющую прямоточный реактивный рабочий канал, в результате чего происходит совмещение гиперзвукового рабочего реактивного потока конусно-круговой камеры сгорания со сверхзвуковым рабочим реактивным потоком прямоточного канала «один в другом», конусно-круговая детонационно-пульсирующая камера сгорания имеет кольцевое сопло подачи паровоздушной взрывоопасной топливной смеси, участок образования повышенного объема разрежения и всаса первого взрывного объема, участок, образующий второй взрывной объем, участок торможения впередиидущей ударной волны на выходе из конусно-круговой камеры сгорания, совпадение наружной конусной поверхности конусно-круговой камеры сгорания с входным сопловым участком первого сопла Лаваля, герметично соединенного со вторым, место совмещения гиперзвукового и сверхзвукового рабочих реактивных потоков, происходящее как бы в камере смешения в месте стыковки двух сопел Лаваля, средство зажигания, обеспечивающее воспламенение взрывоопасной топливной смеси в начальный период запуска двигателя, термический заряд для прогрева и продувки камеры сгорания, прямоточного канала и установления эжекционной тяги воздуха, детонационный стартовый заряд для образования тройной ударной волны с необходимым интервалом для запуска двигателя. 1 з.п. ф-лы, 2 ил.

Изобретение относится к космической технике, в частности к двигателям, использующим энергию термоядерного синтеза
Изобретение относится к области энергетики, к электрореактивным двигателям

Изобретение относится к области электроракетных двигателей (ЭРД)

Изобретение относится к области плазменной техники и может быть использовано как в составе космических электрореактивных двигателей для нейтрализации ионного пучка при их наземных испытаниях и натурной эксплуатации, так и в технологических источниках плазмы, применяемых для ионно-плазменной обработки поверхностей различных материалов в вакууме

Изобретение относится к области плазменной техники, а именно к системам подачи рабочего тела, и может быть использовано в пневматических трактах доставки рабочего тела (РТ) плазменным ускорителям, а также в технологических источниках плазмы, применяемых для ионно-плазменной обработки поверхностей различных материалов в вакууме

Изобретение относится к области космического аппаратостроения и может быть использовано для ускорения движения космических аппаратов в условиях глубокого вакуума
Наверх