Применение неравновесной низкотемпературной плазменной струи для стерилизации термически нестойких материалов

Изобретение относится к области плазменной инактивации микроорганизмов на поверхности термически нестойких материалов при атмосферном давлении и может быть использовано при стерилизации или дезинфекции полимерных, текстильных, бумажных и других материалов. Стерилизуемый термически нестойкий материал подвергают воздействию неравновесной низкотемпературной плазменной струи при атмосферном давлении, получаемой путем пропускания потока воздуха со скоростью 30-70 м/с через зону стационарного тлеющего разряда, который создают на выходе потока воздуха из газоразрядной камеры в межэлектродных промежутках. Межэлектродные промежутки образованы пластинчатыми анодами и штыревыми катодами, расположенными напротив кромок анодных пластин, обращенных к выходу газоразрядной камеры. Изобретение позволяет упростить процесс стерилизации термически нестойких материалов при атмосферном давлении при снижении его стоимости. 2 ил.

 

Изобретение относится к области плазменной инактивации микроорганизмов и может быть использовано при стерилизации/дезинфекции при атмосферном давлении поверхности термически нестойких материалов, таких как полимерные, текстильные, бумажные материалы и т.д.

Существо изобретения заключается в инактивации микроорганизмов (стерилизации) на поверхности термически нестойких материалов при атмосферном давлении за счет использования холодной (близкой к комнатной температуре), но химически активной плазменной струи в атмосферном воздухе.

Одним из эффективных способов плазмохимической стерилизации термически нестойких материалов при атмосферном давлении является их обработка неравновесной плазмой непосредственно в зоне разряда. При этом в газоразрядной плазме происходит возбуждение и диссоциация газообразных соединений с формированием различных радикалов, активно воздействующих на микроорганизмы на стерилизуемой поверхности.

Наиболее распространенный способ плазмохимической обработки (аналоги) состоит в использовании барьерного разряда в гелии, при котором электрический ток проходит сквозь обрабатываемый материал (Патент США 5,387,842, 1995; Патент США 5,414,324, 1995).

Общим недостатком известных способов является невозможность обработки проводящих материалов, а также диэлектрических материалов с толщиной более 1 мм. Кроме того, прохождение электрического тока через тонкий обрабатываемый материал приводит к его электрическому пробою, что создает в материале большое число пор и приводит к его порче.

Наиболее близким к изобретению по технической сущности (прототипом) является способ стерилизации поверхностей с использованием плазменной струи, создаваемой газоразрядной камерой, питаемой радиочастотным источником с частотой напряжения 13.56 МГц, и прокачиваемой газовым потоком, содержащим большое количество гелия (J.Goree, Member, IEEE, Bin Liu, David Drake, and E. Stoffels, Killing of S.mutans Bacteria Using a Plasma Needle at Atmospheric Pressure, IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL.34, NO.4, AUGUST 2006).

Недостатком известного способа является невозможность создания холодной (с температурой, близкой к комнатной) неравновесной плазмы в потоке воздуха, что делает его непригодным для стерилизации термически нестойких поверхностей непосредственно в условиях атмосферного воздуха. Кроме того, гелий - очень дорогой газ, и его использование в известном способе приводит к сильному удорожанию процесса плазменной стерилизации.

Техническим результатом изобретения является упрощение процесса стерилизации термически нестойких материалов при атмосферном давлении и снижение его стоимости.

Этот технический результат достигается применением неравновесной низкотемпературной плазменной струи, получаемой путем пропускания потока воздуха со скоростью 30-70 м/с через зону стационарного тлеющего разряда, который создают на выходе потока воздуха из газоразрядной камеры в межэлектродных промежутках, образованных пластинчатыми анодами и штыревыми катодами, расположенными напротив кромок анодных пластин, обращенных к выходу газоразрядной камеры, для стерилизации термически нестойких материалов при атмосферном давлении.

Существо изобретения поясняется чертежами, где на фиг.1 представлена общая схема стерилизации термически нестойких материалов холодной плазменной струей в воздухе при атмосферном давлении.

На фиг.2 показана электродная система для создания холодной плазменной струи. Газоразрядная камера выполнена в форме прямоугольного параллелепипеда, содержащего диэлектрические стенки 1, внутри которых размещена электродная система из секционированных катода 2 и анода 3, нагруженных на балластные сопротивления 4. Секции анода выполнены в форме тонких пластин. Площадь анодных секций определяется сортом плазмообразующего газа. Секции катода выполнены в форме штырей или тонких игл, ориентированных перпендикулярно потоку и расположенных в плоскости, касающейся нижней по потоку границы анодных секций. Электроды установлены в газоразрядной камере таким образом, что их межэлектродные промежутки расположены непосредственно на выходе газового потока из камеры. Расстояние между катодными секциями не превышает межэлектродное расстояние. При подаче на клемму 5 высокого электрического напряжения между катодом и анодом формируется газовый разряд, плазма 6 которого выносится потоком из полости камеры на стерилизуемый объект 7.

Изобретение осуществляют следующим образом.

Воздух при атмосферном давлении прокачивают между катодом и анодом, на которые подают постоянное электрическое напряжение 15-35 кВ для возбуждения стационарного тлеющего разряда. За счет большой скорости воздушного потока, варьируемой в пределах 30-70 м/с, и особенностей геометрии предлагаемой конструкции электродной системы (штыревые катоды смещены к кромкам анодных пластин, обращенных к выходу потока воздуха из газоразрядной камеры) газоразрядная плазма выносится из межэлектродного промежутка, что приводит к созданию в свободном пространстве вне газоразрядной камеры струи химически активной, но холодной плазмы, направляемой на неподвижный или движущийся стерилизуемый материал. В результате воздействия химически активной плазменной струи на поверхность материала происходит его стерилизация. Струя плазмы и/или стерилизуемый образец перемещаются друг относительно друга с нужной скоростью и в нужном направлении. Длительность экспозиции материала плазменной струей определяется расчетным путем и зависит от типа микроорганизмов, подлежащих инактивации. Возможность использования окружающего атмосферного воздуха в качестве плазмообразующего газа является существенным преимуществом предлагаемого способа, позволяющим упростить процесс стерилизации и снизить его стоимость.

Применение неравновесной низкотемпературной плазменной струи, получаемой путем пропускания потока воздуха со скоростью 30-70 м/с через зону стационарного тлеющего разряда, который создают на выходе потока воздуха из газоразрядной камеры в межэлектродных промежутках, образованных пластинчатыми анодами и штыревыми катодами, расположенными напротив кромок анодных пластин, обращенных к выходу газоразрядной камеры, для стерилизации термически нестойких материалов при атмосферном давлении.



 

Похожие патенты:

Изобретение относится к стерилизации предметов, в частности медицинских или хирургических инструментов. .

Изобретение относится к устройству для обеспечения ионизированной воды, использующему внутриводный плазменный разряд, в частности - к устройству для обеспечения ионизированной воды, использующему внутриводный плазменный разряд и в котором вода вводится в плазменно-ионизированное состояние путем выполнения внутриводного разряда при помощи устройства, которое выполняет внутриводный плазменный разряд в таком сосуде, как чашка, в результате чего формируемые при этом анионы (О3 -, ОН-, HOCl, Н2 O2) могут стерилизовать бактерии в воде и готовить стерилизованную воду дезинфицирующего действия.

Изобретение относится к плазмокатилитической очистке и стерилизации воздуха в бытовых, общественных и производственных помещениях от вирусов, бактерий, паров и аэрозолей органических соединений.

Изобретение относится к области приборостроения и может быть использовано для плазменной обработки поверхности объекта или частиц, подлежащих обработке. .

Изобретение относится к области медицинской техники и может быть использовано при изготовлении корпусов для искусственных клапанов сердца, зубных имплантатов, катетеров, отдельных деталей для протезов суставов и т.д.

Изобретение относится к области медицины. .

Изобретение относится к области стерилизации одежды и может найти применение в медицине и пищевой промышленности. .
Изобретение относится к области стерилизации материалов и предметов с использованием плазмы и ультрафиолетового излучения

Изобретение относится к медицинской технике и может быть использовано для стерилизации поверхностей биообъектов и жидких субстратов, а также подавления темпов роста экспериментальной лимфосаркомы Плиса in vivo

Изобретение относится к области дезинфекции и может быть использовано в различных областях промышленности
Изобретение относится к способу обработки биологической ткани животного или человеческого происхождения, как, например, сердечных клапанов свиньи или сердечных клапанов из бычьего перикарда, или сердечных клапанов трупа человека и к соответствующим образом обработанной биологической ткани

Изобретение относится к области химико-фармацевтической промышленности, в частности к индикаторам для плазменной стерилизации

Изобретение относится к медицинской технике и может быть использовано для дезинфекции раневых поверхностей биологических тканей и стимулирования процессов их заживления. Плазменный дезинфектор содержит корпус из диэлектрического материала, с установленными на его поверхности высоковольтным и заземленным электродами, расстояние между которыми не менее 50 мм. Внутри корпуса размещены источник постоянного напряжения и высокочастотный преобразователь напряжения c регулятором выходного напряжения. К выходу преобразователя напряжения подсоединены накопительный конденсатор и последовательно соединенные коммутатор, контурный резистор и импульсный трансформатор, входная низковольтная обмотка которого соединена с накопительным конденсатором и контурным резистором, а выходная высоковольтная обмотка которого соединена одним из выходов с ограничительным резистором, который соединен с высоковольтным электродом, а другим с заземленным электродом. Коммутатор выполнен в виде газонаполненного разрядника с величиной пробойного напряжения 100-1000 В, а высоковольтный электрод имеет форму конуса со скруглением на конце с радиусом 2-10 мм. Изобретение обеспечивает повышение стабильности работы устройства при равномерном и эффективном дезинфицирующем воздействии на раневые поверхности. 6 ил.

Изобретение относится к устройству для плазменной обработки газообразной среды. Устройство содержит генерирующее плазму устройство для создания в газообразной среде плазмы, диэлектрическую структуру, сформированную в виде трубки из плавленого кварца, причем плазма способна переноситься в диэлектрическую структуру, и камеру взаимодействия, включающую внутреннее пространство и стенку. Изобретение обеспечивает эффективную обработку газообразной среды и снижение потребления энергии. 7 н. и 20 з.п. ф-лы, 9 ил.
Наверх