Способ оценки размеров дефектов в направлении просвечивания

Использование: для оценки размеров дефектов в направлении просвечивания. Сущность: заключается в том, что осуществляют сравнение изображений радиографируемых на один снимок эталонных и реальных дефектов, при этом на контролируемое сварное соединение, в котором возможно наличие шлаковых включений, устанавливают, наряду с эталоном-имитатором с канавками различной ширины, но одинаковой глубины, равной предельно допустимой глубине реального пустотелого дефекта (непровары, раковины, поры), аналогичный эталон-имитатор с канавками глубиной, в 1,5 раза меньшей предельно допустимой глубины дефекта типа шлакового включения для оценки размеров в направлении просвечивания выявляемых на снимке шлаковых включений. Технический результат: повышение надежности и точности оценки размеров дефектов в направлении просвечивания.

 

Изобретение относится к области дефектоскопии и может быть использовано при радиографическом контроле сварных соединений.

Известен способ оценки размера дефектов в направлении просвечивания, основанный на визуальном сравнении оптических плотностей изображения канавок эталона-имитатора (эталонных дефектов) и выявленных на снимке (реальных) дефектов контролируемых изделий (см. Румянцев С.В. Радиационная дефектоскопия. М., Атомиздат, 1974, стр.262-263).

Способом, наиболее близким по своей технической сути заявляемому способу, принятым в качестве прототипа, является способ оценки размеров дефектов в направлении просвечивания, основанный на визуальном или фотометрическом сравнивании оптических плотностей изображений канавок эталона-имитатора различной глубины и выявляемых на снимке дефектов сварных соединений, причем для оценки глубины шлаковых включений применяют эталоны с канавками, заполненными расплавленным стеклом (см. ВСН 012-88. Строительство магистральных и промысловых трубопроводов. Контроль качества и приемка работ, ч.I).

Задачей, на решение которой направлено заявляемое изобретение, является снижение трудоемкости способа, повышение надежности и точности оценки размеров дефектов в направлении просвечивания.

Поставленная задача решается за счет того, что в способе оценки размеров дефектов в направлении просвечивания, заключающемся в сравнении изображений радиографируемых на один снимок эталонных и реальных дефектов, на контролируемое сварное соединение, в котором возможно наличие шлаковых включений, устанавливают, наряду с эталоном-имитатором с канавками различной ширины, но одинаковой глубины, равной предельно допустимой глубине реального пустотелого дефекта (непровары, раковины, поры), аналогичный эталон-имитатор с канавками глубиной, в 1,5 раза меньшей предельно допустимой глубины дефекта типа шлакового включения, который используют для оценки размеров в направлении просвечивания выявляемых на снимке шлаковых включений.

Сущность заявляемого способа заключается в учете снижения контраста изображения шлакового включения, в сравнении с таким же по размерам пустотелым дефектом, из-за наличия заполняющего дефект вещества - шлака. Известно (см. Румянцев С.В. Радиационная дефектоскопия. М., Атомиздат, 1974), что снижение радиационного контраста из-за наличия вещества заполнения дефекта описывается соотношением k3=µ(µ-µд),

где k3 - коэффициент, учитывающий заполнение дефекта;

µ, µд - линейные коэффициенты ослабления излучения соответственно для основного металла и вещества заполнения дефекта. При этом в случае вещества заполнения плотностью ρд, меньшей, чем плотность ρ основного металла, имеет место соотношение:

k3≅ρ/(ρ-ρд).

Полагая, что по плотности спекшийся шлак аналогичен расплавленному стеклу (ρ≈2,5 г/см3) получаем для шлаковых включений в стали:

k3ш≅7,9/(7,9-2,5)≅1,5.

Учитывая, что контраст ΔD прямо пропорционален размеру дефекта в направлении просвечивания Δd (при размерах Δd, сравнимых с нормативными предельно допустимыми размерами дефектов Δdпр.доп), имеем, что при одинаковой ширине сравниваемых эталонных и реальных дефектов и одинаковой оптической плотности фона в районах расположения их изображений на снимке контраст ΔD и соответственно оптическая плотность D изображения выявленного шлакового включения будут равны контрасту ΔD и оптической плотности D эталонной пустотелой канавки, имеющей глубину Δd, в 1,5 раза меньшую, чем размер Δd шлакового включения.

Таким образом, при визуальной сравнительной оценке по снимку размеров Δd выявленных шлаковых включений можно использовать эталон-имитатор с пустотелыми канавками глубиной, в 1,5 раза меньшей предельно допустимого размера шлакового включения

Пример конкретного выполнения

Заявленным способом проводилась оценка размеров дефектов в направлении просвечивания шлаковых включений в сварных швах образцов, заваренных ручной дуговой сваркой. Толщина образцов - 18 мм и 25 мм. Просвечивание проводилось рентгеновским излучением (Uр.т.=200 кВ) и γ-излучением (IГ-192) на радиографическую пленку «Структурикс»-04. Параметры просвечивания соответствовали требованиям ГОСТ 7512-82. На каждый образец устанавливалось по два эталона-имитатора с канавками одинаковой глубины: Δdкан=2 мм у первого эталона, Δdкан=3 мм у второго эталона, с шириной канавок bкан=1; 2; 5; 10 мм (длина канавок 20 мм). На снимке с образца толщиной d=18 мм были выявлены шлаковые включения Ш8×2 и Ш10×6, с образца толщиной d=25 мм - шлаковые включения Ш15×5.

Оценка путем сравнения оптических плотностей близких по ширине изображений эталонных и реальных дефектов в условиях одинакового фона дала следующие результаты: ; (фотометрическое сравнение ΔDр.д. и ΔDэт.д. дает ; .

Фактические размеры Δd шлаковых включений, установленные по результатам вскрытия сварных образцов, составили: , , . При допустимом размере шлаковых включений проведенная оценка по канавочным эталонам с пустотелыми канавками нормативной глубины Δd=3 мм дает заниженную глубину выявленных шлаковых включений, что приводит к недобраковке контролируемых сварных изделий. В то же время применение эталонов с соответственно уменьшенной в 1,5 раза глубиной канавок предотвращает указанную недобраковку.

Таким образом, использование при проведении оценки размеров дефектов в направлении просвечивания эталонов-имитаторов с уменьшенной в 1,5 раза от нормативного значения для шлаковых включений глубиной канавок позволяет учесть снижение контраста изображений указанных дефектов из-за наличия вещества заполнения дефекта (шлака). Заполнение для этой цели канавок эталона-имитатора расплавленным стеклом в условиях производства представляет собой довольно трудоемкую, приносящую определенные неудобства в процессе проведения контроля процедуру. При этом проблематично качественно, ровным слоем заполнить стекломассой достаточно широкие сквозные канавки эталонов-имитаторов сравнительно малой толщины. К тому же стеклозаполнение сквозных канавок легко может быть разрушено в процессе использования эталонов. Стандартные канавочные эталоны по ГОСТ 7512-82 имеют канавки одинаковой ширины и для целей сравнительной оценки размеров реальных дефектов Δdр.д. малопригодны (не позволяют учесть зависимость контраста ΔD от поперечного размера дефекта).

Изготовление пластинчатых эталонов-имитаторов со сквозными канавками определенной глубины (в том числе и в 1,5 раза уменьшенной от нормативного значения Δdпр.доп.) никакой сложности не представляет и может быть проведено с достаточно высокой степенью точности. Это, соответственно, снижает трудоемкость и повышает надежность оценки размеров дефектов в направлении просвечивания.

Заявленный способ применим при просвечивании сварных соединений не только на радиографическую пленку, но и на другие детекторы излучения, например, на фосфорные запоминающие пластины, используемые в методе цифровой радиографии, где оценка размера дефекта в направлении просвечивания может быть проведена путем сравнения степени потемнения (уровня серого) изображений эталонных и реальных дефектов на экране компьютера.

Способ оценки размеров дефектов в направлении просвечивания, заключающийся в сравнении изображений радиографируемых на один снимок эталонных и реальных дефектов, отличающийся тем, что на контролируемое сварное соединение, в котором возможно наличие шлаковых включений, устанавливают, наряду с эталоном-имитатором с канавками различной ширины, но одинаковой глубины, равной предельно допустимой глубине реального пустотелого дефекта (непровары, раковины, поры), аналогичный эталон-имитатор с канавками глубиной, в 1,5 раза меньшей предельно допустимой глубины дефекта типа шлакового включения, для оценки размеров в направлении просвечивания выявляемых на снимке шлаковых включений.



 

Похожие патенты:

Изобретение относится к измерительной технике и может быть использовано для контроля качества цементирования и технического состояния обсадной колоны скважины. .

Изобретение относится к области дефектоскопии и может быть использовано при радиографическом контроле сварных соединений, наплавок и основного металла изделия. .

Изобретение относится к неразрушающим методам контроля, а именно к области радиационной дефектоскопии с использованием рентгеновского или гамма-излучения. .

Изобретение относится к области дефектоскопии и может быть использовано при радиографическом контроле сварных соединений. .

Изобретение относится к области радиационных неразрушающих методов контроля, основанных на регистрации и анализе проникающего ионизирующего излучения, и может быть применено для дефектоскопии сварных и паяных швов, отливок, проката и т.д.

Изобретение относится к области исследования материалов без их разрушения, а именно к радиационной дефектоскопии, точнее к гамма - дефектоскопии. .

Изобретение относится к области дефектоскопии и может быть использовано при радиографическом контроле сварных швов, наплавок и основного металла сварных соединений.

Изобретение относится к области дефектоскопии, а более конкретно к технике неразрушающего контроля стенок трубопроводов. .

Изобретение относится к области дефектоскопии, а именно к устройствам для рентгеновского контроля сварных швов, размещенных в труднодоступных местах и закрытых полостях, зонах сложнопрофильных, собранных цилиндрических изделий, и может быть реализовано в авиационной, машиностроительной, судостроительной, металлургической и других отраслях промышленности.

Изобретение относится к области дефектоскопии и может быть использовано при радиографическом контроле сварных соединений, наплавок и основного металла изделий. .

Изобретение относится к области дефектоскопии и может быть использовано при радиографическом контроле сварных соединений

Изобретение относится к области дефектоскопии и может быть использовано при радиографическом контроле сварных соединений

Изобретение относится к области дефектоскопии и может быть использовано при радиографическом контроле сварных соединений

Изобретение относится к способу изготовления контрольного образца лопатки из композитного материала для эталонирования процесса рентгеновского контроля схожих лопаток

Изобретение относится к области контрольно-измерительной техники, в частности к автономным самодвижущимся рентгеновским агрегатам, предназначенным для контроля качества кольцевых сварных швов магистральных газо- и нефтепроводов методом просвечивания проникающим излучением, и может быть использовано в энергетической, газодобывающей, нефтедобывающей промышленности, при строительстве газо- и нефтепроводов или их ремонте

Изобретение относится к области радиационных неразрушающих методов контроля, основанных на регистрации и анализе проникающего ионизирующего излучения, и может быть применено для дефектоскопии сварных и паяных швов, отливок и т.д

Использование: для радиационной дефектоскопии круговых сварных швов трубчатых элементов. Сущность: заключается в том, что просвечивают рентгеновским излучением кольцевой сварной шов трубчатого элемента, принимают детектором рентгеновское излучение, прошедшее через сварной шов, и преобразуют радиационное изображение сварного шва в радиографический снимок, при этом в качестве источника рентгеновского излучения используют анод рентгеновского аппарата стержневого типа, который вводят в полость трубчатого элемента за плоскость кругового сварного шва, осуществляют рентгеновское излучение, а расположенным снаружи трубчатого элемента детектором рентгеновского излучения осуществляют прием прошедшего через зону кругового сварного шва рентгеновского излучения через вращающийся щелевой коллиматор, щели которого выполнены радиально направленными. Технический результат: повышение достоверности контроля сварных швов трубчатых вварных оболочек, упрощение проведения операции по получению рентгенограмм сварного шва, а также исключение необходимости вращения контролируемой оболочки вокруг излучателя. 3 н. и 3 з.п. ф-лы, 5 ил.

Использование: для неразрушающего рентгеновского контроля трубопроводов. Сущность: заключается в том, что выполняют вращение системы позиционирования и перемещения вокруг трубопровода, его просвечивание с помощью установленных на диаметрально-противоположных сторонах системы позиционирования и перемещения рентгеновского источника излучения и приемника излучения, при этом рентгеновский источник излучения устанавливают под углом не более 15 градусов относительно поверхности трубопровода, и при обнаружении дефекта осуществляют изменение угла поворота приемника излучения, относительно поверхности трубопровода, производят повторное просвечивание трубопровода до получения объемного изображения дефекта, и по результатам просвечиваний устанавливают вид, форму и глубину залегания дефекта. Технический результат: повышение качества изображения исследуемого трубопровода, достоверности и точности его контроля. 2 н. и 8 з.п. ф-лы, 2 ил.

Изобретение относится к способу изготовления вала для турбины и/или генератора посредством сварного соединения и к валу, изготовленному упомянутым способом. Осуществляют удаление по меньшей мере с одной стороны основной ограничивающей круговой поверхности соответственно одной центральной части соответствующего элемента (5) вала относительно оси вращения (2) для получения соответственно одной открытой полости (11) по меньшей мере в одном цилиндре (3) в пределах оставшегося трубообразного ребра (13). Размещают два элемента (5) вала вдоль оси вращения (2) коаксиально друг другу с образованием полого пространства (15). Получают первый трубчатый кольцевой шов (17) посредством электродуговой сварки в узкий зазор. В одном из двух элементов (5) вала выполняют сквозное отверстие (18) снаружи в полое пространство (15). Осуществляют оценку качества первого трубчатого кольцевого шва (17) изнутри полого пространства (15) во время и/или после сварки посредством введенного через сквозное отверстие (18) в полое пространство (15) воспринимающего устройства (19) или источника (19а) излучения. Таким образом, можно непосредственно регулировать процесс сварки. 2 н. и 12 з.п. ф-лы, 2 ил.
Наверх