Устройство компенсации погрешности измерения ультразвукового уровнемера

Изобретение относится к ультразвуковым локационным измерителям уровня жидких и сыпучих продуктов в резервуарах на автозаправочных станциях и нефтебазах, а также в химической, нефтяной, пищевой и других отраслях народного хозяйства. Устройство содержит генератор ультразвуковых импульсов, подключенный к излучателю, и последовательно соединенные приемник, усилитель, пороговое устройство, блок формирования временного интервала, блок управления и индикации, выход которого связан с генератором и входом блока формирования временного интервала. Источник опорного напряжения подключен к пороговому устройству. Кроме того, устройство дополнительно содержит последовательно соединенные аналого-цифровой преобразователь, блок формирования адреса, оперативное запоминающее устройство, блок задержки и триггер. При этом выход триггера связан с аналого-цифровым преобразователем и блоком формирования адреса. Блок задержки подключен к выходу блока формирования временного интервала и входам триггера и блока управления и индикации. Второй вход триггера соединен с блоком формирования временного интервала. Аналого-цифровой преобразователь подключен к выходу усилителя и к входу данных оперативного запоминающего устройства, а блок управления и индикации связан с блоком формирования адреса с возможностью выдачи разрешения или запрещения на автономную работу блока формирования адреса и с выходом оперативного запоминающего устройства. Технический результат: компенсация погрешности измерения ультразвукового уровнемера, обусловленная наличием неконтролируемого временного интервала между началом эхо-импульса и срабатыванием порогового устройства. 3 ил.

 

Изобретение относится к ультразвуковым локационным измерителям уровня жидкости и сыпучих продуктов в резервуарах на автозаправочных станциях и нефтебазах, а также в химической, нефтяной, пищевой и других отраслях народного хозяйства.

Известно устройство компенсации погрешностей акустических локационных уровнемеров (патент РФ №2129703, МПК G01F 23/28, опубл. 27.04.1999), включающее в себя акустический датчик с излучателем, подключенным входом к выходу генератора зондирующих импульсов, и приемником, соединенным выходом через усилитель с входом разделителя реперного и измерительного сигналов, реперный отражатель, расположенный на фиксированном расстоянии от акустического датчика, цифровые преобразователи реперного и измерительного временных интервалов, тактирующие входы которых подключены к соответствующим выходам синхронизатора, а информационные входы - к соответствующим выходам разделителя реперных и измерительных сигналов, блок формирования счетных импульсов, тактирующий вход которого соединен с соответствующим выходом синхронизатора, а выход - со счетным входом цифрового преобразователя измерительного интервала, и блок цифровой индикации расстояния от акустического датчика до измеряемого уровня, содержащее блок стабилизации количества счетных импульсов, включенный между выходом цифрового преобразователя реперного интервала и входом блока формирования счетных импульсов, корректирующая матрица переключателей, подключенная к входам загрузки цифрового преобразователя реперного интервала, блок стабилизации количества счетных импульсов, выполненный в виде сумматора-усреднителя кода, подлежащего преобразованию в частоту в блоке формирования счетных импульсов, между выходом цифрового преобразователя измерительного интервала и входом блока цифровой индикации расстояния от акустического датчика до измеряемого уровня включен дополнительный сумматор-усреднитель кода, при этом тактирующие входы обоих сумматоров-усреднителей кода соединены с соответствующими выходами синхронизатора.

Недостатком известного устройства является низкая точность измерения, обусловленная невозможностью учета временного интервала между началом отраженного ультразвукового импульса и моментом срабатывания порогового устройства, которое может изменяться в турбулентной диспергирующей газовой или жидкостной среде, а также в средах с изменяющимся коэффициентом затухания.

Известно устройство для измерения длины труб (заявка РФ №2006109659, МПК (2006.01) G01B 17/00, опубл. 10.10.2007), выбранное в качестве прототипа, включающее генератор ультразвуковых импульсов, соединенный с излучателем, и последовательно соединенные приемник, усилитель, пиковый детектор, пороговое устройство, блок формирования временного интервала и блок управления и индикации, источник опорного напряжения, подключенный к пороговому устройству.

Недостатком известного устройства является высокая погрешность измерения, обусловленная изменением формы отраженных ультразвуковых импульсов за счет распространения в волноводе, к которым относятся трубы.

В изобретении решается задача создания устройства, обеспечивающего компенсацию погрешности измерения ультразвукового уровнемера.

Поставленная задача решена за счет того, что устройство компенсации погрешности измерения ультразвукового уровнемера, также как в прототипе, содержит генератор ультразвуковых импульсов, подключенный к излучателю, последовательно соединенные приемник, усилитель, пороговое устройство, блок формирования временного интервала, блок управления и индикации, выход которого соединен с генератором и входом блока формирования временного интервала, источник опорного напряжения, подключенный к пороговому устройству.

Согласно изобретению устройство компенсации погрешности измерения ультразвукового уровнемера дополнительно содержит последовательно соединенные аналого-цифровой преобразователь, блок формирования адреса и оперативное запоминающее устройство, триггер, выходы которого связаны с аналого-цифровым преобразователем и блоком формирования адреса, блок задержки, подключенный к выходу блока формирования временного интервала и входам и блока управления и индикации и триггера, второй вход которого соединен с блоком формирования временного интервала. Аналого-цифровой преобразователь подключен к выходу усилителя и к входу данных оперативного запоминающего устройства. Блок управления и индикации связан с блоком формирования адреса с возможностью выдачи разрешения или запрещения на автономную работу блока формирования адреса и с выходом оперативного запоминающего устройства.

Использование аналого-цифрового преобразователя, оперативного запоминающего устройства, блока формирования адреса, триггера и блока задержки позволяет определить начало эхо-импульса и соответственно компенсировать погрешность измерения ультразвукового уровнемера. Предложенная схема устройства компенсации погрешности измерения ультразвукового уровнемера, в сравнении с прототипом, не использует второй отраженный эхо-импульс, который может отсутствовать в турбулентной диспергирующей газовой или жидкостной среде, а также в средах с изменяющимся коэффициентом затухания, что повышает стабильность измерения.

На фиг.1 представлена схема устройства.

На фиг.2 представлена диаграмма, иллюстрирующая предлагаемое устройство.

На фиг.3 представлен пример осциллограммы эхо-импульса и двух полученных огибающих.

Устройство содержит блок управления и индикации 1, выход которого соединен с генератором 2 и входом блока формирования временного интервала 3. Генератор 2 подключен к излучателю 4. Приемник 5 соединен с усилителем 6, выход которого подключен к входам порогового устройства 7 и аналого-цифрового преобразователя 8 (АЦП). К другому входу порогового устройства 7 подключен источник опорного напряжения 9 (ИОН). Выход порогового устройства 7 подключен к входу блока формирования временного интервала 3, выход которого подключен к блоку управления и индикации 1, триггеру 10 и блоку задержки 11. Выход блока задержки 11 подключен к другому входу триггера 10 и к блоку управления и индикации 1. Выход триггера 10 подключен к блоку формирования адреса 12 и аналого-цифровому преобразователю 8 (АЦП). Выход аналого-цифрового преобразователя 8 (АЦП) подключен к входу данных оперативного запоминающего устройства 13 (ОЗУ). Второй выход аналого-цифрового преобразователя 8 (АЦП) подключен к блоку формирования адреса 12, выход которого подключен к адресному входу оперативного запоминающего устройства 13 (ОЗУ), выход которого подключен к блоку управления и индикации 1, который связан с блоком формирования адреса 12.

Блок управления и индикации 1 может быть выполнен на микроконтроллере ATMEGA16 и семисегментных индикаторах типа DA56-11SRWA, для подсчета временного интервала используется внутренний таймер-счетчик. Блок формирования временного интервала 3 выполнен на стандартной микросхеме К1554ТМ2. В качестве порогового устройства 7 использован компаратор К521САЗ. Генератор 2 может быть выполнен по схеме с разрядом накопительной емкости на тиристорах типа КУ104Г. Приемник 5 и излучатель 4 могут быть изготовлены из любой пьезокерамики, например ЦТС-19. Усилитель 6 может быть выполнен на операционном усилителе, например К544УД2. Источник опорного напряжения 9 (ИОН) выбран типовым REF 192 фирмы ANALOG DEVICES в стандартном включении, аналого-цифровой преобразователь 8 (АЦП) выбран типовым из условия, что время преобразования например К544УД2. Источник опорного напряжения 9 (ИОН) выбран типовым REF 192 фирмы ANALOG DEVICES в стандартном включении, аналого-цифровой преобразователь 8 (АЦП) выбирается типовым из условия, что время преобразования должно быть не менее чем в десять раз меньше периода входного аналогового сигнала, например для входного сигнала частотой 1 мГц можно применить микросхему AD9057BRS40, оперативное запоминающее устройство 13 (ОЗУ) выбирается из требования максимального времени записи данных, которое должно быть меньше времени преобразования аналого-цифрового преобразователя 8 (АЦП), и объема хранимых данных, которое должно быть больше чем 10·(Tc/tАЦП), например для частоты 1 мГц можно применить микросхему К565РУ5, триггер 10 может быть выполнен на типовой микросхеме, например К1554ТМ2, блок задержки может быть выполнен на микросхеме К1554АГ1 в типовом включении, время задержки должно быть больше или равно пяти периодам входного сигнала, блок формирования адреса 12 может быть выполнен на типовых двоичных реверсивных счетчиках с задержкой переключения меньшей, чем время преобразования аналого-цифрового преобразователя 8 (АЦП), например К1554ИЕ7.

Устройство работает следующим образом.

Блок управления и индикации 1 выдает разрешение на автономную работу блока формирования адреса 12 и вырабатывает импульс запуска для ультразвукового генератора 2, этим же импульсом блок формирования временного интервала 3 устанавливается в состояние логической единицы. Генератор 2 возбуждает излучатель 4. Излученный ультразвуковой импульс распространяется по контролируемой среде и принимается приемником 5, усиливается усилителем 6 и поступает на вход аналого-цифрового преобразователя 8 (АЦП). Одновременно сигнал с выхода усилителя 6 поступает на вход порогового устройства 7. На второй вход порогового устройства 7 подается напряжение с источника опорного напряжения 9 (ИОН) U1. Как только напряжение на выходе усилителя 6 превысит напряжение U1, выход порогового устройства 7 переключится в состояние логической 1 и сбросит блок формирования временного интервала 3 в состояние логического нуля (точка t1 фиг.2). Этот сигнал подается на вход блока управления и индикации 1, сигнализируя об окончании формирования временного интервала, а также на вход триггера 10 и вход блока задержки 11, на выходе триггера 10 появляется логическая единица, которая разрешает работу блока формирования адреса 12 и аналого-цифрового преобразователя 8 (АЦП), который преобразует аналоговый сигнал в цифровой вид с частотой, в десять раз превышающей частоту входного сигнала. С выхода аналого-цифрового преобразователя 8 (АЦП) данные поступают на вход данных оперативного запоминающего устройства 13 (ОЗУ) и записываются по адресу, сформированному блоком формирования адреса 12. Одновременно аналого-цифровой преобразователь 8 (АЦП) выдает импульс на блок формирования адреса 12 для формирования следующего адреса и за время преобразования аналого-цифрового преобразователя 8 (АЦП) на выходе блока формирования адреса 12 сформируется следующий адрес. После срабатывания блока задержки 11 на его выходе появляется импульс, который поступает на блок управления и индикации 1, сигнализируя об окончании процесса записи данных, и сбрасывает триггер 10 в состояние логического нуля. Нулевой уровень на выходе триггера запрещает работу блока формирования адреса 12 и аналого-цифрового преобразователя 8 (АЦП). После этого блок управления и индикации 1 в соответствии с программой осуществляет последовательную выборку данных из оперативного запоминающего устройства 13 (ОЗУ) для определения трех точек максимума и трех точек минимума. По этим точкам составляет систему трех квадратных уравнений с тремя неизвестными:

где y1 и х1, y2 и х2, y3 и x3 - координаты трех точек А, В и С соответственно.

Решает эту систему уравнений и находит коэффициенты а1, b1 и с1 для уравнения первой огибающей:

Аналогично находит коэффициенты для уравнения второй огибающей, но при этом использует координаты точек D, Е и F:

Затем находит точку пересечения этих огибающих путем приравнивания уравнений и его решения:

Временную координату этой точки принимает за начало эхо-импульса и использует в расчетах расстояния до отражающей поверхности.

В качестве примера рассмотрим определение расстояния предлагаемым способом. В воде, на расстоянии 250 см от излучателя 4 был установлен приемник 5. Частота ультразвуковых сигналов составляла 600 кГц, соответственно длина волны λ равнялась 2,5 мм. В качестве аналого-цифрового преобразователя 8 применялась микросхема AD9057BRS40 с частотой преобразования 40 МГц. Излучение и прием ультразвуковых сигналов производили с помощью предлагаемого устройства и для сравнения наблюдали с помощью осциллографа GDS820G на выходе усилителя 6 этого устройства. Полученные точки максимумов имели координаты А (0,71; 1701), В (0,89; 1702,6), С (1,02; 1704,5). Точки минимумов имели координаты D (-0,59; 1700,2), Е (-0,79; 1701,9), F (-0,98; 1703,7).

Используя координаты этих точек, блок управления и индикации 1 определил коэффициенты a1, b1, c1 и а2, b2, c2. Временная координата точки пересечения, определенная по этим коэффициентам равна:

х=1696,64 мкс

Для сравнения на фиг.3 показана осциллограмма принятого сигнала и двух полученных огибающих, из которой видно, что расчетная временная координата точки пересечения двух огибающих не совпадает с началом сигнала. Измеренное осциллографом GDS 820G время tp составило 1697 мкс.

Ошибка измерения уровня Δh составила:

Δh=С·(1697-1696,64)=(1,5·106)(0,36·10-6)=0,54 мм,

где С - скорость распространения ультразвука в воде.

Таким образом, экспериментально установлено, что погрешность измерения уровня не превышает λ/2.

Устройство компенсации погрешности измерения ультразвукового уровнемера, содержащее генератор ультразвуковых импульсов, подключенный к излучателю, последовательно соединенные приемник, усилитель, пороговое устройство, блок формирования временного интервала, блок управления и индикации, выход которого соединен с генератором и входом блока формирования временного интервала, источник опорного напряжения, подключенный к пороговому устройству, отличающееся тем, что дополнительно содержит последовательно соединенные аналого-цифровой преобразователь, блок формирования адреса и оперативное запоминающее устройство, триггер, выходы которого связаны с аналого-цифровым преобразователем и блоком формирования адреса, блок задержки, подключенный к выходу блока формирования временного интервала и входам блока управления и индикации и триггера, второй вход которого соединен с блоком формирования временного интервала, причем аналого-цифровой преобразователь подключен к выходу усилителя и к входу данных оперативного запоминающего устройства, а блок управления и индикации связан с блоком формирования адреса с возможностью выдачи разрешения или запрещения на автономную работу блока формирования адреса и с выходом оперативного запоминающего устройства.



 

Похожие патенты:

Изобретение относится к устройству для определения и/или контроля, по меньшей мере, одного параметра процесса среды, содержащему, по меньшей мере, один сенсорный блок для регистрации параметра процесса, причем сенсорный блок вырабатывает измерительные сигналы, по меньшей мере, один электронный блок для управления сенсорным блоком, причем электронный блок содержит, по меньшей мере, один микропроцессор, и, по меньшей мере, один блок памяти, который связан с сенсорным блоком и в котором могут храниться управляющие данные, причем управляющие данные специфически относятся к сенсорному блоку и считываются электронным блоком.

Изобретение относится к области измерительной техники и может применяться для измерения уровня жидких или сыпучих материалов, а также для измерения расстояния. .

Изобретение относится к ультразвуковым локационным измерителям уровня жидких и сыпучих продуктов в резервуарах на автозаправочных станциях и нефтебазах, а также в химической, нефтяной, пищевой и других отраслях народного хозяйства.

Изобретение относится к бесконтактным средствам измерения объема различных сред, включая агрессивные и сыпучие (грунт). .

Изобретение относится к ультразвуковым локационным измерителям уровня жидких и сыпучих продуктов в резервуарах на автозаправочных станциях и нефтебазах, а также в химической, нефтяной, пищевой и других отраслях народного хозяйства.

Изобретение относится к ультразвуковым локационным измерителям уровня жидких и сыпучих продуктов в резервуарах на автозаправочных станциях и нефтебазах, а также в химической, нефтяной, пищевой и других отраслях народного хозяйства.

Изобретение относится к ультразвуковым локационным измерителям уровня жидких и сыпучих продуктов в резервуарах на автозаправочных станциях и нефтебазах, а также в химической, нефтяной, пищевой и других отраслях народного хозяйства.

Изобретение относится к способам бесконтактного контроля технологических параметров производственных процессов, а именно к измерению уровня или плотности вещества в различных емкостях либо на площадках, основанным на определении изменения интенсивности потока ионизирующего излучения при его прохождении через контролируемое вещество.

Изобретение относится к области измерительной техники и может применяться для измерения уровня жидких или сыпучих материалов, а также для измерения расстояния

Изобретение относится к технологиям измерения уровня с использованием параболической антенны для радара уровня

Изобретение относится к области бесконтактного измерения уровня различных физических сред и может быть применено в автоматизированных системах управления технологическими процессами

Изобретение относится к ультразвуковым контрольно-измерительным устройствам и может быть использовано для контроля уровня жидкостей в резервуарах

Изобретение относится к электрическим методам контроля и может быть использовано для измерения массы сжиженных газов, включая криогенные жидкости, при любом их фазовом состоянии, а также для измерения положения границы раздела и диэлектрической проницаемости каждого слоя двухслойных сред

Изобретение относится к области бумажного производства и может быть использовано для отслеживания образования осадков в технологии бумажного производства

Изобретение относится к радиометрическому измерительному прибору с радиоактивным излучателем и детектором для регистрации образующейся в месте расположения детектора интенсивности излучения

Изобретение относится к средствам автоматизации контроля предельного уровня различных жидкостей и сыпучих материалов в промышленных и бытовых резервуарах

Изобретение относится к контрольно-измерительной технике и предназначено для обнаружения жидкости или газа в зоне контроля
Наверх