Топливный элемент - брикет, гранула

Изобретение относится к теплоэнергетике и может быть использовано для изготовления твердотопливных элементов, в частности брикетов, гранул на основе углеродосодержащих материалов. Топливный элемент содержит углеродосодержащий материал и связующее. В качестве углеродсодержащего материала используют торф. Связующее выполнено в виде смеси воды и торфа. Причем смесь воды и торфа, по меньшей мере, один раз пропускают через диспергатор при перепаде давления на диспергаторе от 0,1·105 Па до 25·105 Па. В результате достигается повышение теплотворной способности топливного элемента, существенное повышение твердости элемента и существенное повышение стойкости к воздействию влаги. 2 табл.

 

Область техники, к которой относится изобретение.

Изобретение относится к теплоэнергетике и может быть использовано для изготовления твердотопливных элементов, в частности брикетов, гранул на основе углеродосодержащих материаловю

Уровень техники.

Известен топливный брикет но патенту РФ №2078120 с датой публикации 27.04.1997, включающий угольную мелочь, пек из кубового остатка ректификации талового масла и связующее.

Данный брикет обладает недостаточной механической прочностью и водостойкостью.

Известен также топливный брикет по патенту РФ №2130047 с датой публикации 10.05.1999, содержащий смесь измельченных твердых топлив и связующего на основе нефтешлама и/или отработанного машинного масла, а также лигносульфонат или мелассу, глину и парафиновый гач.

Данный брикет также обладает недостаточной механической прочностью и водостойкостью. Стоимость изготовления брикета высока.

Известен топливный брикет по патенту РФ №2268914 с датой публикации 27.01.2006, содержащий отходы угледобычи в виде отсева угля, древесные опилки и связующее, в качестве связующего содержит штыб, являющийся отходом углеобогащения, содержащий природные минералы со связующими свойствами.

Данный брикет также обладает недостаточной механической прочностью и водостойкостью.

Прототипом является топливный элемент по патенту №2206602 с датой публикации 20.06.2003, содержащий углеродосодержащий материал, связующее. Эти признаки совпадают с признаками изобретения. У прототипа в качестве углеродосодержащего материала используют отходы древесного угля, древесной муки. В качестве связующего используют лигносульфонат, 20-80%-ную водную известково-глиняную смесь.

Недостатки прототипа: низкая теплотворная способность топливного элемента, низкая твердость и стойкость к воздействию влаги топливного элемента.

Раскрытие изобретения.

Задачей настоящего изобретения является снижение затрат на производство топливного элемента.

Задача решается за счет того, что топливный элемент (брикет, гранула) содержит углеродосодержащий материал, связующее и от прототипа отличается тем, что в качестве углеродосодержащего материала используют торф, связующее выполнено в виде смеси воды и торфа, причем смесь воды и торфа, по меньшей мере, один раз пропускают через диспергатор при перепаде давления на диспергаторе от 0,1·105 Па до 25·105 Па.

Техническими результатами изобретения являются: повышение теплотворной способности топливного элемента, существенное повышение твердости элемента, существенное повышение стойкости к воздействию влаги.

Все технические результаты подтверждены экспериментально.

Перепад давления Р определяется по формуле

Р=|Р1-Р2|,

где Р1 - давление на входе диспергатора;

Р2 - давление на выходе диспергатора.

В зависимости от конструкции диспергатора Р1 может быть больше Р2 и наоборот.

В качестве жидкости используют воду, в частности техническую воду, различные водные растворы, водные смеси. Могут использоваться отходы нефтепереработки, загрязненная нефтепродуктами вода.

Смесь жидкости и углеродосодержащего материала один раз или несколько раз пропускают через диспергатор. Экспериментально подтверждено, что при перепаде давления на диспергаторе от 0,1·105 Па до 25·105 Па в диспергаторе проходит процесс кавитации. Проходящая через диспергатор смесь подвергается кавитационной обработке - воздействию высокого давления в тысячи атмосфер и высокой, в несколько тысяч градусов, температуры. Кавитационная обработка смеси осуществляется в зоне или зонах кавитации диспергатора.

Такой диспергатор часто называют кавитатором.

В углеродосодержащем материале содержится лигнин и в смеси жидкости с углеродосодержащим материалом также содержится лигнин. В диспергаторе при указанных перепадах давления в процессе кавитации происходит повышение концентрации лигносульфоновых кислот, пиролиз лигнина с образованием смол и полукоксов. Чем дольше смесь подвергают диспергации, тем больше получают из лигнина лигносульфоновых кислот, смол и полукоксов.

После диспергации (обработки смеси в диспергаторе) получают чрезвычайно эффективное связующее на основе лигносульфоновых кислот, смол и полукоксов, полученных из лигнина.

Эксперименты, которые провели авторы, показали, что с увеличением времени диспергационной обработки смеси в конечном итоге твердость и влагостойкость полученного в дальнейшем топливного элемента растет.

Так, при однократной обработки смеси (50% воды и 50% торфа, содержащего 50% влаги, то есть 75% воды и 25% сухого торфа по весу) в диспергаторе твердость по шкале Бринелля, полученных топливных элементов составляет величину 125-130НВ. При десятикратной обработке смеси в диспергаторе твердость по шкале Бринелля полученных топливных элементов составляет величину 230-250НВ.

Процентное отношение воды и торфа может быть различное, в зависимости от конструкции диспергатора и мощности привода диспергатора или насосной установки.

В качестве топливных элементов могут изготавливать гранулы, брикеты, пилеты и другие по форме изготовления конструкции (пластины, цилиндры, шары, куски и др.). Топливные элементы для упрощения сушки и улучшения горения могут изготавливать полыми внутри.

Осуществление изобретения.

В качестве углеродосодержащего материала могут использовать торф, опилки, уголь, всевозможные отходы (в частности, помет) и их смеси.

Далее приведем примеры получения топливных элементов из торфа. Примеры описывают эксперименты, которые авторы провели при разработке изобретения.

Производство топливных элементов, в частности топливных брикетов, проходит несколько стадий.

1 стадия. Предварительная подготовка торфа.

На стадии предварительной подготовки торфа производится его просеивание для исключения попадания в оборудование (технологическую линейку) частиц, размеры которых могут привести к засорению технологической линии. Размер частиц обусловлен используемым оборудованием. Так, на опытной технологической линии на торфоперерабатывающем предприятии максимальный диаметр частиц торфа, поступающего в диспергатор, не превышает 10 мм.

После этой стадии часть торфа поступает на оборудование по подготовке смеси для получения связующего, а остальная часть используется непосредственно для последующего получения торфяных брикетов.

Если оборудование по производству брикетов допускает использование торфа с частицами больших размеров, чем допускает диспергатор (например, при производстве кускового торфа с использованием агрегата стилочного кускового модели АСК-1М00.00.000 максимальный размер частиц торфа, поступающих на формование, не превышает 0,5 от диаметра формуемого куска, что соответствует 10 мм или 25 мм в зависимости от диаметра мундштуков на формовалике), то в этом случае торф, поступающий для производства связующего, либо проходит дополнительное просеивание, либо просеивание этого торфа выделяется в отдельную линию.

2 стадия. Подготовка смеси углеродосодержащего материала (торфа) с жидкостью (водой). Изготовление связующего,

2.1. Предварительное перемешивание воды с торфом в определенной пропорции для подачи этой смеси на диспергатор. Это может облегчить автоматизацию процесса и повысить эффективность работы диспергатора (кавитатора).

Предварительно подготовленная смесь позволяет непосредственно в нужной пропорции подать смесь в приемный бак на входе диспергатора (кавитатора). Обработка смеси диспергатором (кавитатором), в зависимости от его конструкции и требований к качеству выходной смеси, происходит в один или несколько циклов. При многоцикличном режиме обработанная смесь поступает обратно в приемный бак диспергатора (кавитатора).

2.2. Возможна работа без предварительного перемешивания воды с торфом. Без предварительной подготовки в приемный бак диспергатора заливается вода. Торф засыпается в воду при работающем диспергаторе (кавитаторе).

2.3. Возможна предварительная подготовка непосредственно в приемном баке диспергатора, но это займет некоторое время, в течение которого диспергатор (кавитатор) работать не будет.

3 стадия. Перемешивание торфа и подготовленной (обработанной в диспергаторе) смеси - связующего. Время перемешивания зависит от способа формовки выходного топлива. Например, при формовке брикетов низким давлением на брикет (например, с использованием валковых прессов), когда необходимо обеспечить, чтобы топливная масса не прилипала к форме, время перемешивания может достигать 15 мин. При прессовании с использованием шнековых или других прессов (например, с использованием агрегата стилочного кускового модели АСК-1М00.00.000), когда обеспечивается достаточно высокое (более 2·105 Па) давление на смесь, время перемешивания резко снижается.

4 стадия. Формирование топлива осуществляется с использованием формовочных машин различного конструктивного выполнения, с последующей сушкой готовых топливных элементов.

Пример изготовления связующего.

Исходный материал:

10 кг измельченного торфа с влажнотью 50% (5 кг - торфа и 5 кг воды);

8 кг воды.

Загрузка диспергатора исходным материалом.

Сначала в приемный бак заливается вода, и включается диспергатор. Вода из приемного бака проходит через диспергатор, а затем возвращается в приемный бак. Постепенно, примерно в течение 3 минут в приемный бак работающего диспергатора засыпается измельченный торф (это делается для того, чтобы входной патрубок диспергатора не забился). Время обработки смеси после засыпки всего торфа составляет 2 минуты. После этого связующее для получения топливных элементов готово.

Пример смешивания связующего с торфом.

Смеситель - бетономешалка.

На 32 кг торфа (с влажностью 50%) берется 5-8 кг связующего.

Перемешивание в течение 15 мин.

Количество возможных замесов - 3 замеса в час.

Пример прессования. Далее полученная смесь торфа со связующим поступает в валковый пресс. Через пресс можно пропустить до 30 кг смеси в минуту. С учетом 70% выхода брикетов - 20 кг брикетов в минуту. Оставшиеся 30% смеси возвращаются в пресс. Малая производительность и малый выход обусловлены необходимостью регулировки подачи смеси на валки. Из-за липкости смеси происходит ее прилипание к стенкам приемного бака пресса (бак не приспособлен к смеси с такой вязкостью) и шнек подачи малоэффективен, так как рассчитан на менее липкую смесь. Приходится одному рабочему постоянно находиться над приемным устройством пресса и регулировать подачу.

В процессе экспериментальных работ был проведен сравнительный анализ заявленных топливных элементов с их аналогами. Результаты сравнения размещены в таблице 1 ниже.

Таблица 1
Сравнительный анализ заявленных топливных элементов с их аналогами
Состав топливного элемента Теплотворная способность рабочая низшая, ккал/кг Твердость по Бринеллю, НВ Стойкость к воздействию влаги, час*
1 Заявленный топливный элемент. Торф (32 кг при 50% влажности) и связующее (5 кг) на основе торфа и воды, полученное после обработки** в диспергаторе. Влажность высушенного топливного элемента 15%. 4300 150 90
2 Заявленный топливный элемент. Торф (32 кг при 50% влажности) и связующее (8 кг) на основе торфа и воды, полученное после обработки** в диспергаторе. Влажность высушенного топливного элемента 15%. 4400 180 140
3 Заявленный топливный элемент. Торф (32 кг при 50% влажности) и связующее (15 кг) на основе торфа и воды, полученное после обработки** в диспергаторе. Влажность высушенного топливного элемента 15%. 4800 210 165
4 Отходы древесного угля, древесной муки (32 кг), связующее - лигносульфонат, 20% водно-известково-глиняная смесь. Влажность высушенного топливного элемента 15%. 3600 35 3
5 Отходы древесного угля, древесной муки (32 кг), связующее - лигносульфонат, 60% водно-известково-глиняная смесь. Влажность высушенного топливного элемента 15%. 3800 55 5
6 Отходы древесного угля, древесной муки (32 кг), связующее - лигносульфонат, 80% водно-известково-глиняная смесь. Влажность высушенного топливного элемента 15%. 4100 75 7
*) время полного разрушения топливного элемента, полностью помещенного в сосуд с водой.
**) пятикратная обработка смеси в диспергаторе.

Удельный вес получаемых заявленных топливных элементов из торфа составляет величину от 0,4 до 1,5 тонны/м3.

Для существенного (в десятки раз по сравнению с приведенными выше в таблице результатами) повышения стойкости топливного элемента к воздействию влаги в связующее может быть добавлен октадециламин или другое гидрофобное вещество. При использовании октадециламина (1% в связующем) время нахождения топливных элементов (без разрушения) в воде составляет - месяцы.

Выше приведенные данные подтверждены результатами экспериментов.

В книге Ганиев Р.Ф., Кормилицын В.И., Украинский Л.Е. Нелинейная волновая механика. Волновая технология приготовления альтернативных видов топлив и эффективность их сжигания. М.: НИЦ «Регулярная и хаотическая динамика», 2008 г., 116 стр. приведены конструктивные схемы диспергаторов. В книге на стр.35 приведены режимы работы диспергатора при смешивании воды с топливом. Приведены данные по перепадам давления на диспергаторе от 2,21 до 12,85 атм, от 2,21·105 Па до 12,85·105 Па.

В последующем при создании смеси воды и торфа в экспериментах фиксировались режимы работы в более широком диапазоне перепадов давлений, а именно от 0,1·105 Па до 25·105 Па. Этот проверенный диапазон и вошел в данное изобретение.

При перепаде давления на диспергаторе 0,1·105 Па наблюдался (визуально) режим кавитации. Диспергатор для этих экспериментов был выполнен из органического стекла. Изменялось давление в заявленном диапазоне путем открытия или перекрытия заслонки на трубопроводе подачи смеси от насоса в диспергатор.

С целью повышения качества связующего целесообразно повышать перепад давления на диспергаторе от 0,1·105 Па и выше. Для малых установок целесообразно использовать малогабаритные диспергаторы (с расходом 1-7 т/час). При этом приемлем режим диспергации при перепаде давления от 0,1·105 Па до 2,5·105 Па. На крупных промышленных установках целесообразно использовать крупногабаритные диспергаторы (с расходом 25-50 т/час) и обеспечивать перепад давления от 2,0·105 Па до 25·105 Па.

В исследованиях при создании связующего использовались различные соотношения воды и торфа. В таблице 2 приведены некоторые примеры исходного состава компонентов связующего. Для подачи смеси в диспергатор использовался центробежный насос. Данные в таблице округлены до целых.

Таблица 2
Вес торфа, кг Влажность торфа, % Вес воды, кг
1 15 50 5
2 10 50 8
3 8 50 10
4 1 50 20
5 0,1 50 30
6 25 50 5

При использовании на крупных промышленных предприятиях крупногабаритных диспергаторов подачу в них смеси торфа и воды целесообразно осуществлять мощными плунжерными насосами. При этом общее содержание воды в исходной смеси может быть уменьшено до минимума, практически до значения влажности используемого торфа.

По нашим данным, смесь №6 в таблице 2 - это предельная смесь, которая может прогоняться центробежным насосом через диспергатор. Смесь по вязкости напоминает не густую сметану.

Таким образом, заявленный топливный элемент обеспечивает, по сравнению с прототипом:

- повышение теплотворной способности;

- существенное повышение твердости элемента;

- существенное повышение стойкости к воздействию влаги.

Топливный элемент - брикет, гранула, содержащий углеродосодержащий материал, связующее, отличающийся тем, что в качестве углеродсодержащего материала используют торф, связующее выполнено в виде смеси воды и торфа, причем смесь воды и торфа, по меньшей мере, один раз пропускают через диспергатор при перепаде давления на диспергаторе от 0,1·105 до 25·105 Па.



 

Похожие патенты:

Изобретение относится к технологии брикетирования полезных ископаемых, вторичного сырья, отходов производства и может быть использовано в металлургической, машиностроительной и других отраслях промышленности.
Изобретение относится к области твердотопливных брикетов на основе углеродсодержащих материалов, используемых для автономного обогрева жилых и хозяйственных помещений, теплиц и парников, железнодорожных вагонов, бытовок для рабочих и военнослужащих, а также приготовления пищи в мангалах и грилях.

Изобретение относится к углеперерабатывающей промышленности, а именно к технологии брикетирования бурого угля и торфа с целью получения окускованного твердого топлива, которое может быть использовано для коммунально-бытовых нужд, а также в промышленности.

Изобретение относится к углеперерабатывающей промышленности, а именно к технологии брикетирования бурого угля с целью получения окускованного твердого топлива, которое может быть использовано для коммунально-бытовых нужд, а также в промышленности.
Изобретение относится к черной металлургии, конкретно к составу для получения брикетированного топлива. .
Изобретение относится к производству формованного топлива, а именно высокоуглеродосодержащих топливных брикетов, которые могут быть использованы для плавки чугуна в вагранках, при получении карбида кальция, карбида кремния, минеральных волокон и других материалов.
Изобретение относится к способу брикетирования угля, преимущественно бурого, в регионах, удаленных от потребителя. .

Изобретение относится к области переработки тонкодисперсных высоковлажных продуктов обогащения каменных углей и нетоварной угольной мелочи в бытовое топливо брикетированием с применением неорганических связующих материалов.

Изобретение относится к топливному элементу, выполненному из углеродосодержащего материала и связующего
Изобретение относится к коксохимической промышленности, к разработке оптимального состава и способа формирования брикетов из мелкодисперсных частиц угля и кокса, которые могут быть использованы в товарном виде как горючее вещество
Изобретение относится к связующему для топливных угольных брикетов, включающему смолистые отходы - кубовые остатки производства диафена «ФП», относящиеся к универсальным ПАВ

Изобретение относится к органическому связующему для топливных угольных брикетов, включающему смесь смолистых отходов, состоящую из равных количеств смолы производства каптакса и кубовых остатков процесса ректификации производства диафена «ФП»

Изобретение относится к топливному брикету, который содержит коксовую и антрацитовую мелочь, мелассу в качестве связующего и дополнительное связующее - техническое растительное масло

Изобретение относится к органическому связующему для топливных угольных брикетов и отличается тем, что для повышения теплотворной способности и механической прочности топливных брикетов, получаемых из мелких фракций угля и угольных шламов, используют смолистые отходы - смола производства каптакса
Изобретение относится к способу получения угольных брикетов из угольного шлама и угольной мелочи со связующим - водным раствором полиэлектролита - флокулянта на основе полиакриламида (ПАА)

Изобретение относится к способу получения топливных брикетов, включающий смешение углеродного наполнителя с измельченным углем, добавление связующего вещества и брикетирование смеси под давлением, при этом осуществляют сухое смешение углеродного наполнителя, представляющего собой отходы производства алюминия, анодной массы и электродов в количестве 25,01-85,00 мас.% с измельченным бурым углем до получения 100% сухой массы с последующим добавлением к сухой массе связующего вещества
Изобретение относится к способу получения топливных окатышей, включающий смешивание наполнителя, содержащего отходы обработки древесного сырья, горючего компонента в виде отходов нефтепродуктов и связующего, где в качестве горючего компонента используют также масложировые отходы пищевой промышленности, горючий компонент служит одновременно связующим, в смешиваемую массу добавляют порошкообразный загуститель из горючего материала, при этом вначале производят в течение 1,5-2 минут смешивание загустителя и горючего связующего в соотношении 0,2-1,0:1 для загущения последнего, затем в загущенную массу постепенно вводят наполнитель, составляющий в целом 0,5-1,0:1 к горючему связующему и снова перемешивают в течение 35-40 мин до образования окатышей устойчивой формы, затем снова добавляют загуститель в количестве 10-20% его первоначальной массы для предотвращения слипания окатышей и перемешивают еще 2-4 мин до получения готового продукта в виде округлых окатышей. Получаемые топливные окатыши находят применение как топливо в быту, в котельных коммунально-бытового назначения, в качестве растопочного средства для розжига. Заявляемый способ получения является более простым, менее затратным и более экологичным. 14 з.п. ф-лы.
Изобретение относится к применению брикета экструзионного (БРЭКСы) коксового, полученного методом жесткой вакуумной экструзии, включающего коксовую мелочь, минеральное связующее и, по необходимости, буроугольный полукокс, в качестве восстановителя в металлургических печах. В качестве минерального связующего для производства брэксов цемент используется цемент и, по необходимости, бентонит. Крупность материалов, входящих в смесь для производства БРЭКСов не превышает 5 мм, масса БРЭКСа не превышает 0,3 кг. Применение метода жесткой вакуумной экструзии позволяет получать БРЭКСы коксовые оптимального размера для металлургических печей кускового восстановителя, имеющего повышенную холодную и горячую прочность по сравнению с коксовыми брикетами, получаемым по другим технологиям. 2 з.п. ф-лы, 2 пр.
Наверх