Способ ионообменного упрочнения керамических изделий из стеклокерамического материала бета-сподуменового состава

Изобретение относится к производству изделий радиотехнического назначения из стеклокристаллических материалов β-сподуменового состава. Технический результат изобретения заключается в повышении качества получаемых изделий за счет снижения дефектов и в снижении трудоемкости операции упрочнения. На изделие наносят слой нитрата натрия толщиной 0,5-2,0 мм из однородной пасты. Затем подвергают сушке в течение 0,8-1,0 часа при 80-100°С и термообработке при температуре 380-420°С в течение 0,75-1,0 часа с последующим охлаждением. Процесс ионообменного упрочнения изделия выполняют 1-2 раза. 1 табл.

 

Изобретение относится к производству изделий радиотехнического назначения из стеклокристаллических материалов β-сподуменового состава, получаемых по керамической технологии, и может быть использовано в керамической и авиационной промышленности.

Известен способ ионообменного упрочнения стеклокристаллического материала, полученного по керамической технологии (Суздальцев Е.И., Рожкова Т.И. Перспективы упрочнения стеклокерамики литийалюмосиликатного состава // Огнеупоры и техническая керамика, 2003, №1, с.9-11), включающий обработку стеклокристаллических изделий β-сподуменового состава в расплаве нитрата натрия при 450-550°C в течение 0,5-5 часов. По окончании обработки изделие извлекают из расплава и охлаждают инерционно. Использование данного способа обеспечивает прирост механической прочности до 34%.

Недостатком способа является то, что длительная выдержка при обработке изделий в расплаве нитрата натрия при 450-550°C создает жесткие условия ионообменного упрочнения, что неблагоприятно сказывается на качестве поверхности изделия. На поверхности изделия появляются раковины и неровности, что не может считаться удовлетворительным в производстве изделий с высокими требованиями к качеству поверхности. Кроме того, для реализации способа на натурных изделиях требуется создание инженерных сооружений, выполненных для условий с повышенными требованиями пожаро- и взрывобезопасности.

Наиболее близким техническим решением является способ упрочнения изделий из стеклокерамического материала β-сподуменового состава путем ионного обмена (патент РФ №2272004 от 20.03.2006 г.), включающий нанесение на изделие слоя нитрата натрия толщиной 0,5-2,0 мм из однородной пасты, его сушку в течение 0,8-1,0 часа при 80-100°C, термообработку при температуре 525-600°C в течение 0,75-1,0 часа, охлаждение изделия, причем процесс ионообменного упрочнения изделия выполняют 3-4 раза. Использование данного способа обеспечивает прирост механической прочности в пределах 25-40%.

К недостаткам известного способа следует отнести то, что его применение целесообразно только для упрочнения мелкогабаритных изделий простой формы. В процессе же изготовления крупногабаритных сложнопрофильных изделий, какими, в частности, являются головные антенные обтекатели ракет, в результате механической обработки под воздействием режущего инструмента поверхностный слой обрабатываемого изделия приобретает дефектную структуру. В дальнейшем на операции упрочнения при воздействии на обработанное изделие дополнительной термообработки в пределах температур 525-600°C происходит так называемое снятие напряжения поверхностного слоя изделия, в результате чего на поверхности изделия появляются всевозможные дефекты (раковины, сколы и др.). Причем на количество образовавшихся дефектов огромное влияние оказывают геометрия и размеры упрочняемых изделий. Так, например, на некоторых типах изделий величина брака на операции упрочнения достигала 50%.

Еще одним недостатком известного способа является его трудоемкость. Так, длительность одного цикла упрочнения от приготовления однородной пасты нитрата натрия до полного охлаждения упрочненного изделия занимает порядка 7 часов, а весь процесс 21-28 часов.

Задачей настоящего изобретения являются повышение качества упрочняемых изделий и снижение трудоемкости самой операции упрочнения.

Поставленная задача достигается тем, что предложен способ ионообменного упрочнения керамических изделий из стеклокерамического материала β-сподуменового состава, включающий нанесение на изделие слоя нитрата натрия толщиной 0,5-2,0 мм из однородной пасты, его сушку в течение 0,8-1,0 часа при 80-100°C, термообработку в течение 0,75-1,0 часа, охлаждение изделия, отличающийся тем, что термообработку производят при температуре 380-420°C, а процесс ионообменного упрочнения изделия выполняют 1-2 раза.

Авторами экспериментально установлено, что оптимальная температура обработки составляет 380-420°C. Снижение температуры ниже 380°C нецелесообразно в виду того, что при данных условиях не происходит плавления нитрата натрия, а соответственно, и обмен ионов. Превышение установленного температурного интервала также нецелесообразно из-за увеличения вероятности возникновения дефектов на поверхности упрочняемого изделия.

Экспериментально установлено, что оптимальная кратность ионообменного упрочнения не должна превышать 2 циклов, так как при этом материал испытывает максимальный прирост прочности (до 35%) и дальнейшее увеличение циклов упрочнения приводит к существенному росту трудозатрат при достаточно незначительных увеличениях прочности.

Установлено, что предложенный способ упрочнения изделий обеспечивает относительное увеличение механической прочности материала до 35%.

Реализация предложенного способа ионообменного упрочнения изделий из стеклокерамического материала β-сподуменового состава представлена в следующем примере.

Пример.

Из стеклокерамики β-сподуменового состава по керамической технологии была изготовлена партия крупногабаритных сложнопрофильных керамических изделий (диаметр основания 400 мм, высотой 1000 мм).

Часть изготовленных изделий упрочнили по способу, описанному в прототипе, а часть по предложенному техническому решению.

Относительные изменения прочности и качество изделий после упрочнения приведены в таблице.

Из приведенных в таблице данных видно, что использование предложенного технического решения позволяет полностью уйти от брака на операции упрочнения. При этом превышение максимально допустимой температуры всего на 30°C (эксперимент №6) приводит к появлению бракованных изделий.

Кроме того, снижение минимальной температуры ниже 380°C (эксперимент №2) практически не обеспечивает упрочнения.

Как следует из данных эксперимента №1, проведение циклов упрочнения больше двух раз не приводит к существенному росту прочности, при этом трудозатраты увеличиваются в 1,5-2,0 раза.

Таким образом, предложенное техническое решение позволяет существенно снизить уровень брака на операции упрочнения при двукратном сокращении трудозатрат.

Источники информации

1. Суздальцев Е.И., Рожкова Т.И. Перспективы упрочнения стеклокерамики литийалюмосиликатного состава // Огнеупоры и техническая керамика, 2003, №1, с.9-11.

2. Патент РФ №2272004 от 20.03.2006 г.

Таблица
№ эксперимента Температура термообработки, °C Кратность ионообменного упрочнения Относительное изменение предела прочности при поперечном изгибе, % Трудозатраты, час Количество брака, %
1 +30
1 550 2 +38 28 50
(прототип) 3 +40
4 +43
2 370 1 +3,5 14 0
2 +6,4
3 380 1 +15 14 0
2 +20
4 400 1 +23 14 0
2 +30
5 420 1 +26 14 0
2 +35
6 450 1 +27 14 10
2 +38

Способ ионообменного упрочнения керамических изделий из стеклокерамического материала β-сподуменового состава, включающий нанесение на изделие слоя нитрата натрия толщиной 0,5-2,0 мм из однородной пасты, его сушку в течение 0,8-1,0 ч при 80-100°С, термообработку в течение 0,75-1,0 ч, охлаждение изделия, отличающийся тем, что термообработку производят при температуре 380-420°С, а процесс ионообменного упрочнения изделия выполняют 1-2 раза.



 

Похожие патенты:

Изобретение относится к способам производства флоат-стекла с улучшенными прочностными свойствами. .

Изобретение относится к способу и устройству для упрочнения стекла. .

Изобретение относится к морской технике и касается изготовления прочных корпусов подводных контейнеров и других подводных сооружений. .

Изобретение относится к интегральной оптике, а именно к способам обработки стекла. .

Изобретение относится к интегральной оптике, а именно к способам обработки стекла, и может использоваться для улучшения качества изображения мультимедиа-проекторов, а также для получения объемного изображения в трехмерных стереоскопических дисплеях.
Изобретение относится к производству изделий радиотехнического назначения из стеклокристаллических материалов -сподуменового состава, получаемых по керамической технологии.

Изобретение относится к способу упрочнения путем повышения механической прочности изделий из стекла, в частности плоских или изогнутых стеклянных листов. .

Изобретение относится к способу и устройству для улучшения качества внутренней поверхности стеклянных контейнеров

Изобретение относится к технологии стекла, а именно к способам получения и регулирования диффузионных свойств стеклянных микросфер

Изобретение относится к способу получения пористых стекол. Технический результат изобретения заключается в получении пористого стекла с размером пор в интервале от 10 нм до 4 мкм. Стекломатериал обрабатывают расплавом нитрата натрия в интервале температур 350-500°С при изотермической выдержке в течение 2-192 часа. Далее стекло остужают, промывают в дистиллированной воде и высушивают при температуре 50-70°С в течение 2-3 часов. 3 ил.

Изобретение относится к способам получения наноструктурированных материалов. Технический результат изобретения заключается в получении структурированных сплошных и наноостровковых пленок без использования сложных технических средств. В стекло методом ионного обмена вводят ионы металла. Перед отжигом на стекло накладывают электрод в виде трафарета заданной формы и прикладывают к нему электрическое напряжение. Отжигают стекло в восстановительной среде. 4 з.п. ф-лы, 2 ил.

Изобретение относится к способу получения имплантированного ионами цинка кварцевого стекла из диоксида кремния с поверхностным слоем, содержащим нанокластеры цинка. Способ может быть использован при создании компонентов микро-(нано-) и оптоэлектронных устройств. Проводят имплантацию ионов цинка в кварцевое стекло и отжиг имплантированного ионами цинка кварцевого стекла в воздушной атмосфере. Имплантацию ионов цинка проводят в импульсном режиме при длительности импульсов 0,3-0,4 мс, частоте повторения импульсов 12,5-20 Гц, импульсной плотности ионного тока 0,8-0,9 мА/см2, дозе облучения (4,5-5)×1016 ион/см2, энергии ионов цинка 30-35 кэВ и температуре диоксида кремния 60-350°С. Отжиг проводят при температуре 800-900°С в течение 50-70 мин в воздушной атмосфере. Техническим результатом изобретения является получение стекла с повышенным уровнем интенсивности излучения в ближней области инфракрасного диапазона. 2 ил., 1 табл., 3 пр.

Изобретение относится к способам упрочнения термически полированного стекла комбинированным методом и может быть использовано для изготовления изделий конструкционной оптики. Техническим результатом изобретения является повышение прочности крупногабаритных изделий сложной геометрии, полученных из упрочненных стекол, при сохранении высоких оптических характеристик. Сущность изобретения заключается в том, что на первой стадии проводят ионообменное упрочнение стекла в расплаве калиевой селитры до получения слоя сжимающих напряжений глубиной 30-85 мкм, затем стекло травят в растворе плавиковой и серной кислот на глубину 5-15 мкм. Удаление трещиноватого поверхностного слоя ионообменных стекол на глубину до 10-15 мкм не влияет на оптические характеристики изделий и увеличивает прочность при центрально-симметричном изгибе в 1,5-2 раза. Наряду со статической прочностью значительно повышается и динамическая прочность композиционных материалов при ударе разными видами инденторов (шар, птица). 1 н. и.1 з.п. ф-лы, 3 табл., 4 пр.

Глазурь // 2614820
Изобретение относится к технологии силикатов, в частности к составам глазурей, которые могут быть использованы для нанесения на изделия из фаянса. Глазурь содержит, мас.%: SiO2 40,0-45,0; Al2O3 14,0-18,0; B2O3 15,0-20,0; SrO 1,0-2,0; СаО 3,0-5,0; MgO 6,0-8,5; K2O 5,0-7,0; CeO2 1,0-3,0; ВеО 2,0-4,5. Технический результат - повышение термостойкости.

Изобретение относится к упрочненной стеклянной емкости для фармацевтики. Технический результат – исключение любой возможности нарушения целостности фармпрепарата. Упрочненная стеклянная емкость проходит процесс упрочнения, который создает сжатие у поверхности и растяжение внутри стенки емкости. Процесс упрочнения разработан так, что растяжение внутри стенки является достаточно большим для обеспечения разрушения емкости в случае, если стерильности угрожает сквозная трещина. Центральное растяжение является большим или равным пороговому напряжению растяжения примерно в 15 МПа. Плотность накопленной энергии упругости вычисляется по формуле (CT2/E) ⋅ (t-2DOL)⋅(1-ν) и равна или больше чем 3,0 МПа⋅мкм, где СТ - напряжение растяжения (МПа), Е - модуль Юнга стекла, t - толщина стенки емкости (мм), DOL - глубина слоя (мм), на которой напряжение меняется с положительного (сжатие) на отрицательное (растяжение), и ν - коэффициент Пуассона стекла. 2 н. и 13 з.п. ф-лы, 9 ил., 1 табл.

Изобретение относится к стеклянному контейнеру из боросиликатного стекла. Технический результат – повышение устойчивости к отслаиванию, повреждению, повышение прочности стеклянного контейнера. Корпус, сформированный из композиции стекла Типа I, Класса B в соответствии со стандартом ASTM Е438-92, причем корпус имеет гидролитическую устойчивость класса HGB2 или более высокую в соответствии с ISO 719. Корпус стеклянного контейнера упрочнен ионным обменом. На внешней поверхности корпуса размещен гладкий покровный органический слой. Внешняя поверхность корпуса с гладким покровным слоем имеет коэффициент трения менее чем или равный 0,7. Покровный слой термически стабилен при температуре по меньшей мере примерно 260°С в течение 30 минут. 9 з.п. ф-лы, 51 ил., 3 табл.
Наверх