Способ дезактивации радиоактивных металлических отходов

Изобретение относится к области обработки радиоактивных металлических отходов (РМО) с целью удаления с их поверхности твердых радиоактивных отложений и может найти применение для дезактивации РМО нержавеющих сталей, образующихся при ремонте или демонтаже оборудования, трубопроводов и металлоконструкций ядерных реакторов. Металлические отходы предварительно выдерживают в растворе хлорида натрия в течение 50÷100 часов, затем осуществляют их электрохимическую дезактивацию в этом же растворе в анодном режиме. Далее отходы выдерживают в течение 50÷100 часов в водном растворе кислоты, выбранной из группы: серная кислота, ортофосфорная кислота, азотная кислота или в водном растворе смеси ортофосфорной, азотной и угольной кислот, с последующей электрохимической дезактивацией соответственно в том же растворе в анодном режиме. Технический результат - эффективное и безопасное уменьшение полиоксидного прочнофиксированного радиоактивного загрязнения до уровня, позволяющего повторное использование стали в промышленности. Эффективность способа обеспечивается при невысоких энергозатратах и использовании сравнительно низких концентраций электролитов. 8 з.п. ф-лы, 7 табл.

 

Изобретение относится к области обработки радиоактивных металлических отходов (РМО) с целью удаления с их поверхности твердых радиоактивных отложений и может найти применение для дезактивации РМО нержавеющих сталей, образующихся при ремонте или демонтаже оборудования, трубопроводов и металлоконструкций АЭС исследовательских, экспериментальных и транспортных реакторов, а также для очистки металлических поверхностей от окалины, накипи и других посторонних отложений.

Из литературы известно, что в зависимости от физико-химических процессов загрязнение может быть адгезионным, поверхностным и глубинным. Адгезионное загрязнение эквивалентно нефиксированному загрязнению и легко удаляется, например, струей воды. А поверхностное и глубинное соответствуют слабофиксированному и прочнофиксированному соответственно.

Для дезактивации нержавеющих сталей часто применяют химические методы. При этом процессы химической дезактивации подразделяются на «мягкие» методы, в которых используются разбавленные растворы дезактивирующих реагентов, с концентрацией около 1 мас.% и «жесткие» - с высокой концентрацией, до 15 мас.% «Мягкие» методы, не вызывающие потерь металла, пригодны для периодической обработки работающего оборудования. «Жесткие» методы характеризуются более высокими коэффициентами очистки, могут сопровождаться потерями металла и применяются для дезактивации металлических отходов (Ж. Атомная техника за рубежом. №7, 8, 2007 г.).

Для усиления эффективности химических методов дезактивации на очищаемую поверхность может подаваться электрический потенциал, обеспечивающий электрохимическую дезактивацию.

Известен способ химической дезактивации РМО нержавеющих сталей (А.с. №1783585, МПК G21F 9/34, 1992 г.). Сущность способа заключается в том, что обработку загрязненной поверхности производят в две стадии: на первой стадии - раствором, содержащим 100÷250 г/л тетрафторборной кислоты (ТФБК) при температуре 70÷90°С, а на второй стадии поверхность РМО обрабатывают в окислительном растворе при рН >0,5÷2,0, используя перекись водорода или азотную кислоту. При этом если используется перекись водорода, ее концентрация должна быть в пределах 5÷50 г/л и иметь подкисляющую добавку в виде серной кислоты или ТФБК. Азотная кислота должна быть с концентрацией 10÷100 г/л.

Недостатками данного способа дезактивации являются:

- необходимость использования дорогих реагентов повышенной концентрации;

- химическая опасность;

- сложность реализации.

Известен также способ электрохимической дезактивации РМО сталей в растворах хлоридов щелочных металлов (японская заявка №57-76500 МПК G21F 9/28, заявл. 30.10.1980). Сущность данного способа заключается в анодной обработке загрязненной поверхности в электролите, которым является 10% раствор натрия хлорида. В этих условиях радионуклиды концентрируются в образующемся осадке в виде нерастворимых окисей и гидроокисей, а слаборадиоактивный раствор после очистки может использоваться повторно. Таким образом, количество жидких радиоактивных отходов (ЖРО) значительно снижается.

Несмотря на привлекательность данного способа, в наших условиях он оказался неэффективным (табл.1). Причина здесь, скорее всего, в том, что удаляемое загрязнение является полиоксидным (табл.2) и прочнофиксированным.

Таблица 1
Результаты дезактивации образца нержавеющей стали в растворе натрия хлорида по методу-аналогу
№ опыта Концентрация электролита (г/л) Время электролиза (мин) Плотность тока (А/м2) Загрязненность по
β-частицам, ,
(β-част/(см2·мин))
Режим
1 40 60 1200 Катодный
2 40 60 1000 Анодный
Таблица 2
Состав полиоксидного прочнофиксированного отложения на поверхности нержавеющей стали
Содержание, %
Al2O3 Fe2O3 MgO
CaO
NiO SiO2 SO4-2 P2O5 Потери при прокаливании
17,0 15,2 0,8 0,03 21,8 2,1 19,1 23,4

Известен метод удаления радиоактивных загрязнений с поверхности металлов (патент США №4481089 от 06.11.1984) (прототип). Авторами данного метода показано, что путем циклической анодно-катодной обработки очищаемой поверхности металла, с его поверхности эффективно удаляются оксиды железа (Fe3O4, Fe2O3, FeO), содержащие радионуклиды. Электрохимическая очистка проводится в растворах нейтральных солей (NaCl, KCl, Na2SO4). При этом на стадии катодной обработки происходит восстановление трехвалентного железа до железа двухвалентного (Fe2O3→FeO), что способствует разрыхлению удаляемой пленки и увеличению ее проницаемости. На анодной стадии оксидная пленка железа удаляется в силу электроокисления «базового» металла.

Недостатками описанного выше метода являются:

1. Значительные энергозатраты - способ осуществляют при плотности тока 5 000 А/м2, напряжении ±5 В и длительности процесса 20÷30 мин. Кроме того, исследования, проведенные авторами по методу-прототипу, показали, что применение больших плотностей тока при длительной обработке в условиях неравномерной толщины пленки оксидного загрязнения приводит к неравномерному его удалению и образованию на поверхности металла глубоких дефектов - каверн.

2. В качестве вспомогательного электрода используется графит, не загрязняющий межэлектродное пространство при длительной обработке (20÷30 мин). Однако когда электролитом является раствор NaCl, в анодном цикле обработки на графите выделяется опасный газ (Cl2).

3. Дополнительные затраты на систему средств контроля для обеспечения заданной цикличности катодно-анодной обработки.

Задача, решаемая изобретением, - разработка наиболее эффективного, сравнительно недорогого и безопасного метода дезактивации РМО нержавеющих сталей от полиоксидных прочнофиксированных радиоактивных загрязнений, обеспечивающего возможность повторного использования «отмытой» стали.

Поставленная задача решается тем, что в способе дезактивации радиоактивных металлических отходов, включающем контактирование металлических отходов с водным раствором хлорида натрия и их электрохимическую дезактивацию в этом же растворе в анодном режиме, электрохимической дезактивации в растворе хлорида натрия подвергают отходы, предварительно выдержанные в этом растворе в течение 50÷100 часов, после электрохимической дезактивации в растворе хлорида натрия отходы выдерживают в течение 50÷100 часов в водном растворе кислоты, выбранной из группы: серная кислота, ортофосфорная кислота, азотная кислота или в водном растворе смеси ортофосфорной, азотной и угольной кислот, с последующей электрохимической дезактивацией соответственно в том же растворе в анодном режиме.

Кроме того, поставленная задача достигается также дополнительными техническими решениями, заключающимися в том, что используют водный раствор хлорида натрия с концентрацией 4÷7 мас.%; что в качестве водного раствора кислоты используют раствор серной кислоты с концентрацией 3÷6 мас.%; что в качестве водного раствора кислоты используют раствор ортофосфорной кислоты с концентрацией 3÷6 мас.%; что используют смесь ортофосфорной, азотной и угольной кислот концентрации 100 г/л, 50 г/л и 20 г/л соответственно; что в качестве водного раствора кислоты используют раствор азотной кислоты с концентрацией 3÷6 мас.%; что электрохимическую дезактивацию в водном растворе хлорида натрия ведут в течение 10÷15 мин при плотности тока 600÷1000 А/м2; что электрохимическую дезактивацию в водном растворе кислоты или смеси кислот ведут в течение 10÷15 мин при плотности тока 600÷1000 А/м2; что отходы после электрохимической дезактивации в растворе серной кислоты выдерживают в азотной кислоте с концентрацией 3÷6 мас.% в течение 50÷100 часов, после чего проводят электрохимическую дезактивацию в этом растворе кислоты/ в течение 10÷15 мин при плотности тока 600÷1000 А/м2 в анодном режиме.

Для осуществления способа используют многостадийную химическую дезактивацию с наложением положительного электрического потенциала на обрабатываемую поверхность, при этом в качестве катода используют сталь.

В результате проведенных исследований определяют условия заявляемого способа, составляющие его отличительные признаки:

1) выбор растворов, обеспечивающих эффективную дезактивацию;

2) число стадий дезактивации и порядок их следования;

3) была найдена необходимость на каждой стадии дезактивации проводить комбинированную обработку стали, вначале химическую, а после электрохимическую, различающиеся по времени.

В результате в качестве дезактивирующих растворов были взяты:

а) 4÷7 мас.% раствор хлорида натрия;

б) 3÷6 мас.% раствор серной кислоты;

в) 3÷6 мас.% раствор ортофосфорной кислоты;

д) 3÷6 мас.% раствор азотной кислоты;

г) раствор смеси кислот: 100 г/л H3PO4+50 г/л HNO3+20 г/л H2C2O4.

На первой стадии дезактивации испытуемый образец нержавеющей стали подвергают комбинированной обработке в растворе натрия хлорида.

На второй стадии дезактивации образец нержавеющей стали подвергают комбинированной обработке в серной кислоте, либо ортофосфорной кислоте, либо азотной кислоте, либо смеси кислот.

Третья стадия дезактивации требуется после комбинированной обработки в серной кислоте, когда необходимая степень дезактивации еще не достигнута. В этом случае используется азотная кислота.

Число стадий дезактивации может определяться числом оксидов, дающих основной вклад в полиоксидное загрязнение.

Сущность предлагаемой комбинированной обработки, которая проводится на каждой стадии дезактивации, заключается в том, что вначале образец загрязненной стали обрабатывают химически (выдерживают) в подготовленном растворе длительное время (50÷100 часов), достаточное для попадания раствора в поры полиоксидной пленки и к поверхности металла, а последующая электрохимическая обработка стали проводится в течение непродолжительного времени (10÷15 минут) при плотности тока 600÷1000 А/м2 в анодном режиме. При этом вспомогательным электродом (катодом) могут служить такие же образцы дезактивируемой стали. Предварительная выдержка повышает эффективность электрохимической дезактивации, вследствие чего полиоксидное отложение, содержащее радионуклиды, эффективно удаляется с поверхности нержавеющей стали (табл.3, 4, 5, 6, 7).

Таблица 3
Результаты дезактивации РМО 3-стадийным способом без предварительной выдержки
Образец 1 Образец 2
Исходное загрязнение, (β-част./(см2·мин)) 6200 7300
Загрязнение после электрохимической дезактивации в растворе NaCl (7 мас.%) в течение 15 минут, (β-част./(см2·мин)) 5200 4450
Загрязнение после электрохимической дезактивации в растворе H2SO4 (3 мас.%) в течение 15 минут, (β-част./(см2·мин)) 2400 2120
Загрязнение после электрохимической дезактивации в растворе HNO3 (3 мас.%) в течение 15 минут, (β-част./(см2·мин)) 400 660
Таблица 4
Результаты дезактивации РМО предлагаемым способом с выдержкой 50 часов в электролите на каждой стадии
Образец 1 Образец 2
Исходное загрязнение, (β-част./(см2·мин)) 5900 8200
Загрязнение после предварительной выдержки в течение 50 час в растворе NaCl (7 мас.%) и последующей электрохимической дезактивации в этом растворе в течение 15 мин, (β-част./см2·мин)) 4420 3770
Загрязнение после предварительной выдержки в течение 50 час в растворе H2SO4 (3 мас.%) и последующей электрохимической дезактивации в этом растворе в течение 15 мин, (β-част./(см2·мин)) 240 490
Загрязнение после предварительной выдержки в течение 50 часов в растворе HNO3 (3 мас.%) и последующей электрохимической дезактивации в этом растворе в течение 15 мин, (β-част./(см2·мин)) 29 20
Таблица 5
Результаты дезактивации РМО предлагаемым способом с выдержкой 96 часов в кислоте H3PO4
Исходное загрязнение, (β-част./(см2·мин)) 2160
Загрязнение после предварительной выдержки в растворе NaCl (7 мас.%) в течение 96 часов и последующей электрохимической дезактивации в этом растворе в течение 15 мин, при плотности тока 1000 А/м2, (β-част./(см2·мин)) 490
Загрязнение после предварительной выдержки в растворе 3 мас.% H3PO4 в течение 96 часов и последующей электрохимической дезактивации в этом растворе в течение 10 мин, при плотности тока 600 А/м2, (β-част./(см2·мин)) 24
Таблица 6
Результаты дезактивации РМО предлагаемым способом с выдержкой 100 часов в смеси кислот 100 г/л H3PO4+50 г/л HNO3+20 г/л H2C2O4
Исходное загрязнение, (β-част./(см2·мин)) 2430
Загрязнение после предварительной выдержки в растворе 7 мас.% NaCl в течение 100 часов и последующей электрохимической дезактивации в этом растворе в течение 15 мин при плотности тока 1000 А/м2, (β-част./(см2·мин)) 460
Загрязнение после предварительной выдержки в растворе смеси кислот в смеси кислот 100 г/л H3PO4+50 г/л HNO3+20 г/л H2C2O4 в течение 100 часов и последующей электрохимической дезактивации в этом растворе в течение 10 мин при плотности тока 600 А/м2, (β-част./(см2·мин)) 50
Таблица 7
Результаты дезактивации РМО предлагаемым способом с выдержкой 96 часов в HNO3
Исходное загрязнение, (β-част./(см2·мин)) 2600
Загрязнение после предварительной выдержки в растворе 7 мас.% растворе NaCl в течение 96 часов и последующей электрохимической дезактивации в этом растворе в течение 15 мин при плотности тока 1000 А/м2, (β-част./(см2·мин)) 490
Загрязнение после предварительной выдержки в растворе 3 мас.% HNO3 в течение 96 часов и последующей электрохимической дезактивации в этом растворе в течение 10 мин при плотности тока 1000 А/м2, (β-част./(см2·мин)) 40

Во всех приведенных в приложениях примерах образцы дезактивируемой стали являлись анодом, а катодом служили такие же образцы стали. Плотность тока составляла 600÷1000 А/м2, время электролиза 10÷15 минут.

Использование предлагаемого способа обеспечивает уменьшение радиоактивного загрязнения нержавеющей стали до уровня, позволяющего обеспечить повторное использование стали в промышленности. Эффективность способа обеспечивается при невысоких энергозатратах и использовании сравнительно низких концентраций электролитов.

1. Способ дезактивации радиоактивных металлических отходов, включающий контактирование металлических отходов с водным раствором хлорида натрия и их электрохимическую дезактивацию в этом же растворе в анодном режиме, отличающийся тем, что электрохимической дезактивации в растворе хлорида натрия подвергают отходы, предварительно выдержанные в этом растворе в течение 50÷100 ч, после электрохимической дезактивации в растворе хлорида натрия отходы выдерживают в течение 50÷100 ч в водном растворе кислоты, выбранной из группы: серная кислота, ортофосфорная кислота, азотная кислота или в водном растворе смеси ортофосфорной, азотной и угольной кислот, с последующей электрохимической дезактивацией соответственно в том же растворе в анодном режиме.

2. Способ по п.1, отличающийся тем, что используют водный раствор хлорида натрия с концентрацией 4÷7 мас.%.

3. Способ по п.1, отличающийся тем, что в качестве водного раствора кислоты используют раствор серной кислоты с концентрацией 3-6 мас.%.

4. Способ по п.1, отличающийся тем, что в качестве водного раствора кислоты используют раствор ортофосфорной кислоты с концентрацией 3÷6 мас.%.

5. Способ по п.1, отличающийся тем, что используют смесь ортофосфорной, азотной и угольной кислот концентрации 100 г/л, 50 г/л и 20 г/л соответственно.

6. Способ по п.1, отличающийся тем, что в качестве водного раствора кислоты используют раствор азотной кислоты с концентрацией 3÷6 мас.%.

7. Способ по п.1, отличающийся тем, что электрохимическую дезактивацию в водном растворе хлорида натрия ведут в течение 10÷15 мин при плотности тока 600÷1000 А/м2.

8. Способ по п.1, отличающийся тем, что электрохимическую дезактивацию в водном растворе кислоты или смеси кислот ведут в течение 10-15 мин при плотности тока 600÷1000 А/м2.

9. Способ по п.3, отличающийся тем, что отходы после электрохимической дезактивации в растворе серной кислоты выдерживают в азотной кислоте с концентрацией 3÷6 мас.% в течение 50÷100 ч, после чего проводят электрохимическую дезактивацию в этом растворе кислоты в течение 10÷15 мин при плотности тока 600÷1000 А/м2, в анодном режиме.



 

Похожие патенты:
Изобретение относится к атомной энергетике и может быть использовано для сбора отработавшего ядерного топлива (ОЯТ) в виде твердых радиоактивных фрагментов тепловыделяющих элементов (просыпи) в помещениях и на поверхностях оборудования горячей камеры.

Изобретение относится к способам выгрузки битумированных радиоактивных отходов из временных хранилищ атомных электростанций. .

Изобретение относится к атомной промышленности, а именно к обработке радиоактивных материалов, в частности к переработке отработавшего ядерного топлива. .

Изобретение относится к области утилизации твердых радиоактивных отходов. .

Изобретение относится к атомной промышленности. .

Изобретение относится к области ядерной технологии. .

Изобретение относится к атомной промышленности в части переработки радиоактивных отходов, а именно к устройствам для струйного размыва пульп и осадков при освобождении емкостей-хранилищ от радиоактивных отходов высокого уровня активности, перевода их во взвешенное состояние с целью их дальнейшего извлечения на переработку.

Изобретение относится к технике по обращению с радиоактивными отходами и предназначено для извлечения твердых радиоактивных отходов (ТРО) из хранилищ, их сортировки и транспортировки для дальнейшей переработки.

Изобретение относится к области дезактивации металлических поверхностей, имеющих радиоактивные отложения, например элементов атомных реакторов. .

Изобретение относится к радиохимии, а именно к перемешиванию обогащенных по урану и плутонию растворов в кольцевых аппаратах ядерно-безопасной геометрии, в частности при переработке отработавшего ядерного топлива

Изобретение относится к атомной промышленности в части переработки радиоактивных отходов, а именно к устройствам для струйного размыва осадка, скопившегося в емкостях-хранилищах радиоактивных отходов высокого уровня активности
Изобретение относится к области ядерной техники, а точнее к способам утилизации радиоизотопных термоэлектрических генераторов (РИТЭГ), отработавших срок службы

Изобретение относится к области переработки материалов с радиоактивным заражением

Изобретение относится к атомной промышленности в части переработки радиоактивных отходов, а именно к устройствам для размыва струями жидкости и растворения пульп и осадков, скопившихся на дне емкостей-хранилищ жидких радиоактивных отходов высокого уровня активности, перевода нерастворимой твердой фазы и поддержания ее во взвешенном состоянии перемешиванием с целью дальнейшего извлечения на переработку

Изобретение относится к области космической техники, а более конкретно к способам космического захоронения радиоактивных отходов и космическим аппаратам (КА) с электроракетной двигательной установкой для транспортировки на орбиты захоронения в дальний космос радиоактивных отходов (РАО)

Изобретение относится к атомной промышленности в части переработки радиоактивных отходов, а именно к устройствам для растворения и размыва струями осадка. В пульсационном клапанном погружном насосе, включающем корпус, пульсопровод, впускной шаровой клапан с ограничителем подъема шара, нагнетательный трубопровод с выпускным шаровым клапаном, камеру нижних сопел, внутри которой размещен вал, соединяющий нижние сопла с приводом поворота и систему управления, камера нижних сопел расположена в корпусе за перегородкой, разделяющей корпус на камеру нижних сопел и камеру выдачи. Камера нижних сопел и камера выдачи сообщаются между собой через зазор над перегородкой, установленной под входом пульсопровода в корпус. В перегородке выполнено отверстие, в котором установлен перепускной клапан с плавающим в воде шаром. Изобретение позволяет расширить технологические возможности насоса за счет осуществления одновременного перемешивания и выдачи суспензии из емкости, а также повысить эффективность его работы. 1 з.п. ф-лы, 3 ил.

Изобретение относится к области очистки почвы от радионуклидов и может найти применение при очистке сельскохозяйственных угодий, загрязненных при выпадении радиоактивных осадков преимущественно цезием и стронцием. Способ рекультивации почв заключается в том, что на загрязненном участке строят дренажную сеть. При этом в почве ниже корнеобитаемого слоя выше дренажа закладывают систему внутрипочвенных увлажнителей, подачу промывной воды осуществляют путем равномерного увлажнения почвы с поверхности и одновременно во внутрипочвенные увлажнители подают раствор двууглекислого натрия, а промывную воду, просочившуюся в дренажную сеть, отводят на очистку от оставшихся радионуклидов или утилизацию. Изобретение позволяет эффективно очистить корнеобитаемый слой почвы от загрязнения радионуклидами, осадив и захоронив изотоп стронция вне корнеобитаемого слоя. 1 ил.

Изобретение относится к области ядерной энергетики, в частности к методам обращения с радиоактивными отходами, и может быть использовано при демонтаже кессонов с размещенными в них дефектными облученными тепловыделяющими сборками (ОТВС), находящимися в хранилищах судов атомного технологического обслуживания (АТО). В полость каждого кессона последовательно засыпают крупнокусковой полиэтилен, смесь фракций щебня, стальную дробь, а затем - гранулы сплава Вуда до уровня подвесок ОТВС, после чего вырезают кессон из трубной доски бака хранилища, нагревают до расплавления с последующим охлаждением и отверждением сплава Вуда, после чего приваривают подъемную крышку к верхнему торцу кессона и нагружают ее осевой растягивающей нагрузкой, затем выполняют кольцевую подрезку стенки кессона ниже расположения топливных частей ОТВС с недорезом стенки 0,3-0,4 мм, далее снимают осевую растягивающую нагрузку с подъемной крышки, подрывают кессон домкратами и перегружают с помощью перегрузочного контейнера в транспортный радиационно-защитный контейнер на хранение и переработку. Изобретение позволяет минимизировать выбросы радиоактивности в окружающую среду. 3 з.п. ф-лы, 9 ил.
Наверх