Способ нанесения слоя из композитных материалов на полупроводниковые элементы солнечных батарей

Изобретение относится к области электроники и может быть использовано при изготовлении изделий с полупроводниковыми переходами "р", "n" типа для микроэлектроники и солнечной энергетики. Задачей изобретения является повышение энергетических характеристик солнечных батарей, повышение производительности процесса нанесения материалов и снижение их потерь. Для этого в способе нанесения слоя из композиционных материалов на полупроводниковые элементы солнечных батарей операцию диспергирования осуществляют центробежным распылением. Во время выдержки полупроводниковых элементов в облаке аэрозоля на них воздействуют электростатическим полем и/или полем униполярного коронного разряда, поддерживают средние напряженности воздействующих полей в диапазоне 1-8 кВ/см. Время экспозиции выбирают не более одной минуты. Техническим результатом изобретения является повышение производительности, снижение времени экспозиции, уменьшение потерь материала в пересчете на производственную программу установки. Вследствие сокращения времени жизни аэрозоля в аэрозольной камере химический состав капель аэрозоля не успевает претерпеть существенные изменения из-за разной скорости испарения, поэтому улучшаются энергетические показатели солнечных батарей. 1 ил.

 

Изобретение относится к области электроники и может быть использовано при изготовлении изделий с полупроводниковыми переходами “p”, “n” типа для микроэлектроники и солнечной энергетики.

Известны способы нанесения лакокрасочных материалов на заземленные изделия, включающие операции диспергирования лакокрасочных материалов с одновременным сообщением образующимся аэрозольным частицам электрического заряда и осаждением заряженных частиц на электропроводящем изделии с образованием защитного покрытия (А.Д.Яковлев. Химия и технология лакокрасочных покрытий. Изд.2. Химия, 1989, с.195-259).

Недостатком известных способов электростатического нанесения лакокрасочных материалов является их непригодность для получения равномерных сплошных слоев из композиционных материалов на полупроводниковых элементах с требуемой толщиной 0,1 мкм. Это объясняется тем, что известные методы регулирования объемного электрического сопротивления ρv, вязкости и размеров частиц распыленного лакокрасочного материала позволяют достигнуть достаточных значений равномерности покрытия при толщине не менее 20 мкм, а наличие полупроводникового элемента в качестве осадительного электрода дополнительно снижает равномерность распределения толщины слоя композиционных материалов на полупроводниковом элементе.

Задача повышения равномерности нанесения тонкого слоя из композиционных материалов на полупроводниковые элементы солнечных батарей решена применением способа нанесения диффузанта в аэрозольной камере, куда подают диспергированный ультразвуком до состояния аэрозоля диффузант, а формирование слоя на поверхности полупроводникового элемента осуществляют за счет седиментации аэрозоля за выбранное время экспозиции этого элемента в аэрозольной камере (Патент Японии №4037918, 20.05.1995 г. Способ и устройство для распыления жидкого вещества). Данное техническое решение выбрано в качестве прототипа.

Однако данный способ не позволяет обеспечить необходимую производительность из-за низкой скорости седиментации аэрозольных частиц с размером порядка единиц микрометров. Другим недостатком являются большие потери диффузанта, так как осаждение аэрозоля происходит не только на полупроводниковые элементы, но и на стенки аэрозольной камеры.

Кроме того, из-за достаточно большого времени жизни аэрозоля, состоящего из тетраэтоксисилана, “р-n” добавок и водно-спиртовой жидкости, спирт начинает испаряться быстрее, чем вода, и к моменту осаждения частиц аэрозоля на поверхности полупроводникового элемента удельная концентрация воды в капле возрастает, что приводит к снижению энергетических показателей солнечной батареи.

Техническая задача, решаемая в изобретении, заключается в повышении энергетических характеристик солнечных батарей, в повышении производительности процесса нанесения диффузанта и снижении потерь диффузанта.

Решение технической задачи достигается тем, что в известном способе нанесения слоя из композиционных материалов на полупроводниковые элементы солнечных батарей, включающем операции диспергирования жидких композиционных материалов, например диффузанта, до состояния аэрозоля и выдержку полупроводниковых элементов в области аэрозоля заданное время экспозиции, согласно предложению, операцию диспергирования осуществляют центробежным распылением, во время выдержки полупроводниковых элементов в облаке аэрозоля на них воздействуют электростатическим полем и/или полем униполярного коронного разряда, поддерживают средние напряженности воздействующих полей в диапазоне 1-8 кВ/см, при этом время экспозиции выбирают не более одной минуты.

Суть изобретения поясняется графическими материалами, где на чертеже приведена структурная схема одного из устройств, позволяющих реализовать предложенный способ.

Диэлектрическую аэрозольную камеру 1 устанавливают на электропроводящий электрод 2 с зазором 3. В верхнюю часть камеры 1 введена распылительная чашка 4 высокооборотного распылителя с возможностью осевого перемещения. На изоляторе 5 укреплена емкость с диффузантом 7. Материалопровод 8 соединен одним концом с емкостью 6, а другим концом закреплен с зазором внутри чашки 4. В камере 1 установлен электрод 9. Чашка 4, электрод 9 через замыкатели 10, 11 подключены к изолированному выводу высоковольтного источника 12 постоянного тока. Полупроводниковый элемент 13 размещен в камере 1 на электропроводящем заземленном электроде 2. Средства ввода-вывода элемента 13 не показаны. Работу на устройстве осуществляют следующим образом. Приводят во вращение чашку 4 высокооборотного распылителя и поддерживают скорость ее вращения в диапазоне 30000-60000 об/мин.

Композиционный материал (в данном варианте выполнения диффузант 7) подают на чашку 4 высокооборотного распылителя. Диспергированный до аэрозоля диффузант 7 поступает в аэрозольную камеру 1. В камеру 1 вводят полупроводниковый элемент 13 на время экспозиции меньше одной минуты. Сразу после введения элемента 13 в камеру 1 замыкают замыкатели 10 и/или 11 (в зависимости от химического состава, реологических свойств и проводимости композиционного материала) и подают постоянное напряжение до 80 кВ от изолированного вывода высоковольтного источника 12 постоянного тока на чашку 4 и/или электрод 9, предназначенный для создания электростатического поля в аэрозольной камере 1. Средствами осевого перемещения регулируют взаимное положение чашки 4, электрода 9 и поддерживают средние напряженности полей, воздействующих на полупроводниковый элемент 13 в диапазоне 1-8 кВ/см при одинаковом потенциале на чашке 4 и электроде 9.

После выдержки элемента 13 заданное время экспозиции, элемент 13 выводят из камеры 1, вводят в камеру следующий, аналогичный элементу 13, и осуществляют таким образом нанесение слоя композитных материалов на полупроводниковые элементы 13 солнечных батарей.

Предложенная совокупность предложенных признаков способа позволяет увеличить производительность, так как под действием электрических полей скорость нанесения диффузанта примерно на порядок выше скорости седиментации аэрозоля. Поскольку снизилось время экспозиции, уменьшились и потери диффузанта в пересчете на производственную программу установки. Вследствие сокращения времени жизни аэрозоля в аэрозольной камере химический состав капель аэрозоля не успевает претерпеть существенных изменений из-за разной скорости испарения, поэтому улучшаются энергетические показатели солнечных батарей.

В качестве диффузантов могут быть использованы, например, композитные материалы следующих составов:

1. Фосфорный композит (Р типа)

- бутанол 30-80%
- фосфорная кислота 3-50%
- тетраэтоксисилан 10-19%
- кислота соляная 0,1-0,5%
- вода деионизованная 5-30%

2. Борный композит (n типа)

- борная кислота 5-35%
- тетраэтоксисилан 40-80%
- кислота соляная 0,1-0,5%
- бутанол 30-80%
- вода деионизованная 5-30%

Частными формами использования предлагаемого изобретения с заявленными отличительными признаками являются приводимые ниже примеры осуществления способа с композициями №1 и №2.

Композиция №1:

Объем раствора 1 л

1. Спирт изоприловый 805 мл
2. Кислота ортофосфорная 8 мл
3. Кислота соляная 0,9 мл
4. Тетраэтоксисилан 160 мл
5. Вода деионизванная 25 мл

Композиция №2:

Объем раствора 1 л

1. Спирт изоприловый 932 мл
2. Кислота борная 35 г
3. Кислота соляная 1,5 мл
4. Тетраэтоксисилан 27 мл
5. Вода деионизованная 5 мл

Пример 1. Наносят слой диффузанта из композиции №1 на кремниевую пластину полупроводникового солнечного элемента. Диффузант подают на чашку высокооборотного распылителя с расходом Р=2 мл/с на время экспозиции (выдержки) полупроводникового элемента в облаке аэрозоля в течение t=4 с, воздействуют в это время на облако аэрозоля и полупроводниковый элемент электростатическим полем со средней напряженностью Е=1 кВ/см. После высыхания композиционного материала получают на поверхности кремниевой пластины слой диффузанта толщиной 60-65 нм. Потеки, утолщения и разрывы в слое отсутствуют.

Качество удовлетворительное.

Пример 2.

Условия осуществления такие же, как в примере 1. Параметры режима: Р=4 мл/с, t=10 с, Е=1,0 кВ/см. Получают слой диффузанта толщиной 100-110 нм удовлетворительного качества.

Пример 3.

Используют диффузант из композиции №2. Условия нанесения прежние. Параметры режима: Р=2 мл/с, 1=5 с, Е=4 кВ/см. Получают слой диффузанта толщиной 8-85 нм. Качество удовлетворительное.

Пример 4.

Условия осуществления такие же, как в примере 3. Параметры режима: Р=1 мл/с, t=4 с. Воздействие на аэрозольное облако осуществляют электростатическим полем и полем коронного разряда с напряженностью Е=8 кВ/см. Получают слой диффузанта толщиной 90-92 нм хорошего качества.

Пример 5.

Условия и режимы как в примере 4. Время экспозиции t=65 с. Получают слой диффузанта толщиной 120-900 нм с утолщениями и наплывами. Качество неудовлетворительное.

Пример 6.

Условия осуществления и режимы как в примере 4. Воздействие на аэрозольное облако осуществляют полем коронного разряда Е=8,5 кВ/см. Получают слой диффузанта толщиной 70-140 нм с наплывами. Качество неудовлетворительное.

Пример 7.

Условия осуществления и режимы как в примере 1. Выбирают Е=0,9 кВ/см. Толщина слоя диффузанта колеблется в интервале от 0 нм до 50 нм, т.е. в слое наблюдаются разрывы. Качество неудовлетворительное.

Способ нанесения слоя из композиционных материалов на полупроводниковые элементы солнечных батарей, включающий операции диспергирования жидких композиционных материалов до состояния аэрозоля и выдержку полупроводниковых элементов в облаке аэрозоля заданное время экспозиции, отличающийся тем, что операцию диспергирования осуществляют центробежным распылителем, во время выдержки полупроводниковых элементов в облаке аэрозоля на них воздействуют электростатическим полем и/или полем униполярного коронного разряда, поддерживают средние напряженности воздействующих полей в диапазоне 1-8 кВ/см, при этом время экспозиции выбирают не более одной минуты.



 

Похожие патенты:

Изобретение относится к области хранения, транспортировки или применения жидких, газообразных взрывоопасных или потенциально взрывоопасных веществ. .

Изобретение относится к области физики аэродисперсных систем, а именно к устройствам для получения субмикронных аэрозолей иодида щелочных металлов, и может быть использовано в системах кондиционирования воздуха и создания целебного микроклимата помещений, а также в медицине при лечении заболеваний, при которых показаны ингаляции атмосферного воздуха, содержащего гигроскопичный субмикронный аэрозоль иодидов щелочных металлов.

Изобретение относится к области часового дела. .

Изобретение относится к аэрозолирующим устройствам, предназначенным для дезинфекции закрытых помещений различного назначения, транспорта, контейнеров и иных емкостей, а также расположенных в них приборов, материалов и пр.

Изобретение относится к устройствам для циклической дозированной подачи порошкового материала и касается импульсного дозатора порошка. .

Изобретение относится к технике распыливания жидкостей, в частности воды, которая используется в коммунальных городских хозяйствах, а именно в фонтанах для создания эстетического и декоративного эффекта истекающей и падающей воды.

Изобретение относится к городскому коммунальному хозяйству, в частности к строительству фонтанов. .

Изобретение относится к устройствам для распыления жидкости. .

Изобретение относится к биотехнологии, медицине, парфюмерной промышленности, к производству лекарственных и биологически активных веществ. .

Изобретение относится к противопожарной технике и может быть использовано для создания распыленной струи в соплах или насадках огнетушителя

Изобретение относится к устройствам пожаротушения, а именно к роботизированным установкам пожаротушения

Изобретение относится к области противопожарной техники и предлагает способ и устройство для тушения нефти и нефтепродуктов, горючих (ПК) и легковоспламеняющихся жидкостей (ЛВЖ) в резервуарах вертикальных стальных (РВС) и резервуарах вертикальных стальных с фиксированной крышей и понтоном (РВСП)

Изобретение относится к системе распыления жидкости и может быть использовано для увеличения выходной мощности двигателя

Изобретение относится к области ультразвуковой техники, а именно к устройствам для мелкодисперсного распыления (диспергирования) жидкостей, и может быть использовано в наноиндустрии, химико-фармацевтической и медицинской промышленности

Изобретение относится к устройствам распыления жидкости в технологических процессах, требующих высокого качества распыления, например: для защиты объектов сельскохозяйственной и лесохозяйственной деятельности человека, борьбы с дикорастущими наркосодержащими растениями (гербицидная обработка) путем создания в атмосфере облака монодисперсных капель физиологически активных препаратов

Фонтан // 2451561
Изобретение относится к гидротехническим устройствам, в том числе к декоративным и демонстрационным, в которых изменяется характер струи

Изобретение относится к области ветеринарии, медицинской техники и сельского хозяйства, в частности к получению высокодисперсных аэрозолей

Изобретение относится к средствам распыливания жидкостей, растворов и может быть использовано в сельскохозяйственной, пищевой и легкой промышленности
Наверх