Устройство для определения характеристик образцов горных пород

Изобретение относится к области горного дела, добыче полезных ископаемых, в частности к устройствам для определения характеристик образцов горных пород. Техническим результатом изобретения является возможность получения гомогенизированной смеси жидкостей. Для этого устройство для определения характеристик образцов горных пород оборудовано кернодержателем для размещения образца горной породы, системой подачи исследуемых жидкостей, состоящей из двух изолированных емкостей, и выполненным в виде цилиндра смесителем. Смеситель установлен перед кернодержателем и сообщается с емкостями каналами для подачи исследуемых жидкостей. По длине смесителя выполнена по меньшей мере одна последовательность из четырех несквозных прорезей, расположенных на одинаковом расстоянии друг от друга. Каждая прорезь выполнена в форме усеченного круга. Площадь каждой прорези составляет от 0,7 до 0,9 от площади поперечного сечения смесителя. Вторая прорезь выполнена с поворотом на 180 градусов относительно первой прорези. Третья прорезь выполнена с поворотом в том же направлении на 90 градусов относительно второй прорези. Четвертая прорезь выполнена с поворотом на 180 градусов относительно третьей. В каждой прорези размещена металлическая пластина, геометрическая форма которой повторяет форму прорези. 2 з.п. ф-лы, 2 ил., 1 табл.

 

Изобретение относится к области горного дела, добыче полезных ископаемых, в частности к устройствам для определения характеристик образцов горных пород, а именно к способу определения относительных фазовых проницаемостей образцов горных пород, и может быть использовано в геологии, газовой и нефтяной отраслях промышленности для быстрого лабораторного определения открытой пористости, проницаемости, насыщенности водой и нефтью образцов горных пород.

Функциональная зависимость относительных фазовых проницаемостей от насыщенности используется при решении большого числа задач моделирования нефтегазовых резервуаров. Так данные о фазовых проницаемостях необходимы при промышленной оценке переходных нефтегазовых зон пластов, в газогидродинамических расчетах технологических показателей разработки, при выборе методов воздействия на пласт с целью увеличения нефтеотдачи, при анализе и контроле за разработкой залежей.

Для определения относительных фазовых проницаемостей нефти и воды, а также водонасыщенности образца горной породы проводятся экспериментальные исследования. Устройства для проведения данных исследований известны (см., например, патент RU 2223400, SU 1749779). Однако в известных устройствах, применямых для определения характеристик образцов горных пород, а именно для определения относительных фазовых проницаемостей образцов горных пород, отсутствует смеситель, позволяющий получить гомогенезированную смесь нефти и воды.

Наиболее близким аналогом изобретения (прототипом) является устройство для определения характеристик образцов горных пород, содержащее кернодержатель для размещения образца горной породы, систему подачи жидкостей, состоящую из двух изолированных емкостей с исследуемыми жидкостями, и смеситель, выполненный в виде цилиндра (патент RU 2034268). Недостатком указанного устройства является то, что смеситель, описанный в данном патенте, не обеспечивает получения гомогенезированной смеси подаваемых в него жидкостей.

Технический результат, достигаемый при реализации заявляемого технического решения, заключается в том, что смеситель, описанный в заявляемом изобретении в отличие от обыкновенной высокопроницаемой вставки, в которой реализуется сквозное течение жидкостей, позволяет получить гомогенезированную смесь подаваемых в него жидкостей. Этот эффект достигается за счет увеличения длины пути течения жидкостей внутри смесителя из-за огибания металлических вставок, препятствующих сквозному течению и вызывающих закручивания потока.

Поставленный технический результат достигается за счет того, что устройство для определения характеристик образцов горных пород содержит кернодержатель для размещения образца горной породы, систему подачи исследуемых жидкостей, состоящую из двух изолированных емкостей для исследуемых жидкостей, и выполненный в виде цилиндра смеситель, установленный перед кернодержателем и сообщающийся с емкостями каналами для подачи исследуемых жидкостей, по длине смесителя выполнена по меньшей мере одна последовательность из четырех несквозных прорезей, расположенных на одинаковом расстоянии друг от друга, каждая прорезь выполнена в форме усеченного круга, площадь каждой из прорези составляет от 0,7 до 0, 9 от площади поперечного сечения смесителя, причем вторая прорезь выполнена с поворотом на 180 градусов относительно первой прорези, третья прорезь выполнена с поворотом в том же направлении на 90 градусов относительно второй прорези, четвертая прорезь выполнена с поворотом на 180 градусов относительно третьей, и в каждой прорези размещена металлическая пластина, геометрическая форма которой повторяет форму прорези.

Устройство также дополнительно может содержать два расходомера, каждый из которых установлен на канале для подачи исследуемой жидкостей из емкости в смеситель.

Кроме того, в качестве материала смесителя используют высокопроницаемую спеченную керамику.

Изобретение поясняется чертежами, где на Фиг.1 показана блок-схема устройства определения характеристик образцов горных пород, на Фиг.2,а приведен общий вид смесителя, а на Фиг.2,б - общий вид металлических вставок смесителя,

На фиг.1 показаны кернодержатель 1 с герметичной электроизоляционной эластичной оболочкой 2, в которой размещается образец горной породы 3. На переднем торце образца 3 устанавливается смеситель 4, а на заднем - высокопористая вставка 5. Подача нефти и воды производится раздельно из заполненных каждая своей жидкостью изолированных друг от друга емкостей 6 и 7 на входные отверстия смесителя 4 с заданным расходом, который регулируется расходомерами 9 и 10, установленными на соответствующих каналах для подачи. Для измерения перепада давления на образце предусмотрен дифференциальный манометр 8. После прохождения смеси жидкостей через исследуемый образец горной породы, представляющий собой фильтрационный участок, она попадает в сепаратор СИ, где разделяется на фазы. Для измерения расходов фаз на выходе предусмотрены расходомеры 11 и 12.

Конструктивная схема смесителя показана на Фиг.2,а. В цилиндрическом смесителе из высокопроницаемого материала профрезеровываются несквозные прорези на равном расстоянии друг от друга, предпочтительно это расстояние составляет от 0, 3 до 0, 7 мм, шириной 1 мм, площадь которых составляет 0,7-0,9 площади сечения самого смесителя. Каждая прорезь выполнена в форме усеченного круга. Причем прорези выполняются по следующей схеме: вторая прорезь профрезеровывается с поворотом на 180 градусов относительно первой прорези, третья прорезь - с поворотом на 90 градусов относительно второй, а четвертая прорезь выполняется с поворотом в 180 градусов относительно третьей. Все прорези выполняются с поворотом в одном направлении. Далее описанный цикл может быть повторен еще несколько раз. Затем в изготовленные прорези вставляют, например вклеивают, пластины, выполненные из любого металла и повторяющие форму прорезей. На Фиг.2,б показан один цикл расположения металлических пластин.

Устройство для определения характеристик образцов горных пород, в частности для определения относительных фазовых проницаемостей нефти и воды и водонасыщенности, позволяет провести непосредственное измерение величин в лабораторных условиях по данным установившейся двухфазной фильтрации. Предлагаемая модификация конструкции фильтрационного участка экспериментальной установки состоит в установке смесителя перед исследуемым образцом горной породы. Смеситель предназначен для выравнивания неоднородного поля водонасыщенности флюидов и позволяет получить гомогенезированную смесь нефти и воды, которая будет подаваться на торец образца. Этот эффект достигается за счет увеличения длины пути течения жидкости внутри смесителя из-за огибания металлических вставок, препятствующих сквозному течению и вызывающих закручивания потока. Таким образом, водонасыщенность образца заранее определена, а время выхода на стационарный режим уменьшается. Благодаря уменьшению неоднородности поля насыщенности минимизируется негативное влияние краевых эффектов, а точность результатов увеличится. Средняя водонасыщенность на выходном сечении смесителя равна процентному содержанию воды в суммарном потоке, подаваемом на входные отверстия смесителя. Таким образом на входной торец исследуемого образца поступает однородная двухфазная смесь с заданной водонасыщенностью. Как показывают результаты проведенных численных расчетов, в случае подачи смеси нефти и воды с известным значением водонасыщенности водонасыщенность образца станет равной водонасыщенности подаваемой на вход смеси.

При проведении эксперимента смесь нефти и воды подается в смеситель в определенном соотношении, гомогенизируется и затем поступает в образец горной породы, первоначально насыщенный нефтью. Причем суммарный объем обеих фаз остается постоянным. Каждый опыт продолжается до достижения установившегося режима фильтрации, который фиксируется по стабилизации показаний датчиков дифференциального давления при заданном постоянном расходе. После этого начинается новый опыт при измененном соотношении фаз в потоке. Эксперимент завершается при полном исчезновении нефти на выходе из образца, при этом содержание воды в потоке достигает 100%.

Значения фазовых проницаемостей для каждой из фаз определяются из закона Дарси, а значения относительных фазовых проницаемостей вычисляются путем деления фазовых проницаемостей на проницаемость образца.

Проведено численное моделирование процесса изотермической фильтрации воды и нефти через смеситель, длина которого равна 3,5 калибрам. Конструктивная схема смесителя показана на фиг.2,а. В профрезерованные на определенном расстоянии пазы шириной 1 мм вклеены металлические пластинки, показанные на фиг.2,б, площадь сечения которых составляет 0,7-0,9 площади поперечного сечения смесителя. Подвод каждой фазы осуществляется раздельно через отверстия, диаметр которых din=3 мм, расположенные на расстоянии 23 мм друг от друга. Исходные данные для проведения расчетов представлены в Таблице. Диаметр образца 30 мм.

Исходные данные для проведения расчетов
Параметр Значение
Плотность воды pw, кг/м3 1000
Динамическая вязкость воды µw, Па·с 0,79735·10-3
Плотность нефти ρO, кг/м3 1000
Динамическая вязкость нефти µо, Па·с 0,825·10-3
Проницаемость смесителя k, Да 1
Пористость смесителя ϕ, % 20
Суммарный расход фаз q, мл/мин 0,1
Отношение расходов фаз q O/qw 25/75; 50/50
Давление Pout, бар 50

Задача рассматривалась при следующих допущениях:

- флюиды считаются вязкими, ньютоновскими и несжимаемыми средами;

- материал смесителя изотропный с проницаемостью k и постоянной пористостью φ;

- течение жидкостей описывается линейным законом фильтрации Дарси;

- течение считается изотермическим;

- относительные фазовые проницаемости и капиллярные давления являются функциями насыщенности воды;

- пренебрегаем влиянием гравитационных сил.

Математическая модель изотермической фильтрации несмешивающихся несжимаемых жидкостей состоит из следующих уравнений:

- уравнения неразрывности для каждой из фаз:

где n=о - нефтяная фаза, n=w - водная фаза.

- уравнения движения в пористом теле, которое представляет собой уравнение Дарси:

Начальные условия: Sо=1, Pо=Pout,

Граничные условия:

на границе B1: - расход воды

на границе В2: - расход нефти

на границе В3: - условие непроницаемости

на границе B4:.∂wn/∂n=0 - условия на «вытекающей» границе.

Насыщенности удовлетворяют следующему условию: Sо+Sw=1.

В результате численного моделирования процесса смешения нефти и воды видно, что во всех случаях значение нефтенасыщенности в установившемся режиме течения на выходном торце смесителя равно значению процентного содержания нефти в суммарном потоке нефти и воды, подаваемом на вход смесителя. Следовательно, значение водонасыщенности определяется автоматически без проведения дополнительных измерений по балансу масс на выходе. Причем погрешность определения водонасыщенности составляет менее 2% в отличие от погрешности от 10-40% при традиционной схеме проведения эксперимента.

Таким образом, при помощи численного моделирования процесса двухфазной фильтрации воды и нефти была проверена работоспособность предлагаемого устройства для определения характеристик образцов горных пород, содержащего смеситель. Основной идеей предложенной конструкции смесителя является увеличение эффективной длины смешения жидкостей практически в 5 раз совместно с закручиванием потока жидкости, что позволяет добиться практически однородной смеси жидкостей в выходном сечении смесителя. Результаты расчетов показали, что оптимальная длина смесителя лежит в пределах от 80 до 100 мм, а в качестве материала смесителя предлагается использовать высокопроницаемую спеченную керамику.

Предложение соответствует критерию «промышленная применимость», поскольку его осуществление возможно при использовании существующих средств производства с применением известных технологий.

1. Устройство для определения характеристик образцов горных пород, содержащее кернодержатель для размещения образца горной породы, систему подачи исследуемых жидкостей, состоящую из двух изолированных емкостей, и выполненный в виде цилиндра смеситель, установленный перед кернодержателем и сообщающийся с емкостями каналами для подачи исследуемых жидкостей, отличающееся тем, что по длине смесителя выполнена по меньшей мере одна последовательность из четырех несквозных прорезей, расположенных на одинаковом расстоянии друг от друга, каждая прорезь выполнена в форме усеченного круга, и площадь каждой прорези составляет от 0,7 до 0,9 от площади поперечного сечения смесителя, причем вторая прорезь выполнена с поворотом на 180° градусов относительно первой прорези, третья прорезь выполнена с поворотом в том же направлении на 90° относительно второй прорези, четвертая прорезь выполнена с поворотом на 180° относительно третьей, и в каждой прорези размещена металлическая пластина, геометрическая форма которой повторяет форму прорези.

2. Устройство по п.1, отличающееся тем, что в качестве материала смесителя используют высокопроницаемую спеченную керамику.

3. Устройство по п.1, отличающееся тем, что перед входом в смеситель на каждом канале для подачи исследуемых жидкостей установлен расходомер.



 

Похожие патенты:

Изобретение относится к фильтрованию жидкостей. .

Изобретение относится к области исследований или анализа защитных свойств материалов лицевых частей противогазов при воздействии на них капель , '-дихлордиэтилсульфида (ДДС) путем использования его имитатора - бутил- -хлорэтилсульфида (БХЭС) в качестве вещества, моделирующего проникающую способность иприта.

Изобретение относится к технике исследования физических свойств горных пород, в частности остаточной водонасыщенности, для определения коэффициентов вытеснения нефти водой и растворами химреагентов.

Изобретение относится к нефтяной и горной промышленности и может быть использовано для лабораторного изучения влияния негармонических, электромагнитных колебаний (ЭМК) на остаточную нефтегазонасыщенность пород соответствующих месторождений в условиях, приближающихся к пластовым.
Изобретение относится к области изготовления материала с полностью контролируемыми свойствами, а именно материала с порами контролируемого размера и формы. .

Изобретение относится к неразрушающим методам контроля материалов. .

Изобретение относится к аналитическому приборостроению, а именно к измерению удельной поверхности дисперсных и пористых материалов, и может использоваться при создании измерительных приборов.

Изобретение относится к адсорбции в тонких пористых слоях и может быть использовано в микроэлектронике, катализе, биохимии. .

Изобретение относится к нефтедобывающей промышленности и предназначено для определения проницаемости продуктивных насыщенных флюидами пластов. .

Изобретение относится к нефтяной и газовой промышленности, а именно к области оценки и прогноза продуктивности углеводородных залежей и месторождений, и может быть использовано для многоцелевого изучения и определения фильтрационно-емкостных свойств коллекторов углеводородного сырья.

Изобретение относится к области исследования фильтрующих материалов

Изобретение относится к технике и способам измерения проницаемости пористых материалов, мембранным технологиям и может быть использовано для характеризации транспорта жидкости через пористые и сплошные материалы

Изобретение относится к способам экспериментального определения фрактальной размерности твердой поверхности электрода

Изобретение относится к расчетно-экспериментальным способам определения фильтрующих свойств пористых сред, получаемых методом порошковой металлургии

Изобретение относится к исследованию процессов многофазной фильтрации жидкостей и газов в пористой среде, в частности к вытеснению нефти водой, и может быть использовано для нахождения относительных фазовых проницаемостей (ОФП) и функции Баклея

Изобретение относится к области офтальмологии и направлено на обеспечение возможности исследования рабочих характеристик офтальмологических линз в условиях окружающей глаз среды, что обеспечивается за счет того, что устройство для исследования офтальмологической линзы содержит вставную форму и охватывающую форму, где указанная вставная форма содержит выпуклую поверхность для исследования, наружную вставную поверхность, вставной опорный ориентирующий выступ, проходящий от периметра выпуклой поверхности для исследования, и отверстие, проходящее от наружной вставной поверхности к выпуклой поверхности для исследования

Изобретение относится к исследованию свойств и характеристик образцов горных пород и может быть использовано для определения фазовой проницаемости при фильтрации двух несмешивающихся жидкостей через пористые среды

Изобретение относится к нефтедобывающей отрасли, а именно к повышению достоверности определения относительных фазовых проницаемостей и коэффициента вытеснения нефти рабочим агентом

Изобретение относится к области исследования защитных свойств пакетов фильтрующих материалов средств индивидуальной защиты кожи (СИЗК) на основе активированных углеродсодержащих сорбентов (АУС) в динамических условиях

Изобретение относится к области физико-химического применения, а именно к способам и устройствам для определения десорбционной ветви изотерм адсорбции кислорода при изменениях температуры от 20 до 500°С динамическим методом тепловой десорбции
Наверх