Способ комбинированной криогенно-деформационной обработки стали



Владельцы патента RU 2422541:

Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт черной металлургии им. И.П. Бардина" (ФГУП "ЦНИИчермет им. И.П. Бардина") (RU)
Российская Федерация, от имени которой выступает государственный заказчик - Министерство промышленности и торговли Российской Федерации (Минпромторг России) (RU)

Изобретение относится к области черной металлургии, конкретнее к способам обработки аустенитных сталей, и может быть использовано, например, для изготовления высоконагруженных деталей в машиностроении. Для повышения коррозионной стойкости сталей, прочностных и магнитных характеристик осуществляют выплавку аустенитной стали, содержащей компоненты в следующем соотношении, мас.%: углерод 0,01-0,20, хром 13,0-18,0, никель 6,0-16,0, алюминий 0,1-2,5, вольфрам 2,0-4,0, марганец до 0,3, титан до 0,3, кремний до 0,3; медь до 0,2; сера до 0,03; фосфор до 0,03; железо и неизбежные примеси - остальное, при выполнении условия: сумма хрома и никеля равна 20,0-32,0, закалку, пластическую деформацию при криогенных температурах в несколько стадий, низкотемпературный отпуск после каждой стадии, высокотемпературный отпуск и ультразвуковую обработку в диапазоне рабочих частот f=18÷22 кГц. 2 табл.

 

Изобретение относится к области черной металлургии, конкретнее к способам деформационной и ультразвуковой обработки коррозионностойких сталей с мартенситным и диффузионным превращениями при криогенных температурах, и может быть использовано, например, при изготовлении высоконагруженных деталей в машиностроении и энергомашиностроении.

Известна сталь, содержащая, мас.%: 0,04 С, 15,5 Cr, 4,8-5,8 Ni, 0,5-1,0 Mn, 0,11-0,18 N, 0,03-0,08 Nb, 0,03-0,08 V, железо и неизбежные примеси - остальное, и способ пластической деформации и обработки холодом коррозионностойких сталей, включающий закалку, пластическую деформацию с последующей обработкой холодом и отпуск (Патент РФ №2318068 С22С 38/48, C21D 8/00 27.02.2008 г.). Основными недостатками указанного способа являются низкие прочностные и пластические характеристики обработанных сталей.

Прототипом заявленного изобретения по технической сущности является способ криогенно-деформационной обработки стали, включающий закалку, пластическую деформацию в несколько стадий при температуре жидкого азота, низкотемпературный отпуск после каждой стадии и высокотемпературный отпуск на заключительной стадии обработки заготовок (Патент РФ №2365633 C21D 8/00 27.08.2009 г.). Применение данного способа приводит к повышению прочности и эксплуатационной надежности стали. Недостатками данного изобретения являются относительно невысокие прочностные характеристики сталей и низкие магнитные свойства.

Техническим результатом предлагаемого изобретения является получение коррозионностойких сталей с высокими прочностными и магнитными характеристиками.

Указанный технический результат достигается тем, что в способе криогенно-деформационной обработки стали, включающем закалку, пластическую деформацию при криогенных температурах в несколько стадий, низкотемпературный отпуск после каждой стадии и высокотемпературный отпуск, согласно изобретению, обрабатывают сталь, содержащую следующие компоненты, мас.%:

Углерод 0,01-0,20
Хром 13,0-18,0
Никель 6,0-16,0
Алюминий 0,1-2,5
Вольфрам 2,0-4,0
Марганец до 0,3
Титан до 0,3
Кремний до 0,3
Медь до 0,2
Сера до 0,03
Фосфор до 0,03
Железо и неизбежные примеси Остальное

при выполнении условия: сумма хрома и никеля равна 20,0-32,0, а

после высокотемпературного отпуска проводят ультразвуковую обработку в диапазоне рабочих частот f=18÷22 кГц.

Отличительными признаками предлагаемого способа являются:

- выплавка аустенитной коррозионностойкой стали заданного химического состава с ограничением суммарного содержания хрома и никеля 20,0-32,0% и дополнительно легированного вольфрамом 2,0-4,0%;

- проведение после высокотемпературного отпуска ультразвуковой обработки в диапазоне рабочих частот f=18-22 кГц.

Эти отличительные признаки в совокупности с оптимальным химическим составом коррозионностойкой стали позволяют получить наноструктурное состояние аустенитно-мартенситной матрицы с высокими прочностными и магнитными характеристиками.

Химический состав стали выбран после детальных экспериментов по криогенной деформации аустенитных сталей с различным содержанием легирующих элементов. Содержание углерода в интервале 0,01-0,20% обеспечивает карбидное упрочнение при термической обработке стали. При более низком содержании углерода образование карбидов не происходит, при более высоком наблюдается снижение пластичности стали. Хром вводится в состав в пределах 13,0-18,0% для получения коррозионной стойкости стали: при более низком содержании коррозионная стойкость не достигается, при более высоком не происходит превращения аустенита в мартенсит после деформации при криогенных температурах. Содержание никеля в интервале 6,0-16,0% при условии, что сумма хрома и никеля равна 20,0-32,0%, обеспечивает формирование аустенита после закалки и его частичное превращение в мартенсит при криогенной деформации. При содержании никеля и хрома за пределами указанных интервалов данный эффект не наблюдается. При содержании никеля менее 6,0% и суммы никеля и хрома менее 20,0% образуется недостаточное количество аустенита, необходимого для обеспечения пластических свойств стали. При содержании никеля более 16,0% и суммы никеля и хрома более 32,0% структура стали состоит из стабилизированного аустенита, который при криогенной деформации не превращается в мартенсит, что не позволяет получать высокие прочностные свойства. Вольфрам и алюминий вводятся в сталь в количестве 2,0-4,0% и 0,1-2,5% соответственно, с целью обеспечения образования упрочняющих интерметаллидов при высокотемпературном отпуске. При содержании менее 2,0% W и 0,1% Al объемная доля соответствующих интерметаллидов при высоком отпуске мала и упрочнение неэффективно. При содержании более 4,0% W и 2,5% Al наблюдается снижение пластичности и охрупчивание стали. Именно тот химический состав стали, который указан в заявке, обеспечивает наиболее интенсивное формирование в аустенитной матрице нанокристаллической мартенситной фазы в процессе деформации при криогенных температурах. Как следствие, именно такой состав приводит к наиболее заметному упрочнению стали, содержащей после деформации аустенитную фазу и наномасштабные кристаллы мартенсита, то есть имеющей двухфазную аустенитно-мартенситную структуру. Наличие исходной аустенитной фазы обеспечивает достаточную пластичность сплава, хотя размер фрагментов аустенита также находится в нанометрическом диапазоне. Предлагаемый химический состав, как показали проведенные исследования, обеспечивает также выделение при высокотемпературном отпуске ультрадисперсных (нанокристаллических) интерметаллидных фаз, что приводит к дополнительному упрочнению. Выделение интерметаллидов происходит в стали и без деформационной обработки, однако после деформационной обработки дисперсность и объемная доля частиц фаз увеличивается и, как следствие, упрочнение повышается.

Пластическая деформация стали при криогенных температурах обеспечивает формирование нанокристаллической структуры, что приводит к значительному повышению прочностных и магнитных характеристик. Деформация проводится по крайней мере в две стадии в сочетании с низкотемпературным отпуском, так как это позволяет избежать снижения пластичности и повышения внутренних микронапряжений.

Проведение низкотемпературного отпуска после каждой стадии деформации является обязательной операцией, так как обеспечивает значительное снятие внутренних микронапряжений, вызванных деформационной обработкой, и способствует повышению эксплуатационной надежности деталей.

При высокотемпературном отпуске происходит выделение дисперсных интерметаллидных фаз, что приводит к дополнительному нанофазному упрочнению и повышению показателей прочности и твердости после обработки стали по предложенному способу.

Проведение после высокотемпературного отпуска ультразвуковой обработки (УЗО) в диапазоне рабочих частот f=18-22 кГц способствует улучшению физико-механических свойств коррозионностойкой стали. В процессе ультразвуковой обработки в сталях возникают ультразвуковые напряжения. Действие ультразвука приводит к образованию в объеме материала «дополнительного» количества α-мартенсита (10-12%). «Дополнительное» γ→α превращение, связанное с ультразвуковой деформацией, наблюдается в основном в микрообластях с повышенным уровнем напряжений (дефекты упаковки, пересечение двойников). При этом «ультразвуковой» мартенсит в этих участках отличается более высокой степенью дисперсности, чем мартенсит «криогенный», что способствует дополнительному упрочнению и повышению магнитных свойств стали. Применение УЗО с частотой менее 18 кГц не приводит к повышению свойств стали. После обработки ультразвуком с частотой более 22 кГц происходит снижение пластичности и наблюдается охрупчивание стали.

Эффективность применения данного изобретения можно продемонстрировать на следующих примерах:

Пример 1. Плавку аустенитной стали с химическим составом, мас.%: 0,05 С, 14,0 Cr, 6,8 Ni, 0,6 Al, 2,2 W, 0,2 Mn, 0,1 Ti, 0,17 Si, 0,1 Cu, 0,003 S, 0,01 Р, Z Cr+Ni=20,8 (остальное - железо и неизбежные примеси), выплавляли вакуумно-индукционным способом, проводили гомогенизацию и зачистку слитков, слитки ковали при температуре 1050-950°С на пруток квадратного сечения. Пруток - квадрат 12 мм подвергали закалке от 1000°С на воздухе, проводили деформацию с помощью прокатки при температуре жидкого азота -196°С за два прохода (в две стадии) с суммарной степенью деформации ε=50% (с 12 до 6,0 мм), после каждого прохода осуществляли низкотемпературный отпуск при температуре 220°С в течение 1 ч, проводили высокотемпературный отпуск при температуре 480°С в течение 2 ч, образцы подвергали ультразвуковой обработке (УЗО) с рабочей частотой f=18 кГц. В табл.1 приведены данные рентгенографического исследования стали после обработки по предлагаемому способу. Результаты определения механических и магнитных свойств образцов из стали, обработанной по предлагаемому способу, приведены в табл.2, п.1.

Пример 2. Плавку аустенитной стали с химическим составом, мас.%: 0,15 С, 16,8 Cr, 14,5 Ni, 1,8 Al, 3,7 W, 0,2 Mn, 0,1 Ti, 0,15 Si, 0,1 Cu, 0,01 S, 0,01 Р, S Cr+Ni=31,3 (остальное - железо и неизбежные примеси), выплавляли вакуумно-индукционным способом, проводили гомогенизацию и зачистку слитков, слитки ковали при температуре 1050-950°С на пруток квадратного сечения. Пруток - квадрат 12 мм подвергали закалке от 1000°С на воздухе, проводили деформацию с помощью прокатки при температуре жидкого азота -196°С за три прохода (в три стадии) с суммарной степенью деформации ε=70% (с 12 мм до 4,2 мм), после каждого прохода осуществляли низкий отпуск при температуре 260°С в течение 1 ч, проводили высокотемпературный отпуск при температуре 530°С в течение 2 ч, образцы подвергали ультразвуковой обработке с рабочей частотой f=22 кГц. Результаты испытания образцов из стали, обработанной по предлагаемому способу с помощью прокатки и ультразвуковой обработки, приведены в табл.2, п.2.

Проведено изучение связи изменений структуры, механических и магнитных свойств предложенной стали после криогенно-деформационной и ультразвуковой обработки.

Электронно-микроскопическое исследование предложенной стали показало, что после деформации в структуре аустенита, имеющего фрагменты до 90 нм, наблюдаются также нанокристаллы мартенсита размером до 60 нм в длину и до 30 нм по толщине, а после высокотемпературного отпуска при 480°С, 2 ч - дополнительно и интерметаллидные нанофазы Fe2W и NiAl размером до 20 нм. Они выделяются, главным образом, на межфазных границах и внутри фрагментов аустенитных и мартенситных кристаллов. В совокупности появление в структуре трех нанокристаллических фаз различной природы приводит к существенному возрастанию твердости при сохранении удовлетворительной пластичности стали. Применение УЗО способствует увеличению объемной доли мартенсита и степени его дисперсности, что обеспечивает дополнительное упрочнение и повышение магнитных свойств.

В табл.1 приведены данные рентгенографического анализа предложенной стали после деформации 50%. Видно, что в структуре появилось значительное количество мартенсита (более 30%). Таким образом, после пластической деформации при температуре жидкого азота -196°С (криогенной температуре) формируется двухфазная нанокристаллическая аустенитно-мартенситная структура, в которой после высокотемпературного отпуска выделяются упрочняющие интерметаллидные фазы.

После УЗО количество мартенсита увеличивается, что приводит к повышению прочностных и магнитных свойств.

Проведено сравнение механических и магнитных свойств предложенной стали и стали, обработанной по прототипу и имеющей соответствующий химический состав, который включает закалку от 1050°С, деформацию методом прокатки при температуре жидкого азота 77 К (-196°С) до ε=70%, отпуск при 200°С, 1 ч и при 530°С, 2 ч. Результаты испытаний образцов из аустенитной стали, обработанной по прототипу, приведены в табл.2, п.3.

Полученные результаты (табл.2) свидетельствуют о том, что обработка аустенитной стали по предлагаемому способу в сравнении с прототипом позволяет повысить прочностные и магнитные характеристики стали: в частности, предел прочности σВ, предел текучести σ0,2 и коэрцитивная сила Нс увеличиваются на 10-15%, при некотором повышении твердости. Обработка по предлагаемому способу увеличивает эксплуатационную надежность и срок службы деталей.

Таблица 1
Количество аустенита и мартенсита в структуре аустенитной стали, изготовленной и обработанной по предлагаемому способу, и аустенитной стали, обработанной по прототипу.
Способ обработки % об. γ-фазы % об. α-фазы
1 По предлагаемому 66.2±0.2 33.8±0.2
2 способу 62.5±0.2 37.5±0.2
3 По прототипу 77,2±0.2 22,8±0,2
Примечание:
γ-фаза-аустенит, α-фаза-мартенсит.
Таблица 2
Механические и магнитные свойства аустенитной стали, изготовленной и обработанной по предлагаемому способу, и аустенитной стали, обработанной по прототипу.
Способ обработки σВ, МПа σ0,2, МПа δ, % HRC HC, Э 4πIS, Тл
1 По предлагаемому 2100 1700 10 64 80 0,85
2 способу 2150 1750 9 65 90 0,97
3 По прототипу 2000 1600 8 64 50 0,6
Примечание:
σВ - предел прочности, σ0,2 - предел текучести, δ - относительное удлинение, HRC - твердость по Роквеллу, HC - коэрцитивная сила, 4πIS - намагниченность насыщения.

Способ комбинированной криогенно-деформационной обработки заготовок стали, включающий закалку, пластическую деформацию при криогенных температурах в несколько стадий, низкотемпературный отпуск после каждой стадии и высокотемпературный отпуск, отличающийся тем, что обрабатывают заготовки стали, содержащей компоненты в следующем соотношении, мас.%:

углерод 0,01-0,20
хром 13,0-18,0
никель 6,0-16,0
алюминий 0,1-2,5
вольфрам 2,0-4,0
марганец до 0,3
титан до 0,3
кремний до 0,3
медь до 0,2
сера до 0,03
фосфор до 0,03
железо и
неизбежные примеси остальное,

при выполнении условия: сумма хрома и никеля равна 20,0-32,0, а после высокотемпературного отпуска проводят ультразвуковую обработку заготовок в диапазоне рабочих частот f=18÷22 кГц.



 

Похожие патенты:

Изобретение относится к атомной технике, а именно к изготовлению оболочек тепловыделяющих элементов реакторов на быстрых нейтронах из радиационно-стойкой стали, в частности к изготовлению труб для элементов активной зоны.

Изобретение относится к области производства труб, в частности коленчатой трубы. .
Изобретение относится к области металлургии, в частности к технологии прокатки высокопрочного штрипса для магистральных труб из низколегированной стали на реверсивном толстолистовом стане.

Изобретение относится к области металлургии, а именно к производству листов из высокопрочной стали, применяемых в автомобильной промышленности. .

Изобретение относится к области металлургии, а именно к производству горячекатаных и холоднокатаных листов из аустенитной стали, применяемых в автомобильной промышленности.
Изобретение относится к области металлургии, а именно к получению мартенситной нержавеющей стали, используемой для изготовления деталей в авиационной и космической промышленности.
Изобретение относится к области черной металлургии, конкретнее к способам обработки коррозионно-стойких аустенитных сталей, и может быть использовано, например, для изготовления тяжелонагруженных деталей в машиностроении.
Изобретение относится к области аморфных магнитных материалов и способам их обработки и может быть использовано в качестве материала в электронике и приборостроении.

Изобретение относится к области термической обработки деталей машиностроения и может быть использовано для повышения износостойкости деталей машин, штампованного и металлорежущего инструмента.
Изобретение относится к области черной металлургии, конкретнее к способам обработки коррозионно-стойких аустенитных сталей, и может быть использовано, например, для изготовления тяжелонагруженных деталей в машиностроении.

Изобретение относится к области термической обработки деталей машин и механизмов. .
Изобретение относится к химико-термической обработке металлорежущего инструмента из быстрорежущей стали, в частности к упрочняющей обработке. .
Изобретение относится к области металлургии и машиностроения и используется для изготовления режущего инструмента, штампов, рабочих валков листопрокатных станов стали типа «90Х».

Изобретение относится к области машиностроения и может быть использовано в различных отраслях промышленности при термической обработке деталей из мартенситностареющих сталей, например, 08Х15Н5Д2Т, 06Х14Н6Д2МБТ, 10Х14Н4АМЗ и 07Х16Н6.

Изобретение относится к области машиностроения при изготовлении деталей режущим инструментом (РИ) из быстрорежущей стали и использованию заготовок с повышенной твердостью и из труднообрабатываемых металлов.

Изобретение относится к области термической обработки деталей машиностроения. .

Изобретение относится к атомной технике, а именно к изготовлению оболочек тепловыделяющих элементов реакторов на быстрых нейтронах из радиационно-стойкой стали, в частности к изготовлению труб для элементов активной зоны.
Наверх