Способ измерения толщины боковой стенки некруглых прозрачных контейнеров и устройство для его осуществления

Изобретение относится к проверке прозрачных контейнеров. Заявленное устройство для контроля толщины боковой стенки некруглых прозрачных контейнеров содержит конвейер для удерживания контейнера в устойчивом состоянии и вращения контейнера вокруг оси. Источник света направляет световое излучение на боковую стенку контейнера на конвейере. Анаморфическая линзовая система, имеющая ось линзовой системы, направляет на фотодетектор излучение, отраженное от частей внутренней и внешней поверхностей боковой стенки контейнера, которые по существу параллельны оси линзовой системы. Информационный процессор реагирует на детектор для определения толщины боковой стенки при увеличении угла поворота контейнера в виде функции от интервала на детекторе между световыми излучениями, отраженными от внутренней и внешней поверхностей боковой стенки контейнера. Технический результат - создание способа и устройства для измерения толщины стенки некруглых прозрачных контейнеров. 2 н. и 1 з.п. ф-лы, 6 ил.

 

Изобретение относится к проверке прозрачных контейнеров с целью выявления технических изменений, которые влияют на оптические свойства контейнеров, а более конкретно - к способу и устройству для электрооптического измерения толщины боковой стенки некруглых прозрачных контейнеров.

Уровень техники и краткое изложение сущности изобретения

Для измерений толщины боковой стенки прозрачных контейнеров использовались электрооптические методы. Например, патент США №6806459 раскрывает устройство и способ для измерения толщины боковой стенки контейнера, которое включает в себя конвейер для перемещения контейнера перпендикулярно его оси через станцию контроля во время одновременного вращения контейнера вокруг своей оси «качением» контейнера вдоль рельса на станции контроля. Источник света и освещающая линзовая система направляют на боковую стенку контейнера световой пучок линейной формы, имеющий длинный размер, перпендикулярный оси контейнера, параллельный направлению движения через контрольную станцию и достаточную протяженность, чтобы освещать боковую стенку контейнера, пока он катится вдоль рельса на станции контроля. Анаморфическая линзовая система формирования изображения направляет на фотодетектор световую энергию, отраженную от участков внешней и внутренней поверхности боковой стенки, которые перпендикулярны падающей световой энергии. Информационный процессор реагирует на световую энергию, направляемую на фотодетектор линзовой системой формирования изображения для определения толщины контейнера между внешней и внутренней поверхностями боковой стенки, когда контейнер катится вдоль рельса. Хотя способ и устройство, раскрытые в указанном патенте, хорошо подходят для измерения толщины боковой стенки круглых контейнеров, они не пригодны для измерения толщины боковых стенок некруглых контейнеров, которые не могут катиться вдоль рельса на контрольной станции.

Патент США №5291271 раскрывает устройство и способ электрооптического измерения толщины стенки контейнера. Источник света направляет световой пучок на внешнюю поверхность контейнера под таким углом, что часть светового пучка отражается от внешней поверхности, а часть преломляется в стенке контейнера, отражается от внутренней поверхности стенки и затем повторно выходит с внешней поверхности стенки. Линзовая система для фокусирования на детектор световой энергии, отраженной от внешней и внутренней поверхности стенки, расположена между фотодетектором и стенкой контейнера. Линзовая система имеет плоскость изображения, в которой расположен детектор, и плоскость объекта, коллинеарную с падающим световым пучком. Контейнер удерживается в устойчивом положении и вращается вокруг своей оси. Информационный процессор сканирует детектор при увеличении угла поворота контейнера и определяет толщину стенки контейнера между внутренней и внешней поверхностью в виде функции от интервала между точками падения на детектор отраженных световых энергий. Хотя способ и устройство, раскрытые в этом патенте, опять хорошо подходят для измерения толщины боковой стенки круглых контейнеров, они не пригодны для измерения толщины боковой стенки некруглых контейнеров, так как падающий пучок не может отследить неровности боковой стенки некруглого контейнера, когда контейнер вращается. Главная задача настоящего изобретения заключается в создании способа и устройства для измерения толщины стенки некруглых прозрачных контейнеров.

В настоящем описании раскрыто несколько аспектов, которые могут быть реализованы отдельно или в комбинации друг с другом.

Устройство для контроля толщины боковой стенки некруглых прозрачных контейнеров в соответствии с одним объектом настоящего изобретения включает в себя конвейер для удержания контейнера в устойчивом положении и вращения контейнера вокруг оси. Источник света направляет световую энергию на боковую стенку контейнера на конвейере. Анаморфическая линзовая система, имеющая ось линзовой системы, направляет на фотодетектор энергию, отраженную от участков внутренней и внешней поверхностей боковой стенки контейнера, которые по существу параллельны оси линзовой системы. Термин «по существу параллельны» означает, что поверхности боковой стенки контейнера параллельны оси линзовой системы в пределах малого угла расхождения линзовой системы такого, как угол расхождения в 1° в примере осуществления настоящего изобретения. Информационный процессор реагирует на детектор для определения толщины боковой стенки контейнера при увеличении поворота контейнера в виде функции от интервала на детекторе между энергиями, отраженными от внутренней и внешней поверхности боковой стенки контейнера.

Устройство для контроля толщины боковой стенки некруглых прозрачных контейнеров в соответствии с другим объектом настоящего изобретения включает в себя конвейер для последовательной подачи контейнеров и удерживания каждого контейнера по очереди в устойчивом положении во время вращения контейнера вокруг оси. Источник света направляет световую энергию на боковую стенку контейнера, когда он удерживается и вращается на конвейере. Анаморфическая линзовая система, имеющая ось линзовой системы, направляет на фотодетектор части световой энергии, отраженные от внутренней и внешней поверхностей боковой стенки контейнера, в плоскостях, по существу перпендикулярных оси линзовой системы. Термином «по существу перпендикулярный» называется световая энергия, отраженная в плоскостях, перпендикулярных оси линзовой системы в пределах малого угла расхождения линзовой системы такого, как 1° в примере осуществления настоящего изобретения. Части световой энергии, отраженные от внутренней и внешней поверхностей боковой стенки контейнера в плоскостях по существу перпендикулярных оси линзовой системы, перемещаются назад и вперед вдоль анаморфической линзовой системы, когда контейнер вращается, вследствие неокруглости контейнера. Информационный процессор реагирует на фотодетектор для определения толщины боковой стенки при увеличении поворота контейнера в виде функции от интервала на детекторе между частями световой энергии, отраженной от внутренней и внешней поверхностей боковой стенки контейнера.

Способ контроля толщины боковой стенки некруглого контейнера в соответствии со следующим объектом настоящего изобретения включает удержание контейнера в устойчивом положении во время вращения контейнера вокруг оси. Световой пучок в форме линии направляется на боковую стенку контейнера, причем световой пучок в форме линии имеет длинный размер, перпендикулярный оси вращения. Части светового пучка, отраженные от внутренней и внешней поверхностей боковой стенки контейнера, которые по существу перпендикулярны световому излучению, направленному на боковую стенку контейнера, если смотреть из направления параллельного оси контейнера, направлены на детектор. Толщина боковой стенки контейнера определяется при увеличении угла поворота контейнера в виде функции от интервала на детекторе между частями светового излучения отраженными от внутренней и внешней поверхностей боковой стенки контейнера.

Краткое описание чертежей

Настоящее изобретение вместе с дополнительными задачами, отличительными особенностями, преимуществами и объектами будет лучше понято из следующего описания, прилагаемой формулы изобретения и чертежей, на которых:

Фиг.1 - схематическое изображение устройства для измерения толщины боковой стенки контейнера в соответствии с примером осуществления настоящего изобретения;

Фиг.2 - схематическое изображение части устройства, приведенного на Фиг.1, показывающее линзовую систему освещения и формирования изображения для примера осуществления настоящего изобретения более подробно;

Фиг.3 - вид сверху освещающей линзовой системы по Фиг.1, по направлению 3 на Фиг.2;

Фиг.4 - вид сверху линзовой системы формирования изображения в примере осуществления настоящего изобретения по Фиг.2, по направлению 4 на Фиг.2;

Фиг.5 - схематическое изображение отражения и преломления светового излучения на боковой стенке контейнера, увеличенная часть Фиг.2 в области 5;

Фиг.6А-6К - схематические изображения, которые показывают отражение от стенки контейнера при последовательных стадиях поворота контейнера.

Подробное описание предпочтительных вариантов осуществления настоящего изобретения

На Фиг.1 схематически показано устройство 10 для контроля толщины боковой стенки некруглого прозрачного контейнера 12, такого как стеклянный контейнер, в соответствии с примером осуществления настоящего изобретения. Устройство 10 включает в себя конвейер 14 для последовательной подачи контейнеров 12, удерживания каждого контейнера 12 по очереди в устойчивом положении и поворота контейнера вокруг оси 16. Ось вращения контейнера предпочтительно совпадает с центральной осью контейнера, хотя ось вращения может отклоняться от центральной оси контейнера из-за качания или по схожим причинам, вызванным дефектом контейнера. Пример конвейера 14 для последовательной подачи некруглых контейнеров по очереди для контроля, удерживания контейнеров в устойчивом положении и вращения контейнеров вокруг оси для контроля показано в патенте США №6557695. См. также патент США №4124112. Могут быть использованы другие конвейеры.

Источник света 18 расположен для направления светового излучения через освещающую линзовую систему 20 на боковую стенку контейнера 12, удерживаемого и вращаемого на конвейере 14. Световое излучение, отраженное от внутренней и внешней поверхностей боковой стенки контейнера, направляется анаморфической линзовой системой 22 формирования изображения на фотодетектор 24. Информационный процессор 26 реагирует на детектор 24 для определения толщины боковой стенки в виде функции от интервала на детекторе между световыми излучениями, отраженными от внутренней и внешней поверхностей боковой стенки контейнера, при увеличении угла поворота контейнера. Информация о толщине боковой стенки контейнера может быть представлена оператору на дисплее 28 и/или может быть использована информационным процессором для активации механизма отбраковки, связанного с конвейером, для отделения контейнеров, имеющих боковую толщину за пределами требуемого диапазона. Данные о толщине боковой стенки могут, конечно, быть сохранены или иным способом использованы для анализа и контроля производственной системы.

На Фиг.2 и Фиг.3 показан пример осуществления освещающей линзовой системы 20 подробнее. Источник света 18, предпочтительно лазер, который обеспечивает коллимированный выходной пучок малого диаметра, направляет выходной пучок через освещающую линзовую систему 20. Пучок разворачивается веером линзой 30 и коллимируется линзой 32. Этот пучок собирается линзой 34 в очень узкий световой пучок или световой пучок в форме линии в среднем местоположении боковой стороны контейнера, предпочтительно в положении около середины пути между позицией боковой стенки на Фиг.6А и позицией боковой стенки на Фиг.6F. Этот световой пучок 36 (Фиг.3) в форме линии предпочтительно имеет «длинный» размер в направлении, перпендикулярном оси 16. Длина этого светового пучка 36 в форме линии согласуется с размерами контейнера для получения отражения в положениях, показанных на Фиг.6А-6К. В показанном примере осуществления настоящего изобретения освещающая линзовая система 20 включает в себя последовательные цилиндрические линзы 30, 32, 34. Для преобразования выходного излучения источника 18 света в световой пучок в форме линии на боковой стенке контейнера могут быть использованы и другие оптические системы.

На Фиг.2 и 4 линзовая система 22 формирования изображения является анаморфической линзовой системой. В показанном примере осуществления настоящего изобретения линзовая система 22 предпочтительно включает в себя цилиндрическую линзу 38 и линзу 40 Френеля. Комбинация цилиндрической линзы 38 и линзы 40 Френеля имеет плоскость изображения, в которой расположен детектор, и объектную плоскость, коллинеарную с длинным размером освещающего светового пучка 36 в формы линии на внешней поверхности боковой стенки контейнера 12. Как показано на Фиг.5, падающий пучок 36 пересекает внешнюю поверхность боковой стенки контейнера 12, при этом часть 42 отражается от внешней поверхности боковой стенки, а часть 44 преломляется в боковую стенку контейнера, отражается от внутренней поверхности боковой стенки контейнера и вновь выходит с внешней поверхности боковой стенки контейнера. Анаморфическая линзовая система 22 функционирует так, чтобы направлять на детектор 24 излучение 42, 44, отраженное от участков внутренней и внешней поверхности боковой стенки контейнера, которое по существу параллельно оси 46 (ФИГ.4) анаморфической линзовой системы 22. Установленная по-другому анаморфическая линзовая система 22 функционирует так, чтобы направлять на детектор 24 части отраженного светового излучения 42, 44, которые отражены в плоскостях, по существу перпендикулярных оси 46 линзовой системы. Термины «по существу параллельный» и «по существу перпендикулярный» относятся к частям отражающей поверхности или отраженному световому излучению, которые находятся в пределах малого угла расхождения анаморфической линзовой системы такого, как угол в 1° в примере осуществления настоящего изобретения. Отраженное световое изучение 48 (Фиг.4), которое не попадает в этот малый угол расхождения линзовой системы 22, т.е. отражается не от участка поверхности, который по существу параллелен оси 46 линзовой системы, и отражается в плоскости, которая по существу перпендикулярна оси 46, направляется мимо фотодетектора 24. Другими словами, отраженное световое излучение должно быть отраженным от участков поверхности, которые по существу перпендикулярны лучам освещающего пучка 36, если смотреть с направления, параллельного оси 16, т.е. из направления на Фиг.3 и 4. Фотодетектор 24 предпочтительно представляет собой фотодетектор с линейной матрицей, в которой фотоэлементы расположены вдоль линии в плоскости, которая включает в себя ось 16 вращения. Фотодетектор 24 в альтернативном варианте может представлять собой фотодетектор с двумерной матрицей, в котором только часть используется для измерения толщины стенки. Ось 46 (Фиг.4) анаморфической линзовой системы предпочтительно перпендикулярна оси 16 вращения (Фиг.1).

Фиг.6А-6К иллюстрируют работу устройства 10. На Фиг.6А первое ребро 50 боковой стенки контейнера находится напротив фотодетектора 24, так что внутренняя и внешняя поверхности на ребре 50 по существу параллельны оси анаморфической линзовой системы 22 формирования изображения, и части 42, 44 светового излучения, отраженного от ребра 50, по существу перпендикулярны оси линзовой системы 22 и направлены на детектор 24. На Фиг.6В контейнер 12 повернулся в направлении 52, так что световое излучение 42, 44, отраженное от участков боковой стенки контейнера вблизи ребра 50, которые по существу параллельны оси линзовой системы 22, «подняли» линзовую систему 22. На Фиг.6С-6F отражения 42, 44 от участков боковой стенки контейнера, которые по существу параллельны оси линзовой системы 22, сначала «поднимают» линзовую систему (Фиг.6С), а затем «опускают» линзовую систему (Фиг.6D-6F) до тех пор, пока отражения от участков боковой стенки контейнера, которые по существу параллельны оси линзовой системы 22, не окажутся около средней точки боковой стенки контейнера, между ребром 50 (Фиг.6F) и следующим ребром 54 (Фиг.6G), в направлении 52 вращения контейнера. Между положением на Фиг.6F и положением на Фиг.6I отражения 42, 44 от участков боковой стенки контейнера, которые по существу параллельны оси линзовой системы формирования изображения, «опускают» длину пути линзовой системы, что означает, что части 42, 44 отраженного света, которые по существу перпендикулярны оси линзовой системы, «опускают» линзовую систему. Из положения на Фиг.6J до положения на Фиг.6К ребро 54 движется к положению, в котором оно находится напротив линзовой системы 22, так что Фиг.6К идентична Фиг.6А за исключением того, что ребро 50 боковой стенки на Фиг.6А сейчас заменено следующим ребром 54 боковой стенки на Фиг.6К. Этот процесс продолжается от Фиг.6К предпочтительно, по меньшей мере, для одного полного поворота контейнера. Таким образом, световое излучение 42, 44, отраженное от внутренней и внешней поверхностей боковой стенки контейнера в плоскостях по существу перпендикулярных оси линзовой системы, перемещается назад и вперед вдоль анаморфической линзовой системы 22 из-за неокруглости контейнера, который поворачивается. Информационный процессор 26 сканирует детектор 24 при увеличении поворота контейнера, что может представлять собой фиксированные по величине угла приращения угла поворота контейнера, фиксированные по времени приращения, когда контейнер вращается с постоянной скоростью и/или различные приращения по времени, когда контейнер ускоряется или замедляется, и формирует график толщины боковой стенки контейнера в виде зависимости от угла поворота контейнера.

Таким образом, были раскрыты способ и устройство для определения толщины боковой стенки прозрачного некруглого контейнера, которые полностью отвечают всем задачам и целям, предварительно изложенным. Настоящее изобретение представлено в соединении с примером осуществления и обсуждалось некоторое количества модификаций и вариаций. Другие вариации и модификации легко придут в голову среднему специалисту в данной области техники с учетом вышеизложенного рассмотрения. Например, хотя контейнер 12 в примере осуществления настоящего изобретения имеет закругленную «квадратную» геометрию боковой стенки, очевидно, что другие контейнеры с некруглой геометрией боковой стенки могут быть приспособлены, включая, например, трехгранные геометрические элементы, овальные геометрические элементы, конфигурации в форме фляги и т.п. Настоящее изобретение нацелено охватить все такие модификации и вариации, которые попадают в пределы сущности объема притязаний прилагаемой формулы изобретения.

1. Устройство для контроля толщины боковой стенки некруглого прозрачного контейнера, содержащее:
конвейер (14) для удерживания контейнера в устойчивом положении и вращения контейнера вокруг оси (16),
источник (18) света для направления светового излучения на боковую стенку контейнера на указанном конвейере,
фотодетектор (24), предназначенный для направления на него светового излучения (44, 42), отраженного от участков внутренней и внешней поверхностей боковой стенки контейнера, и
информационный процессор (26), реагирующий на указанный детектор для определения толщины боковой стенки при увеличении угла поворота контейнера, в виде функции от интервала на указанном детекторе между световым излучением, отраженным от внешней и внутренней поверхностей боковой стенки контейнера,
отличающееся тем, что
указанный источник (18) света выполнен с возможностью направлять на упомянутую боковую стенку контейнера световой пучок (36) в форме линии, имеющей протяженный размер в направлении, перпендикулярном указанной оси, и
устройство содержит анаморфическую линзовую систему (22), имеющую ось (46) линзовой системы, выполненную с возможностью направления на указанный детектор светового излучения (44, 42), отраженного от участков внутренней и внешней поверхностей боковой стенки контейнера, которые, по существу, параллельны указанной оси линзовой системы.

2. Устройство по п.1, отличающееся тем, что выполнено таким образом, что при его использовании указанное световое излучение, отраженное от указанных участков боковой стенки, перемещается назад и вперед вдоль указанной линзовой системы при вращении контейнера вследствие некруглой формы контейнера.

3. Способ контроля толщины боковой стенки некруглого контейнера, включающий этапы, на которых:
(а) удерживают контейнер в устойчивом положении во время вращения контейнера вокруг оси (16),
(б) направляют световой пучок (36) в форме линии на боковую стенку, причем указанный световой пучок имеет протяженный размер линии в направлении, перпендикулярном указанной оси,
(в) направляют на фотодетектор через анаморфическую линзовую систему (22) части (44, 42) указанного светового пучка, отраженные от внутренней и внешней поверхностей боковой стенки контейнера, которые, по существу, перпендикулярны световому излучению, направленному на боковую стенку контейнера, если смотреть с направления, параллельного указанной оси, и
(г) определяют толщину боковой стенки контейнера при увеличении угла поворота контейнера в виде функции от интервала между частями светового излучения на указанном детекторе, отраженными от внутренней и внешней поверхностей боковой стенки контейнера.



 

Похожие патенты:

Изобретение относится к технологии производства хлорной извести и может быть использовано в производстве стабильной хлорной извести и гипохлорита кальция. .

Изобретение относится к технологии разрушения гипохлорита натрия в водных растворах и может быть использовано для очистки промышленных сточных вод, содержащих гипохлорит натрия.
Изобретение относится к технологии получения солей хлорноватистой кислоты, в частности концентрированного водного раствора гипохлорита калия, и может найти применение в производстве обеззараживающих средств, используемых для обработки питьевой воды, очистки воды плавательных бассейнов, обеззараживания сточных вод, в медицине и других отраслях.

Изобретение относится к способам получения растворов гипохлорита щелочного или щелочно-земельного металла и может быть использовано в химической промышленности. .

Изобретение относится к химической технологии, в частности к способу получения водного раствора гипохлорита натрия. .

Изобретение относится к области получения отбеливающих и дезинфицирующих средств, в частности к способу получения двухосновной соли гипохлорита кальция. .
Изобретение относится к химической технологии, а именно к способам обезвреживания водного раствора гипохлорита, образующегося в процессе очистки технологических газов от хлора.

Изобретение относится к области получения неорганических соединений электролитическими способами и может быть использовано в лечебно-профилактических учреждениях, домах отдыха, санаториях, предприятиях общественного питания и коммунального хозяйства, школах, детских садах, плавательных бассейнах, станциях водоснабжения.
Изобретение относится к способам переработки растворов, содержащих гипохлорит кальция. .

Изобретение относится к технологии получения концентрированных водных растворов гипохлоритов щелочных металлов и может быть использовано для получения дезинфицирующих и обеззараживающих средств, используемых для обработки питьевой воды и т.

Изобретение относится к неорганической химии и может найти применение при дезинфекции и очистке воды, а также при отбеливании текстильных материалов, бумаги, при производстве чистящих, моющих и дезинфицирующих средств

Изобретение относится к области очистки сточных вод
Изобретение относится к технологии концентрирования слабых растворов гипохлоритов щелочных металлов из водных растворов и может быть использовано для обеззараживания сточных вод, отбеливания целлюлозы, бумаги и ткани, дезинфекционной обработки помещений животноводческих комплексов и др. Способ концентрирования слабого водного раствора электролитического гипохлорита натрия включает вымораживание раствора при температуре от -16° до -18°С и последующее размораживании в диапазоне температур от 20° до 65°С до получения раствора гипохлорита натрия с заданной концентрацией. Раствор электролитического гипохлорита натрия содержит хлорид натрия и гипохлорит натрия при массовом соотношении от 1,2:1 до 1,9:1. При этом образовавшийся после размораживания раствор гипохлорита натрия используют как солевой раствор для получения первичного раствора гипохлорита натрия. Изобретение обеспечивает безотходную технологию концентрирования водного раствора гипохлорита натрия при снижении расходы электроэнергии. 2 пр.

Изобретение может быть использовано в химической промышленности. Способ комплексной переработки природных рассолов хлоридного кальциево-магниевого типа включает получение кристаллогидрата хлорида кальция с примесью хлорида магния и обогащение рассола по литию с дальнейшей переработкой литиевого концентрата на соединения лития. Из рассола после операции обогащения по литию получают бром, оксид магния и хлор путем электролиза маточного рассола, обогащенного хлоридом натрия. Рассол после выделения лития и брома подвергают очистке от магния, упаривают до высаливания хлорида натрия и отделяют от кристаллов NaCl. Этот рассол или воду используют для растворения кристаллогидрата хлорида кальция с получением раствора, содержащего 400-450 кг/м3 хлорида кальция. Раствор хлорида кальция используют в обменной реакции с гипохлоритом натрия с получением гипохлорита кальция. Раствор хлорида кальция используют для получения бромида кальция путем перевода катионита КУ-2-8чс из H+- формы в Ca+- форму. Затем кальций десорбируют из катионита бромистоводородной кислотой, которую получают взаимодействием брома с водным раствором восстановителя, являющегося производным аммиака. Раствор хлорида кальция используют также для получения карбоната кальция. Изобретение позволяет получить из рассолов хлоридного кальциево-магниевого типа наряду с соединениями лития, бромом и оксидом магния гипохлорит кальция, бромид кальция и карбонат кальция при использовании реагентов, получаемых из того же рассола. 2 з.п. ф-лы, 3 ил., 10 пр.

Изобретение может быть использовано в химической промышленности. Для получения концентрированного раствора гипохлорита щелочного металла в нижнюю часть вертикального резервуара вводят хлор и раствор гидроксида щелочного металла. В верхней части резервуара отбирают раствор гипохлорита. При этом одна часть отбираемого раствора является продуктовым концентрированным раствором гипохлорита, a вторую часть возвращают в нижнюю часть резервуара. Нижняя часть резервуара имеет сечение меньше, чем сечение его верхней части. Кристаллы хлорида щелочного металла спускают вблизи нижнего конца нижней части резервуара. Рецикл и введение реагентов подбирают таким образом, чтобы кристаллы хлорида щелочного металла были, по существу, псевдоожижены в нижней части резервуара. Изобретение позволяет получить концентрированные растворы гипохлорита щелочного металла с низким содержанием хлоратов. 6 з.п. ф-лы, 1 ил., 4 пр.

Изобретение относится к химической технологии, а именно к способу очистки промышленных сточных вод от гипохлорит-ионов, образующихся в процессе хлорирования гидрооксидов лития, натрия, кальция. Способ каталитического разложения гипохлорит-иона включает контактирование раствора, содержащего гипохлорит-ионы, с никельсодержащим катализатором в виде частиц, при температуре 32-67°C, с выделением газообразного кислорода. При этом в качестве никельсодержащего катализатора используют основной карбонат никеля, диспергированный на нанопористом композиционном углеродном материале, содержащем в качестве связующего фторопластовую суспензию при соотношении компонентов, мас. %: нанопористый композиционный углеродный материал 49-54, фторопластовая суспензия 5-9, основной карбонат никеля - остальное. Изобретение обеспечивает эффективную очистку от гипохлорит-ионов с высокой скоростью разложения и при более низких температурах. 1 табл., 6 пр.

Изобретение может быть использовано в химической промышленности при обезвреживании гипохлоритных пульп, образующихся в процессе очистки отходящих хлорсодержащих газов от хлора известковым молоком. Способ обезвреживания пульпы гипохлорита кальция включает термическое разложение гипохлорита кальция при перемешивании острым паром в присутствии нихромового катализатора, обработанного в баке травления раствором соляной кислоты. В отработанном растворе соляной кислоты, образующемся при обработке нихромового катализатора после его использования в процессе термического разложения гипохлорита кальция, определяют содержание активного хлора. При перемешивании отработанного раствора соляной кислоты постепенно добавляют раствор тиосульфата натрия. Количество раствора тиосульфата натрия в отработанном растворе соляной кислоты поддерживают в 5-15-кратном избытке от стехиометрически необходимого. Обезвреженный раствор сливают в сточные воды канализации. Изобретение позволяет снизить содержание токсичных веществ и активного хлора в сточных водах. 4 з.п. ф-лы, 1 пр.

Изобретение может быть использовано в химической промышленности. Способ получения гипохлорита кальция из пересыщенного природного поликомпонентного рассола хлоридного кальциево-магниевого типа включает выделение из рассола кристаллогидрата хлорида кальция и отделение маточного рассола, обогащенного литием и бромом. Проводят мембранный или диафрагменный электролиз водного раствора хлорида натрия для производства хлора и католита. Получают раствор гипохлорита натрия путем эжектирования анодного хлора потоком католита - раствором NaOH. Гипохлорит кальция получают обменной реакцией между гидроксидом кальция и гипохлоритом натрия. Полученный гипохлорит кальция отделяют от маточного раствора и сушат. Маточный раствор перерабатывают с возвратом NaCl в производство. Сначала природный пересыщенный поликомпонентный рассол охлаждают до 0…-1°С, получая твердую фазу кристаллогидрата CaCl2⋅6Н2О с примесью кристаллогидрата MgCl2⋅6H2O и жидкую фазу. Кристаллогидраты отделяют от жидкой фазы, нагревают в присутствии NaOH и перемешивают, отделяя CaCl2⋅6Н2О от твердой фазы MgCl2⋅6H2O и образовавшейся твердой фазы Mg(OH)2. Очищенный от магния CaCl2⋅6Н2О приводят в контакт с католитом. Образующуюся пульпу центрифугируют с получением кека в виде Са(ОН)2 и фугата в виде раствора NaCl, который после очистки от кальция возвращают на операцию мембранного электролиза для получения католита и хлора. Изобретение позволяет осуществить процесс получения гипохлорита кальция в непрерывном режиме, снизить энергоемкость процесса, сократить затраты греющего пара, повысить выход гипохлорита кальция. 2 з.п. ф-лы, 3 ил., 5 пр.
Наверх