Эмиссионный способ контроля скорости осаждения и состава покрытий, наносимых в вакууме

Изобретение относится к средствам наблюдения за процессом нанесения покрытий в вакууме и может быть использовано в приборостроении, электронной промышленности и машиностроении для контроля скорости осаждения и состава осажденных покрытий. В способе регистрируют эмиссионные спектры атомов парового потока, проходящего между анодом и катодом и пересекающего поток электронов низкой энергии. Электронный поток помещают в магнитное поле и регистрируют эмиссионные линии посредством ПЗС. Техническим результатом является увеличение интенсивности эмиссионных линий парового потока без увеличения тока накала катода, эмиссионного тока и энергии возбуждающих электронов, за счет чего повышается отношение уровня интенсивности эмиссионных линий к уровню шумов, создаваемых излучением нити катода. 2 ил.

 

Предлагаемое изобретение относится к средствам наблюдения за процессом нанесения покрытий в вакууме и может быть использовано в приборостроении, электронной промышленности и машиностроении для контроля скорости осаждения и состава осажденных покрытий.

Известен способ контроля скорости осаждения и анализа состава осажденных сплавов методом эмиссионной спектроскопии при возбуждении электронным ударом (ЭСВЭУ) (Lu С., Lightner M.J., Gogol С.A. Rate controlling and composition analysis of alloy deposition processes by electron impact emission spectroscopy (EIES) // J. Vac. Sci. Technol., 1977, Vol.14, №1, pp.103-107). Способ заключается в возбуждении потока пара испаряемого сплава пучком электронов низкой энергии и дальнейшей регистрации эмиссионных спектров возбужденных атомов парового потока. По величине интенсивности спектральных линий определяется плотность веществ в паровом потоке и рассчитывается скорость их осаждения.

Описанный способ возбуждения оптической эмиссии реализуется устройством (Chin-shun Lu, U.S. Patent 4036167 APPARATUS FOR MONITORING VACUUM DEPOSITION PROCESSES, filed Jan. 30, 1976), которое содержит накальный катод, анод, два фокусирующих электрода, отверстие в корпусе датчика для прохождения парового потока.

Недостатком данного способа контроля скорости осаждения является низкая эффективность взаимодействия возбуждающих электронов с атомами парового потока, выражающаяся в том, что электроны пересекают паровой поток по кратчайшей прямолинейной траектории, вследствие чего число возбуждаемых атомов минимально и отношение интенсивности регистрируемых эмиссионных спектров к уровню шумов, создаваемых нитью катода, имеет низкое значение.

Новшеством в предлагаемом изобретении является применение магнитного поля между анодом и катодом датчика, благодаря чему происходит изменение траектории пролета электронов с прямолинейной на спиралевидную. При этом происходит увеличение пути движения электронов и повышается количество столкновений электронов с атомами парового потока, вследствие чего возрастает оптическая эмиссия. Увеличение интенсивности эмиссионных линий парового потока происходит без увеличения тока накала катода, эмиссионного тока и энергии возбуждающих электронов, за счет чего повышается отношение интенсивности эмиссионных линий к уровню шумов, создаваемых излучением катода эмиссионного датчика.

Усовершенствование позволяет создавать автоматические системы управления технологическим процессом (АСУТП) осаждения покрытий в вакууме на основе миниспектрометров и линейных приборов с зарядовой связью (ПЗС). В то время как АСУТП на основе прототипа (Chin-shun Lu, U.S. Patent 4036167 APPARATUS FOR MONITORING VACUUM DEPOSITION PROCESSES, filed Jan.30, 1976) позволяют применять в своем составе только сканирующие монохроматоры, ввиду низкого уровня выходного эмиссионного сигнала, который слабо регистрируется ПЗС.

Техническим результатом предлагаемого решения является увеличение интенсивности эмиссионных линий парового потока без увеличения тока накала катода, эмиссионного тока и энергии возбуждающих электронов, за счет чего повышается отношение уровня интенсивности эмиссионных линий к уровню шумов, создаваемых излучением нити катода.

Технический результат достигается тем, что при способе контроля скорости осаждения и анализа состава осажденных сплавов методом эмиссионной спектроскопии, при котором регистрируют эмиссионные спектры атомов парового потока, возбуждаемых электронами низкой энергии, согласно изобретению электронный поток помещают в магнитное поле и регистрируют эмиссионные линии посредством ПЗС. При этом электроны в магнитном поле движутся по спиралевидным траекториям.

Изобретение поясняется чертежами: фиг.1 - устройство для осуществления способа (вид сверху), фиг.2 - устройство для осуществления способа (трехмерный вид).

Поток атомов испаряемого в вакуумной камере сплава проходит через окно 1 датчика 6. В камере датчика поток атомов пересекает поток электронов, движущихся по спиралевидным траекториям 4 в магнитном поле 5, создаваемым магнитом 3. Электроны движутся от катода 7 в сторону ускоряющей сетки 8. После пролета сквозь паровой поток электроны попадают на анод 2. Анод состоит из немагнитного металла и не ослабляет магнитное поле. В результате взаимодействия электронов и атомов парового потока возникает эмиссионное излучение 9, поступающее в телескопическую трубу 10 через окно 11, для дальнейшей регистрации приемниками излучения. Корпус датчика и ускоряющая сетка находятся под потенциалом земли. Потенциал катода - минус 200 В относительно ускоряющей сетки. При такой разности потенциалов электроны приобретают энергию порядка 200 эВ и способны возбуждать максимальную оптическую эмиссию в атомах большинства металлов.

Способ контроля скорости осаждения и анализа состава осажденных сплавов методом эмиссионной спектроскопии, при котором регистрируют эмиссионные спектры атомов парового потока, проходящего между анодом и катодом и пересекающего поток электронов низкой энергии, отличающийся тем, что электронный поток помещают в магнитное поле и регистрируют эмиссионные линии посредством ПЗС.



 

Похожие патенты:

Изобретение относится к измерительной технике, применяемой для измерения электрофизических параметров полупроводниковых материалов с использованием зондирующего электромагнитного излучения сверхвысокой частоты (СВЧ), и может быть применено для определения времени жизни неравновесных носителей заряда в полупроводниковых пластинах и слитках бесконтактным СВЧ методом.

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения концентрации смесей различных веществ, находящихся в резервуарах, например технологических емкостях, измерительных ячейках и т.п.

Изобретение относится к области электротехники, в частности к устройству для измерения физических свойств жидкости, и может быть использовано, например, в пищевой промышленности.

Изобретение относится к способам измерений и может быть использовано в сельском хозяйстве, мелиорации при составлении земельного кадастра и т.п. .

Изобретение относится к области дистанционного обнаружения скрытых объектов, в частности к способам обнаружения диэлектрических взрывчатых веществ, скрытых под одеждой на теле человека.

Изобретение относится к области измерительной техники и может быть использовано для определения объемного содержания нефти (или нефтепродуктов) и воды в потоке водонефтяных эмульсий в трубопроводе, в диапазоне от 0 до 100% по каждой компоненте при любой степени минерализации воды, а также для индикации границ раздела газонефтеводяной смеси в резервуарах.

Изобретение относится к области электротехники, в частности к дистанционному измерению диэлектрической проницаемости диэлектриков. .

Изобретение относится к области медицины, а именно к устройствам и способам для определения температурных изменений внутренних тканей биологического объекта, и может быть использовано для неинвазивного раннего выявления риска рака.

Изобретение относится к области фотоколориметрии и может быть использовано для измерения цветовых параметров поверхности твердых материалов, например металлов, пластмасс, стекла, бумаги и т.д.

Изобретение относится к области анализа волос. .

Изобретение относится к экспериментальной физике, в частности, к технике проведения оптических измерений температуры и состава веществ с высоким временным и пространственным разрешением.

Изобретение относится к инструментальным методам химического анализа и может быть использовано для обнаружения и определения вещества в исследуемых пробах по аналитическому сигналу с использованием цветовой шкалы.

Изобретение относится к окраске волос. .

Изобретение относится к средствам наблюдения за процессом нанесения покрытий в вакууме, а именно к способам определения скорости термического осаждения сплавов. .

Изобретение относится к спектральному анализу. .

Изобретение относится к способам и устройствам для анализа флюида с использованием скважинной архитектуры спектрометра в оценке и испытании подземной формации для целей разведки и разработки углеводорододобывающих скважин, таких как нефтяные и газовые скважины.

Изобретение относится к оптическому спектральному приборостроению. .

Изобретение относится к области оптических спектрометров, которые предназначены для контроля процесса омагничивания воды и водных растворов. .

Изобретение относится к области диагностики йодидов из зон окисленных руд
Наверх