Способ охлаждения металла при непрерывной разливке

Изобретение относится к области металлургии и может быть использовано для получения металлических изделий прямоугольного сечения. Способ охлаждения металла при непрерывной разливке включает заливку металла в кристаллизатор, вытягивание слитка из кристаллизатора с переменной скоростью, поддержание и направление слитка, вторичное охлаждение его водой или водовоздушной смесью, распыляемой в виде факелов форсунками. Удельный расход охладителя вдоль зоны вторичного охлаждения изменяют в зависимости от скорости вытягивания от максимального значения под кристаллизатором до минимального - в конце зоны. Зону вторичного охлаждения вдоль широких граней слитка разделяют на три участка, центральный и два периферийных. Подачу и отключение подачи охладителя на центральный и периферийные участки слитка производят с чередованием по времени. По второму варианту подачу и отключение подачи охладителя производят с чередованием по времени и с перекрытием по времени. Время отключения охладителя определяют по расчетным формулам в зависимости от длины жидкой фазы, толщины слитка, скорости разливки, марочного сортамента стали. Обеспечивается повышение качества слитков за счет снижения поверхностных трещин. 2 н.п. ф-лы, 5 ил., 2 пр.

 

Изобретение относится к области металлургии и может быть использовано при непрерывной разливке металлов, в частности для получения металлических изделий прямоугольного сечения.

Известен способ получения литых металлических изделий, включающий расплавление, гомогенизацию, разливку в форму или кристаллизатор и охлаждение жидкого металла, при этом охлаждение жидкого металла в температурных интервалах фазовых превращений осуществляют прерывисто с чередованием периодов интенсивного теплоотвода и подогрева с числом чередований не менее двух. Интенсивный теплоотвод осуществляют с температурными градиентами, переменными во времени, и/или по сечению изделия, и/или по его длине. Чередование периодов интенсивного теплоотвода и подогрева осуществляют под кристаллизатором установки непрерывной разливки металла [RU 2101129, опубл. 10.01.1998].

Наиболее близким к предлагаемому способу по технической сущности и достигаемому результату является способ охлаждения металла при непрерывной разливке, включающий заливку его в кристаллизатор, вытягивание слитка из кристаллизатора с переменной скоростью, поддержание и направление слитка, вторичное охлаждение его водой или водовоздушной смесью, распыляемой в виде факелов форсунками, изменение удельных расходов охладителя вдоль зоны вторичного охлаждения в зависимости от скорости вытягивания от максимального значения под кристаллизатором до минимального в конце зоны, регулирование интенсивности охлаждения широких граней слитка путем циклической подачи охладителя [SU 789217 А, 23.12.1980].

Недостатком вышеуказанных способов является большая неравномерность охлаждения центральных и периферийных участков поверхности слитка, в особенности широких граней слитков прямоугольного сечения. В результате неравномерного распределения температуры по периметру слитка в нем возникают значительные термические напряжения, приводящие к образованию ребровых и поперечных трещин по широким граням слитка и к отбраковке слитков по наружным трещинам.

Задачей изобретения является повышение качества непрерывнолитых слитков за счет снижения поверхностных дефектов, в частности трещин.

Указанная задача решается тем, что в способе охлаждения металла при непрерывной разливке, включающем заливку его в кристаллизатор, вытягивание слитка из кристаллизатора с переменной скоростью, поддержание и направление слитка, вторичное охлаждение его водой или водовоздушной смесью, распыляемой в виде факелов форсунками, изменение удельных расходов охладителя вдоль зоны вторичного охлаждения в зависимости от скорости вытягивания слитка от максимального значения под кристаллизатором до минимального в конце зоны, регулирование интенсивности охлаждения широких граней слитка путем циклической подачи охладителя, согласно изобретению зону вторичного охлаждения вдоль широких граней слитка разделяют на три участка, центральный и два периферийных, и производят подачу и отключение подачи охладителя на центральный и периферийные участки слитка с чередованием по времени, при этом время отключения подачи охладителя на периферийные участки τ1 определяют по зависимости

τ1=(L·K1)/(V·100), мин,

а время отключения подачи охладителя на центральный участок τ2 определяют по зависимости

τ2=(L·K2)/(V·100), мин, где

L - длина жидкой фазы, м, определяемая по зависимости

L=(H2·V)/4·К32,

Н - толщина разливаемого слитка, мм;

V - скорость разливки металла, м/мин;

K1 - коэффициент, учитывающий марочный сортамент разливаемой стали, устанавливаемый в пределах от 1 до 8;

K2 - коэффициент, учитывающий время отключения периферийных участков, устанавливаемый в пределах от 1 до 8, в зависимости от марочного состава разливаемой стали;

К3 - коэффициент затвердевания стали, мм·мин-0,5 (вариант 1).

В способе охлаждения металла при непрерывной разливке, включающем заливку его в кристаллизатор, вытягивание слитка из кристаллизатора с переменной скоростью, поддержание и направление слитка, вторичное охлаждение его водой или водовоздушной смесью, распыляемой в виде факелов форсунками, изменение удельных расходов охладителя вдоль зоны вторичного охлаждения в зависимости от скорости вытягивания слитка от максимального значения под кристаллизатором до минимального в конце зоны, регулирование интенсивности охлаждения широких граней слитка путем циклической подачи охладителя, согласно изобретению зону вторичного охлаждения вдоль широких граней слитка разделяют на три участка, центральный и два периферийных, а подачу или отключение подачи охладителя на центральный или периферийные участки охлаждения производят с чередованием по времени и с перекрытием во времени τ3, при этом время отключения подачи охладителя на периферийные участки τ1 определяют по зависимости

τ1=(L·K1)/(V·100), мин,

время отключения подачи охладителя на центральный участок τ2 определяют по зависимости

τ2=(L·K2)/(V·100), мин, где

L - длина жидкой фазы, м, определяемая по зависимости

L=(Н2·V)/4·K32,

H - толщина разливаемого слитка, мм;

V - скорость разливки металла, м/мин;

K1 - коэффициент, учитывающий марочный сортамент разливаемой стали, устанавливаемый в пределах от 1 до 8;

K2 - коэффициент, учитывающий время отключения периферийных участков, устанавливаемый в пределах от 1 до 8, в зависимости от марочного состава разливаемой стали;

К3 - коэффициент затвердевания стали, мм·мин-0,5,

а время перекрытия подачи и отключения охладителя составляет

τ31/5 (вариант 2).

Коэффициент K1, учитывающий марочный сортамент разливаемой стали, устанавливают в пределах от 1 до 8. С увеличением углеродного эквивалента, учитывающего содержание С и легирующих элементов в марке стали, его значение снижается. Коэффициент К2, учитывающий время отключения периферийных участков, устанавливают в пределах от 1 до 8. С увеличением углеродного эквивалента, учитывающего содержание С и легирующих элементов в марке стали, его значение увеличивается. Значения коэффициента затвердевания стали К3, мм·мин-0,5, приведены в издании Еланский Г.Н. Разливка и кристаллизация стали. М.: МГВМИ, 2010. - 192 с.; Куклев А.В., Лейтес А.В. Практика непрерывной разливки стали. М.: Металлургиздат, 2011. - 432 с.

Способ осуществляют следующим образом.

Пример 1

В процессе непрерывной разливки в кристаллизатор заливают низколегированную трубную сталь марки 17Г1СУ и вытягивают слиток сечением 250×1600 мм со скоростью 0,9 м/мин. В зоне вторичного охлаждения непрерывнолитой слиток поддерживают и направляют при помощи роликов и охлаждают охладителем (водовоздушной смесью или водой), распыливаемым форсунками, сгруппированными в 8 зон вторичного охлаждения со следующими удельными расходами охладителя по зонам: 15,0; 14,5; 11,3; 10,8; 8,0; 4,0; 3,0; 2,5 м3/ч соответственно, изменяя их от максимальной величины под кристаллизатором до минимальной величины в конце охлаждения. Все секции по широким граням слитка в зонах №3-8 имеют три участка с раздельным регулированием охладителя: центральный и два периферийных, обеспечивающих циклический режим подачи охладителя. Чередование по времени циклов подачи и отключения охладителя на центральный и периферийный участки слитка осуществляют в зонах №3-8 вторичного охлаждения.

τ1=(L·K1)/(V·100),

τ2=(L·K2)/(V·100),

L=(H2·V)/4·K32, м - длина жидкой фазы.

При этом τ1=(Н2·К1)/(400·K32), τ2=(Н2·К2)/(400·К32), а период чередования подачи и отключения охладителя Т=τ12.

K1=4, K2=3, К3=25.

Таким образом:

τ1=(Н2·К1)/(400·K32)=(2502·4)/(400·252)=1 мин,

τ2=(Н2·К2)/(400·K32)=(2502·3)/(400·252)=0,75 мин,

τ1=60 с, τ2=45 с.

График включения и отключения подачи охладителя на центральный и периферийные участки с чередованием приведен на фиг.1. Схематично работа системы вторичного охлаждения (на примере одной секции) по широким граням заготовки приведена на фиг.2 и 3.

Пример 2

В процессе непрерывной разливки в кристаллизатор заливают сталь марки 20ПС и вытягивают слиток сечением 250×1600 мм со скоростью 1 м/мин. В зоне вторичного охлаждения непрерывнолитой слиток поддерживают и направляют при помощи роликов и охлаждают охладителем (водовоздушной смесью или водой), распыливаемым форсунками, сгруппированными в 8 зон вторичного охлаждения со следующими удельными расходами охладителя по зонам: 17,0; 15,5; 13,3; 11,8; 9,0; 5,0; 4,0; 3,0 м3/ч соответственно, изменяя их от максимальной величины под кристаллизатором до минимальной величины в конце охлаждения. Все секции по широким граням слитка в зонах №3-8 имеют три участка с раздельным регулированием охладителя: центральный и два периферийных, обеспечивающих циклический режим подачи охладителя. Чередование по времени циклов подачи и отключения охладителя на центральный и периферийный участки слитка осуществляют в зонах №3-8 вторичного охлаждения с перекрытием во времени. При этом время перекрытия τ3 составляет 1/5 от времени τ1.

При этом τ1=(Н2·К1)/(400·K32); τ2=(Н2·К2)/(400·K32), τ31/5.

K1=4, K2=3, К3=25.

Таким образом: τ1=60 с, τ2=45 с, τ3=12 с.

График включения и отключения подачи охладителя на центральный и периферийные участки с перекрытием во времени приведен на фиг.4. Схематично работа системы вторичного охлаждения с перекрытием во времени (на примере одной секции) по широким граням заготовки приведена на фиг.5.

Применение предлагаемого способа позволит снизить местный перегрев и переохлаждение участков поверхности слитка, особенно по широким граням заготовки, и обеспечить равномерную температуру по длине и по периметру слитка. Это позволит уменьшить термические напряжения, возникающие в оболочке слитка, а также снизить количество ребровых трещин и процент отсортировки проката по ним.

1. Способ охлаждения металла при непрерывной разливке, включающий заливку его в кристаллизатор, вытягивание слитка из кристаллизатора с переменной скоростью, поддержание и направление слитка, вторичное охлаждение его водой или водовоздушной смесью, распыляемой в виде факелов форсунками, изменение удельных расходов охладителя вдоль зоны вторичного охлаждения в зависимости от скорости вытягивания слитка от максимального значения под кристаллизатором до минимального в конце зоны, регулирование интенсивности охлаждения широких граней слитка путем циклической подачи охладителя, отличающийся тем, что зону вторичного охлаждения вдоль широких граней слитка разделяют на три участка: центральный и два периферийных и производят подачу и отключение охладителя на центральный и периферийные участки слитка с чередованием по времени, при этом время отключения подачи охладителя на периферийные участки τ1 определяют по зависимости
τ1=(L·K1)/(V·100), мин,
а время отключения подачи охладителя на центральный участок τ2, определяют по зависимости
τ2=(L·K2)/(V·100), мин,
где L - длина жидкой фазы, м,
определяемая по зависимости
L=(H2·V)/4·K32,
Н - толщина разливаемой заготовки мм,
V - скорость разливки металла, м/мин;
К1 - коэффициент, учитывающий марочный сортамент разливаемой стали, устанавливаемый в пределах от 1 до 8;
К2 - коэффициент, учитывающий время отключения периферийных участков, устанавливаемый в пределах от 1 до 8, в зависимости от марочного сортамента разливаемой стали;
К3 - коэффициент затвердевания стали, мм·мин-0,5.

2. Способ охлаждения металла при непрерывной разливке, включающий заливку его в кристаллизатор, вытягивание слитка из кристаллизатора с переменной скоростью, поддержание и направление слитка, вторичное охлаждение его водой или водовоздушной смесью, распыляемой в виде факелов форсунками, изменение удельных расходов охладителя вдоль зоны вторичного охлаждения в зависимости от скорости вытягивания слитка от максимального значения под кристаллизатором до минимального в конце зоны, регулирование интенсивности охлаждения широких граней слитка путем циклической подачи охладителя, отличающийся тем, что зону вторичного охлаждения вдоль широких граней слитка разделяют на три участка: центральный и два периферийных, а подачу или отключение охладителя на центральный или периферийные участки охлаждения производят с чередованием по времени и с перекрытием по времени τ3, при этом время отключения подачи охладителя на периферийные участки τ1 определяют по зависимости
τ1=(L·K1)/(V·100), мин,
а время отключения подачи охладителя на центральный участок τ2 определяют по зависимости
τ2=(L·K2)/(V·100), мин,
где L - длина жидкой фазы, м, определяемая по зависимости
L=(H2·V)/4·K32,
Н - толщина разливаемой заготовки, мм,
V - скорость разливки металла, м/мин;
K1 - коэффициент, учитывающий марочный сортамент разливаемой стали, устанавливаемый в пределах от 1 до 8;
К2 - коэффициент, учитывающий время отключения периферийных участков, устанавливаемый в пределах от 1 до 8, в зависимости от марочного сортамента разливаемой стали;
К3 - коэффициент затвердевания стали, мм·мин-0,5, а время перекрытия подачи и отключения охладителя составляет τ31/5.



 

Похожие патенты:
Изобретение относится к области металлургии. .

Изобретение относится к металлургии, в частности к непрерывной разливке металлов. .

Изобретение относится к металлургии, в частности к непрерывной разливке металлов. .

Изобретение относится к металлургии. .

Изобретение относится к металлургии. .

Изобретение относится к области литейного производства. .

Изобретение относится к черной металлургии, конкретнее к непрерывной разливке стали

Изобретение относится к области металлургии, в частности к получению листа из электротехнической стали с ориентированной зеренной структурой

Группа изобретений относится к способам утилизации энергии в установках для производства заготовки из стали или цветных металлов и установкам для реализации способа. В способе высвобождающуюся при охлаждении, транспортировке или складировании заготовок тепловую энергию и остаточное тепло заготовок улавливают посредством теплообменников, при этом тепло отбирают в теплонесущую среду для ее нагрева. Затем тепло через трубопроводы для транспортировки теплонесущей среды отводят к установке для генерирования электрического тока и/или к другим потребителям тепла для непосредственного использования тепла технологического процесса. Транспортировку теплонесущей среды от теплообменников к установке для генерирования электрического тока осуществляют в трубопроводах для транспортировки теплонесущей среды под давлением посредством насоса, при этом в качестве теплонесущей среды используют минеральное или синтетическое масло-теплоноситель или соляной расплав, не создающие давления пара свыше 2 бар. Технический результат заключается в повышении эффективности использования утилизированной энергии при одновременном упрощении способа утилизации и установки. 2 н. и 12 з.и. ф-лы, 21 ил.

Изобретение относится к металлургии, в частности к непрерывной разливке металлов. Способ вторичного охлаждения непрерывнолитой круглой заготовки включает подачу охлаждающей воды на поверхность заготовки посредством конусных форсунок 1 с одинаковыми углами факелов. Форсунки устанавливают вокруг заготовки на одинаковом расстоянии от ее поверхности, которое составляет 1,0-1,5 R, где R - радиус заготовки, и равно не менее 80 мм. Угол установки форсунок вокруг заготовки равен углу их факела. Обеспечивается равномерное охлаждение заготовки круглого сечения по периметру и длине, исключается формирование термических напряжений, приводящих к возникновению поверхностных дефектов, улучшается макроструктура металла. 1 табл., 3 ил.

Изобретение относится к металлургии. В способе предусмотрено удаление охлаждающей воды, стекающей во внутренний изгиб ручья криволинейной установки непрерывного литья. Охлаждающая вода выталкивается из внутреннего изгиба ручья (3) чернового профиля посредством импульса, придаваемого путем подачи отводящей воды через водоструйные сопла (21, 22). Сопла направлены к области перехода от стенки (4) к соответствующему фланцу (5, 6). Поток охлаждающей воды отводится по фланцам и собирается и отводится вместе с отводящей водой посредством собирающего устройства. Обеспечивается устранение чрезмерного охлаждения, вызываемого текущей вниз охлаждающей водой, во внутреннем изгибе ручья чернового профиля. 2 н. и 9 з.п. ф-лы, 3 ил.

Изобретение относится к металлургии. Способ включает разливку металла 142 в кристаллизатор 145, охлаждение металла в кристаллизаторе и охлаждение выходящего из кристаллизатора затвердевающего слитка 151 посредством подачи охладителя 144 по периметру слитка. Расход охладителя регулируют путем удаления с поверхности слитка излишней охлаждающей жидкости посредством протира 159. Протир устанавливают ниже затравочного блока 121 в период пуска, затем быстро перемещают в положение вблизи кристаллизатора во время переходной стадии нагрева слитка. Во время второй переходной стадии нагрева перемещают протир от кристаллизатора в положение, в котором сердцевина слитка полностью затвердевает. Обеспечивается снятие усадочных напряжений слитка за счет сохранения высокой температуры сердцевины затвердевающего слитка. 2 н. и 4 з.п. ф-лы, 10 ил.

Изобретение относится к непрерывному литью слябов. Устройство (1) для перестановки распылительных форсунок содержит устройство (6) перемещения, включающее исполнительный механизм с корпусом (21) привода и поршнем (5), и держатель (4) распылительных форсунок, соединенный с поршнем (5). Для направления охлаждающего средства к держателю (4) распылительных форсунок используют по меньшей мере одну телескопическую трубу (7a, 7b), состоящую из по меньшей мере одной подвижной трубы (30) и неподвижной трубы (29), соединенной с корпусом (21) привода без относительного вращения. Продольные оси (8) поршня (5) исполнительного механизма и телескопической трубы (7a, 7b) параллельны. Обеспечивается техническая безопасность и компактность устройства. 2 н. и 11 з.п. ф-лы, 8 ил.

Изобретение относится к сегменту установки непрерывной разливки, снабженной охлаждающим аппаратом. Охлаждающий аппарат содержит приводной модуль, обеспечивающий вращательное усилие, распыляющие хладагент модули, расположенные соответственным образом с обеих сторон приводного модуля и имеющие по меньшей мере одну форсунку для распыления хладагента, и перемещающие модули, расположенные соответствующим образом между приводным модулем и распыляющими хладагент модулями для симметричного перемещения распыляющих хладагент модулей и эффективного охлаждения ручьев в соответствии с изменением ширины ручьев во время непрерывной разливки. Обеспечивается уменьшение размеров оборудования, повышается простота эксплуатации и производительность. 6 з.п. ф-лы, 7 ил.
Наверх