Мобильный робот

Изобретение относится к робототехнике и может найти применение в качестве мобильного робота и самодвижущейся транспортной тележки для использования в цехах промышленных предприятий. Мобильный робот содержит платформу, три колеса, три колесных вала со смонтированными на них колесами, установленные на платформе три колесные вилки, два электродвигателя, датчик угла поворота первого колеса, датчик скорости вращения первого колеса, источник питания и бортовую вычислительную сеть. Колесный вал первого колеса кинематически связан с выходным валом первого электродвигателя, датчиком угла поворота первого колеса и датчиком скорости вращения первого колеса, а оси колесных валов первого и второго колес лежат на одной прямой. В него дополнительно введены датчик угла поворота второго колеса и датчик скорости вращения второго колеса, кинематически связанные с колесным валом второго колеса, кинематически связанным с выходным валом второго электродвигателя. В качестве колесной вилки третьего колеса используют вилку «рояльного» типа. При этом бортовая вычислительная сеть выполнена с возможностью сбора и обработки данных с датчиков угла поворота и датчиков скорости вращения первого и второго колеса и формирования и передачи управляющих сигналов на электродвигатели первого и второго колеса. Предлагаемое изобретение направлено на повышение маневренности мобильного робота. 4 ил.

 

Изобретение относится к робототехнике и может найти применение в качестве мобильного робота и самодвижущейся транспортной тележки для использования в цехах промышленных предприятий.

Известен мобильный робот, содержащий платформу со смонтированными на ней колесами, датчики параметров движения и бортовой компьютер (патент RU №2303240, 2006 г.).

Недостатком является то, что данный мобильный робот обладает ограниченной маневренностью.

Наиболее близким к предлагаемому изобретению является мобильный робот, содержащий платформу, три колеса, три колесных вала со смонтированными на них колесами, установленные на платформе три колесные вилки, два электродвигателя, датчик угла поворота первого колеса, датчик скорости вращения первого колеса, источник питания и бортовую вычислительную сеть, при этом колесный вал первого колеса кинематически связан с выходным валом первого электродвигателя, датчиком угла поворота первого колеса и датчиком скорости вращения первого колеса, а оси колесных валов первого и второго колес лежат на одной прямой (патент RU №2130618, 1994 г.).

Недостатком прототипа является то, что конструктивные особенности дачного мобильного робота не позволяют ему разворачиваться на месте и осуществлять движение в произвольном направлении без его предварительной ориентации, что ограничивает его маневренность в целом.

Заявленное изобретение направлено на повышение маневренности мобильного робота.

Указанный результат достигается тем, что в известный мобильный робот, содержащий платформу, три колеса, три колесных вала со смонтированными на них колесами, установленные на платформе три колесные вилки, два электродвигателя, датчик угла поворота первого колеса, датчик скорости вращения первого колеса, источник питания и бортовую вычислительную сеть, при этом колесный вал первого колеса кинематически связан с выходным валом первого электродвигателя, датчиком угла поворота первого колеса и датчиком скорости вращения первого колеса, а оси колесных валов первого и второго колес лежат на одной прямой, дополнительно введены датчик угла поворота второго колеса и датчик скорости вращения второго колеса, кинематически связанные с колесным валом второго колеса, кинематически связанным с выходным валом второго электродвигателя, в качестве колесной вилки третьего колеса используют вилку «рояльного» типа, при этом бортовая вычислительная сеть выполнена с возможностью сбора и обработки данных с датчиков угла поворота и датчиков скорости вращения первого и второго колеса и формирования и передачи управляющих сигналов на электродвигатели первого и второго колеса.

Обоснование существенности отличительных признаков.

Сущность изобретения поясняется чертежами фиг.1-4.

На фиг.1 изображен внешний вид мобильного робота.

На фиг.2 изображен внешний вид платформы мобильного робота с установленными на ней элементами (вид снизу).

На фиг.3 приведена кинематическая схема мобильного робота, а на фиг.4 - функциональная схема бортовой вычислительной сети мобильного робота с подключенными к ней элементами.

На фиг.1-4 обозначены: 1 - платформа; 2, 3 и 4 - первое, второе и третье колесо соответственно; 5, 6 и 7 - колесные валы первого, второго и третьего колеса соответственно; 8, 9 и 10 - колесные вилки первого, второго и третьего колеса соответственно; 11 и 12 - электродвигатели первого и второго колеса соответственно; 13 - датчик угла поворота первого колеса; 14 - датчик скорости вращения первого колеса; 15 - источник питания; 16 - бортовая вычислительная сеть; 17 - выходной вал первого электродвигателя; 18 и 19 - оси колесных валов первого и второго колеса соответственно; 20 - датчик угла поворота второго колеса; 21 - датчик скорости вращения второго колеса; 22 - выходной вал второго электродвигателя; 23 - головной контроллер; 24 и 25 - контроллер управления первым 11 и вторым 12 электродвигателем соответственно.

Мобильный робот содержит платформу 1, три колеса 2, 3 и 4, три колесных вала 5, 6 и 7 со смонтированными на них колесами 2, 3 и 4, установленные на платформе 1 три колесные вилки 8, 9 и 10, два электродвигателя 11 и 12, датчик 13 угла поворота первого колеса 2, датчик 14 скорости вращения первого колеса 2, источник питания 15 и бортовую вычислительную сеть 16, при этом колесный вал 5 первого колеса 2 кинематически связан с выходным валом 17 первого электродвигателя 11, датчиком 13 угла поворота первого колеса и датчиком 14 скорости вращения первого колеса 2, а оси 18 и 19 колесных валов 5 и 6 первого 2 и второго 3 колес лежат на одной прямой. Кроме того, робокар содержит датчик 20 угла поворота второго колеса 3 и датчик 21 скорости вращения второго колеса 3, кинематически связанные с колесным валом 6 второго колеса 3, кинематически связанным с выходным валом 22 второго электродвигателя 12, в качестве колесной вилки 10 третьего колеса 4 используют вилку «рояльного» типа, а бортовая вычислительная сеть 16 выполнена с возможностью сбора и обработки данных с датчиков 13 и 20 угла поворота и датчиков 14 и 21 скорости вращения первого и второго колеса 2 и 3 и формирования и передачи управляющих сигналов на электродвигатели 11 и 12 первого и второго колеса 2 и 3.

Мобильный робот функционирует следующим образом.

Головной контроллер 23 задает сигналы требуемых углов поворота и скоростей вращения колес 2 и 3. Эти сигналы преобразуются контроллерами 24 и 25 управления электродвигателями 11 и 12 в управляющие сигналы электродвигателей 11 и 12 соответственно.

Текущие значения углов поворота колес 2 и 3 измеряются датчиками 13 и 20 углов поворота колес 2 и 3 и передаются в контроллеры 24 и 25, где сравниваются с требуемыми значениями. Аналогично, текущие значения скоростей вращения колес 2 и 3 измеряются датчиками скорости вращения 14 и 21 и передаются в контроллеры 24 и 25, где сравниваются с заданными значениями скоростей.

На основании рассогласования между заданными и текущими значениями углов поворота и скоростей вращения электродвигателей 11 и 12 контроллерами 24 и 25 формируются управляющие сигналы, которые передаются на электродвигатели 11 и 12 первого и второго колеса 2 и 3.

Таким образом, благодаря введению в состав мобильного робота датчика 20 угла поворота второго колеса 3 и датчика 21 скорости вращения второго колеса 3, кинематически связанных с колесным валом 6 второго колеса 3, кинематически связанным с выходным валом 22 второго электродвигателя 12, использованию в качестве колесной вилки 10 третьего колеса 4 вилки «рояльного» типа и выполнению бортовой вычислительной сети 16 с возможностью сбора и обработки данных с датчиков 13 и 20 угла поворота и датчиков 14 и 21 скорости вращения первого и второго колеса 2 и 3 и формирования и передачи управляющих сигналов на электродвигатели 11 и 12 первого и второго колеса 2 и 3 удается обеспечить мобильному роботу расширенные кинематические возможности по сравнению с мобильным роботом, выбранным в качестве прототипа.

А все это в целом повышает маневренность мобильного робота.

Проведенные заявителем патентные исследования показали, что аналогов приведенным существенным отличиям нет.

Мобильный робот, содержащий платформу, три колеса, три колесных вала со смонтированными на них колесами, установленные на платформе три колесные вилки, два электродвигателя, датчик угла поворота первого колеса, датчик скорости вращения первого колеса, источник питания и бортовую вычислительную сеть, при этом колесный вал первого колеса кинематически связан с выходным валом первого электродвигателя, датчиком угла поворота первого колеса и датчиком скорости вращения первого колеса, а оси колесных валов первого и второго колес лежат на одной прямой, отличающийся тем, что в него дополнительно введены датчик угла поворота второго колеса и датчик скорости вращения второго колеса, кинематически связанные с колесным валом второго колеса, кинематически связанным с выходным валом второго электродвигателя, в качестве колесной вилки третьего колеса используют вилку «рояльного» типа, при этом бортовая вычислительная сеть выполнена с возможностью сбора и обработки данных с датчиков угла поворота и датчиков скорости вращения первого и второго колес и формирования и передачи управляющих сигналов на электродвигатели первого и второго колес.



 

Похожие патенты:

Изобретение относится к лесозаготовительным машинам, а именно к манипуляторам. .

Изобретение относится к устройствам для перемещения деталей на автомобильном конвейере. .

Изобретение относится к области робототехники и может быть использовано для автономного управления машинами специального назначения в условиях естественной среды.

Изобретение относится к робототехнике, в частности транспортным роботам, и может быть использовано в качестве мобильного робота или самодвижущейся транспортной тележки.

Изобретение относится к манипуляторам, в частности, для поочередного подъема уложенных в штабель листов, перемещения их и укладки на станок для дальнейшей обработки.
Изобретение относится к роботостроению и предназначено для обезвреживания боеприпасов, главным образом минных полей, и для диверсионной и разведывательной деятельности.

Изобретение относится к области строительства, в частности, мостов и путепроводов. .

Изобретение относится к манипуляционной системе согласно ограничительной части п.1 формулы изобретения, применению манипуляционной системы согласно п.15 формулы изобретения, а также к системе металлообрабатывающих станков согласно ограничительной части п.16 формулы изобретения.

Изобретение относится к способам очистки внутренних полостей систем вентиляции и кондиционирования воздуха, в частности, пассажирских вагонов железнодорожного подвижного состава гранулами диоксида углерода (сухого льда).

Изобретение относится к робототехнике

Изобретение относится к робототехнике

Изобретение относится к области устройств для перемещения плоских объектов

Изобретение относится к лабораторной системе, имеющей устройство транспортировки для образцов, по меньшей мере одно устройство обработки для приготовления, анализа и/или процессинга образцов, по меньшей мере одно подвижное устройство манипулирования для манипулирования образцами в зоне действия устройства обработки и систему слежения, которая перемещается вместе с устройством манипулирования для поддержания безопасной дистанции

Изобретение относится к робототехнике и может быть использовано в роботах, предназначенных для ликвидации чрезвычайных ситуаций, например, для обнаружения и уничтожения взрывоопасных устройств
В способе перед началом выполнения работ устанавливают значения параметров для управления машиной. Далее оператор указывает направление на объект с одновременным измерением, по меньшей мере, одного угла направления на объект относительно базового направления, с последующим автоматизированным управлением движениями машины и/или ее подвижных частей. Предложенный способ позволит снизить трудозатраты при работе на машинах, имеющих рабочий орган, и повысить производительность путем более рационального осуществления технологических операций машиной. 24 з.п. ф-лы.

Изобретение относится к машиностроению, в частности к области обработки металлов давлением, и может быть использовано при производстве протяженных изделий, в частности при производстве проволоки в волочильных цехах, при формировании их в мотки с помощью роботизированных информационно-технологических модулей и может быть использовано в проволочном, кабельном производствах, при производстве волоконно-оптических световодов и т.д. Роботизированный информационно-технологический модуль содержит волочильные станы с хоботами-дозаторами, устройство транспортирования мотков проволоки, устройство хранения готовой продукции, робот, выполненный с возможностью приема из волочильного стана мотков проволоки, уплотнения в моток с одновременным перемещением их к устройству хранения готовой продукции, и информационно-технологическую систему управления, содержащую арифметическое устройство, соединенное с пультом, дешифратор и устройство памяти, которое через дешифратор соединено с арифметическим устройством, что позволяет повысить производительность волочильных станов и качество готовой продукции. 1 з.п. ф-лы, 8 ил., 4 табл.

Изобретение относится к области металлургии и может быть использовано в линии штамповки изделий из твердожидких тиксозаготовок при производстве букс железнодорожных вагонов. На опорной раме закреплены направляющие балки, на которых с возможностью продольного перемещения установлена тележка. На тележке смонтирована кривошипно-шатунная пара с приводом от гидроцилиндра. С упомянутой кривошипно-шатунной парой соединен корпус, в котором размещены захваты. Захваты спрофилированы по форме стакана для тиксозаготовки и шарнирно сочленены с гидроцилиндром, закрепленным в корпусе. В результате обеспечивается непрерывность процесса штамповки тиксозаготовок в условиях массового производства и повышение качества готовых изделий за счет подачи в штамп заготовок с неповрежденной геометрической формой. 2 ил.
Наверх