Испытание пласта и пробоотборник с устройством взятия керна

Изобретение относится к испытаниям подземных формаций (пластов) и коллекторов и взятию из них образцов. Техническим результатом является повышение эффективности и качества получения образцов керна. Способ, при осуществлении которого доставляют зонд в скважину, пересекающую подземную формацию, изолируют кольцевую область вблизи зонда; откачивают флюид из кольцевой области; извлекают, по меньшей мере, один образец керна из подземной формации в этом кольцевом пространстве после того, как оно в основном заполнено пластовым флюидом; и функционально подсоединяют к устройству взятия керна электронный модуль для обеспечения выполнения, по меньшей мере, одного из действий, включающих подачу питания и передачу сигналов связи. 2 н. и 15 з.п. ф-лы, 6 ил.

 

Область техники, к которой относится изобретение

Изобретение относится к испытаниям подземных формаций (пластов) и коллекторов и взятию из них образцов. В частности, изобретение относится к способу и оборудованию для изоляции слоя в глубинном коллекторе, исследования породы-коллектора, анализа, отбора и хранения проб пластового флюида, взятия образцов кернов из формации и (или) сохранения образцов кернов в пластовом флюиде.

Предшествующий уровень техники

Углеводороды, такие как нефть и газ, часто находятся в пористых подземных геологических формациях. Часто для получения представительных образцов породы, взятых из стенки скважины, пересекающей интересующий пласт, предпочтительно использовать зонд отбора кернов. Образцы породы, полученные при взятии кернов из боковой стенки, в общем называют "образцами кернов". Анализ и изучение образцов кернов дает возможность промысловикам и геологам получить важные параметры формации, такие как емкость коллектора (пористость), фильтрационный потенциал (проницаемость) породы, составляющей формацию, состав извлекаемых углеводородов или минералов, накопленных в формации, и уровень неснижаемой водонасыщенности породы. Такие оценки являются определяющими при последующей разработке и реализации программы заканчивания скважины, так как позволяют разрабатывать отдельные пласты и зоны, определенные как экономически привлекательные на основе данных, полученных по отобранным образцам кернов.

Настоящее изобретение направлено на решение проблемы получения образцов кернов эффективным образом, дешевле и более высокого качества, чем доступное в настоящее время.

Краткое изложение сущности изобретения

В общем, в настоящем изобретении предложены системы, устройства и способы отбора образцов, таких как керны и пробы флюида, из интересующего пласта. В одном из вариантов выполнения изобретения пробоотборник (установка для отбора образца) для получения одного или более образцов из скважины, пробуренной в подземной формации, содержит устройство взятия кернов, извлекающее керн из стенки скважины с помощью коронкового долота. Кольцевая зона или область, соседняя с коронковым долотом, отделена с помощью скважинного изолирующего устройства, такого как надувные пакеры. В вариантах выполнения изобретения для размещения устройства взятия керна вблизи стенки скважины могут быть использованы лапы прижима к стенке. Взятие керна может быть произведено в условиях сбалансированных или ниже сбалансированных путем откачки флюида из изолированной зоны создающим направленный поток устройством, таким как всасывающий насос. Первоначально флюид, заполняющий изолированную зону, представляет собой скважинный флюид или флюид, содержащий нежелательные примеси. По мере откачки скважинного флюида изолированная зона заполняется чистым пластовым флюидом. В одном из вариантов выполнения производят формирование керна, извлечение керна и сохранение извлеченного керна исключительно в преимущественно чистом пластовом флюиде. Установка может также содержать один или более датчики, анализирующие флюид, отобранный из изолированной области.

Должно быть понятно, что вышеописанные варианты осуществления изобретения изложены достаточно обобщенно и будут более понятны из последующего подробного описания. Существуют, конечно, другие особенности изобретения, которые будут описаны далее и которые будут входить в объем изобретения в соответствии с приложенной формулой изобретения.

Краткое описание чертежей

Ниже изобретение более подробно рассмотрено со ссылкой на прилагаемые чертежи, на которых показано:

на фиг.1 - схематически вертикальный разрез системы, в которой использовано устройство отбора образцов формации по одному из вариантов выполнения настоящего изобретения;

на фиг.2 - схематически устройство отбора образцов формации в соответствии с одним из вариантов выполнения настоящего изобретения;

на фиг.3 - схематически устройство отбора проб флюида в соответствии с одним из вариантов выполнения настоящего изобретения;

на фиг.4 - схематически устройство взятия керна в соответствии с одним из вариантов выполнения настоящего изобретения;

на фиг.5 - схематически устройство взятия керна в соответствии с одним из вариантов выполнения настоящего изобретения, представленное в положении отбора керна; и

на фиг.6 - схематически устройство взятия керна в соответствии с одним из вариантов выполнения настоящего изобретения, представленное в положении после извлечения образца керна.

Подробное описание предпочтительного варианта выполнения изобретения

Настоящее изобретение относится к устройствам и способам получения образцов формации, таких как образцы кернов и пробы флюидов, из подземных пород. Настоящее изобретение может быть выполнено в различных вариантах. На чертежах представлены и далее будут подробно описаны конкретные варианты выполнения настоящего изобретения. При этом нужно понимать, что настоящее описание нужно рассматривать как пример реализации принципов, заложенных в изобретение, и оно не ставит целью ограничение изобретения тем, что представлено для иллюстрации и описано. Действительно, как станет ясным в дальнейшем, идеи настоящего изобретения могут быть использованы в различных скважинных зондах и на всех этапах строительства и эксплуатации скважины. Соответственно рассмотренные далее варианты выполнения являются просто иллюстрацией применения настоящего изобретения.

На фиг.1 схематически дано сечение подземной формации (толщи пород) 10, через которую пробурена скважина 12. Обычно скважина по меньшей мере частично заполнена смесью жидкостей, содержащей воду, буровой раствор и пластовые флюиды, насыщающие формацию, через которую проходит скважина. Далее такая смесь будет называться "скважинными флюидами". Далее в описании термин "скважинный флюид" относится к конкретному флюиду формации с исключением примесей и загрязнений, по природе не присутствующих в конкретной формации. В скважине 12 на нижнем конце каротажного кабеля 14 подвешен зонд 100 отбора образцов формации (пробоотборник). Каротажный кабель 14 часто пропускают через блок 18, закрепленный на деррике 20. Каротажный кабель разматывают и сворачивают с помощью снабженной двигателем лебедки, установленной, например, на автомобиле 22 технического обслуживания. С пульта 24 управления, связанного обычным образом с зондом 100 через каротажный кабель 14, регулируют подачу электроэнергии, передачу сигналов данных и управления, а также контролируют работу отдельных компонентов зонда 100 отбора образцов формации. Как будет более подробно рассмотрено далее, зонд 100 приспособлен для работы в различных условиях с оборудованием и устройствами, пригодными для отбора образцов образующих формацию скальных пород, почвы и флюидов.

На фиг.2 схематически представлен один из вариантов выполнения зонда 100 отбора образцов формации, способного извлекать из нее один или более образцы, такие как пробы флюида и (или) образцы кернов. Зонд 100 содержит кабельную головку 102, соединенную с каротажным кабелем 14, группу модулей 104 и 106, электронный модуль 108, гидравлический модуль 110, модуль 112 опробования пласта и модуль 200 взятия керна. Модуль 112 опробования пласта приспособлен для извлечения и хранения проб флюида, и модуль 200 взятия керна приспособлен для отбора и хранения образцов кернов, которые также могут содержать флюид. Модули 112 и 200 могут также включать средства анализа для выполнения скважинных исследований извлеченных образцов. Гидравлический модуль 110 обеспечивает подачу рабочей жидкости для приведения в действие и работы модулей 112 и 200 и может включать насосы, аккумуляторы и относящееся к ним оборудование для подачи под давлением рабочей жидкости. Электронный модуль 108 содержит соответствующие схемы, контроллеры, процессоры, блоки памяти, батареи питания и т.д. для проведения скважинных измерений при отборе образцов. Электронный модуль 108 может также включать средства двусторонней связи для передачи данных и команд управления с поверхности и на поверхность. В качестве примера в оборудование электронного модуля 108 могут входить программируемые контроллеры с заложенными в них командами, средство двустороннего обмена данными, такое как приемопередатчик, аналого-цифровые преобразователи и устройство управления подачей электроэнергии. Должно быть понятно, что при модульном построении зонда 100 можно упростить его конструкцию, например два или более модуля отбора образцов, таких как модули 112 и 200, могут использовать одну электронику и гидравлику. Более того, зонд 100 может быть приспособлен при необходимости для выполнения других специфических операций. Например, модули 104 и 106 могут быть использованы для помещения в них дополнительных приборов, таких как приборы измерения искривления скважины, приборы оценки пласта, приборы определения характеристик коллектора, или могут быть при отсутствии необходимости исключены. Следовательно, должно быть понятно, что модуль 112 опробования пласта и модуль 200 взятия керна представляют просто некоторые приборы и средства, которые могут быть размещены в зонде 100.

На фигурах 3 и 4 модуль 112 опробования пласта сконфигурирован так, чтобы точно измерять давление пласта и отбирать, анализировать и (или) хранить флюиды, извлеченные из пласта. В модуле 112 происходит отбор флюида с использованием создающего направленный поток устройства, такого как всасывающий насос 134, связанный с одной или более магистралями 114 прохождения пробы, которые заканчиваются в модуле 200 взятия керна. Например, взятая в качестве иллюстрации магистраль 114 прохождения пробы может заканчиваться у отверстия 116 в модуле 200 взятия керна. Через отверстие 116 флюид отбирается из кольцевого пространства 118, охватывающего модуль 200. В одном из вариантов выполнения отверстие 116 расположено вблизи верха кольцевого пространства 118 и снабжено фильтром (не показан), предотвращающим попадание в модуль 112 опробования пласта грязи или обломков породы. Кроме того, всасывающий насос 134 может создавать двунаправленный поток, что позволяет промывать фильтр (не показан) и очищать его перед повторным использованием. Отобранный флюид анализируется одним или более датчиками 120 параметров пласта, например датчиками Sample View и RC, поставляемыми фирмой Baker Hughes Incorporated, и в конечном счете сохраняется в батарее емкостей 122А-С для образцов. До сохранения или в процессе сохранения используются соответствующие датчики, такие как измерители 124 давления, для мониторинга параметров отобранного флюида, чтобы оценить параметры пробы и определить качество пробы отобранного флюида. Регулирование процесса отбора флюида осуществляется коллектором 126 управления модуля, который связан с коммуникационной/силовой линией, ведущей в электронный модуль 108 (фиг.2). В одном из вариантов коллектор 126 управления при работе связан с устройствами регулирования потока, такими как клапаны, некоторые из которых, наиболее типичные обозначены позицией 130. Коллектор 126 управления может также управлять устройствами перекачки, такими как перекачивающий сквозной модуль 132 и всасывающий модуль 134. В качестве примера можно привести устройство определения характеристик коллектора типа RCISM, поставляемое фирмой Baker Hughes Incorporated. В качестве примера в перечень модулей анализа пласта можно включить также устройство SampleViewSM, которое дает возможность получения в ближнем инфракрасном диапазоне спектров пластового флюида, откачанного из формации, и которое может быть использовано для скважинного определения типа флюида и его качества, а также R/C датчик, содержащий измеритель сопротивления и емкости флюида, установленные на трубопроводе для определения типа флюида.

На фиг.4 схематически представлен один из вариантов выполнения модуля 200 взятия керна, который извлекает образцы кернов из формации. В модуле 200 взятия керна используется устройство 202 отбора образца керна, предназначенное для извлечения керна из формации. В одном из вариантов выполнения устройство 202 взятия керна содержит колонковое долото 204 и привод 208 долота, включающий двигатель и передачу, придающую колонковому долоту вращательное движение. Через корпус 206 долота производится перемещение колонкового долота 204 в формацию и извлечение из нее, а также приложение необходимого усилия к долоту для выполнения выбуривания и приемка керна в контейнер 210 керна. В одном из вариантов выполнения колонковое долото 204 установлено на конце цилиндрической оправки (не показана), связанной с корпусом 206 долота. Корпус 206 долота обеспечивает поперечное перемещение относительно продольной оси модуля 200. Оправка (не показана) выполнена полой для приема выбуренного образца керна и удержания его при втягивании колонкового долота 204. Привод (не показан), предназначенный для вращения колонкового долота 204, предпочтительно имеет высокий момент, высокоскоростной двигатель постоянного тока или низкоскоростной гидравлический двигатель с высоким моментом, и может также включать соответствующую зубчатую передачу для повышения или понижения скорости привода, передаваемой на ведущее зубчатое колесо. В устройстве 202 отбора керна может использоваться автономная система энергообеспечения, например гидравлически приводимый в действие привод, и (или) использоваться рабочая жидкость, подаваемая гидравлическим модулем 106. Кроме того, электроснабжение и (или) управление модулем 200 отбора керна может производиться от электронного модуля 108 и (или) находящегося на поверхности пульта 24 управления.

Модуль 200 содержит элементы изоляции или элементы, которые позволяют изолировать кольцевую зону или область 118, прилегающую к устройству 202 отбора керна. Должно быть понятно, что изоляция протяженной вдоль оси скважины области, а не отдельного небольшого участка на стенке скважины, повышает вероятность того, что пластовый флюид может быть эффективно извлечен из формации. Например, стенка скважины может иметь слоистые участки, блокирующие поток флюида, или трещины, препятствующие эффективной изоляции за счет вдавливаемых в стенку скважины контактных поверхностей. Наличие изолированной области увеличивает вероятность того, что будет охвачена область или площадь, поток флюида из которой имеет наиболее желательные параметры. Следовательно, слоистые области или трещины скорее всего окажут меньшее влияние на отбор флюида. Более того, формация может иметь низкую проницаемость, что препятствует поступлению потока флюида из нее. Использование области может увеличить скорость поступления потока флюида и тем самым снизить время, необходимое для получения пробы чистого флюида.

В одном из вариантов выполнения в компоненты изоляции входят два или более пакерные элементы 220, по потребности расширяемые для локализации кольцевой области 118. Будучи задействованным, каждый пакерный элемент 220 расширяется и герметично прилегает к стенке 11 скважины, образуя барьер на пути флюида, перекрывающий затрубное кольцевое пространство скважины 12. В одном из вариантов в пакерных элементах 220 используют эластичный баллон, который может значительно деформироваться для поддержания герметичного контакта со стенкой 11 скважины даже в случае нецентрального положения в скважине 12. Барьер для флюида снижает или предотвращает перемещение флюида в область 118 или из нее. Как будет ясно ниже, модуль 200 может создавать в области 118 скважины, находящейся между пакерными элементами 220, условия, отличные от условия в областях, лежащих выше и ниже области 118, например другое давление или содержание других флюидов. В одном из вариантов выполнения пакерные элементы 220 приводятся в действие рабочей жидкостью под давлением, поступающей через питающую магистраль 136 из гидравлического модуля 106. В других вариантах выполнения пакерные элементы 220 могут быть механически сжаты или приведены в действие с использованием подвижных деталей, например гидравлических поршней. Вентильные элементы 221 регулируют поток жидкости в пакерные элементы 220 и из них. Модуль 200 может включать коллектор 226 управления, регулирующий действие пакерных элементов 220, например управляя вентильными элементами 221, связанными с пакерными элементами 220. Магистраль 140 возврата флюида направляет рабочую жидкость обратно в гидравлический модуль 106. Хотя показаны два расположенных друг над другом пакера, должно быть понятно, что настоящее изобретение не ограничено каким-нибудь числом изолирующих элементов. В некоторых вариантах выполнения для формирования изолированной затрубной кольцевой зоны или области может быть использован единый изолирующий элемент.

Для радиального смещения модуля 200 взятия керна он может иметь верхнюю и нижнюю лапы 222 прижима к стенке, расположенные на боковой стороне зонда в общем напротив колонкового долота 204. Каждая лапа 222 приводится в действие соответствующей гидравлической системой 224. Каждая лапа 222 может быть установлена в корпусе модуля 200 на поворотных осях (не показаны) и приспособлена для ограниченного точного перемещения под действием гидроцилиндров (не показаны). В одном из вариантов выполнения лапы 222 приводятся в действие рабочей жидкостью под давлением, поступающей через питающую магистраль 136 из гидравлического модуля 106. Коллектор 226 управления регулирует перемещение и позиционирование лап 222, управляя работой гидравлической системы 224, в которую могут входить вентили. Магистраль 140 возврата флюида направляет рабочую жидкость обратно в гидравлический модуль 106. Другие детали таких устройств раскрыты в патентах US 5411106 и 6157893, включенных в данное описание в качестве ссылки для всех целей.

На фиг.5 модуль 200 показан опущенным с помощью средства доставки 14 в скважину 12 на заданную глубину для получения керна из формации 10. На фиг.5 колонковое долото 204 показано полностью выдвинутым через корпус модуля 200 для извлечения керна из формации 10. Модуль 200 расположен в пласте у стенки 11 скважины с помощью лап 222. В этом положении опорные лапы 222 смещают по радиусу модуль 200 и тем самым устанавливают колонковое долото 204 ближе к стенке 11 скважины. Кроме того, пакерные элементы 220 расширены до герметичного контакта со стенкой 11 скважины. Таким образом, область 118 гидравлически изолирована от соседних областей скважины 12. В этом положении давление в области 118 может быть снижено за счет включения откачки насосом 132. При откачке насосом 132 из области 118 флюид удаляется, что позволяет заполнить эту область пластовому флюиду. Модуль 112 отбора проб пластового флюида может проводить непрерывный мониторинг откачанного из области 118 флюида с использованием блока 120 датчиков. После того, как блок 120 датчиков покажет, что откачивается чистый пластовый флюид, модуль 112 может сохранить одну или более пробы в емкостях 122, выполнить точное снижение давления с помощью всасывающего насоса 134 и инициировать взятие керна. В одном из вариантов флюид анализируют на наличие загрязнений, таких как буровой раствор. Во многих случаях желательно начинать взятие керна только после того, как в области 118 будет присутствовать только пластовый флюид. После подтверждения установки в определенном положении и проверки относительного отсутствия в области 118 загрязнений подают питание на устройство 202 взятия керна. В одном из вариантов конструкции корпус 206 долота выдвигает коронковое долото 204 по радиусу наружу до приведения его в контакт со стенкой 11 скважины, в то время как гидравлический или электрический двигатель 208 вращает коронковое долото 204. Коронковое долото 204 погружается в формацию на заданное расстояние. Так как коронковое долото 204 полое, в этом процессе бурения формируется образец керна, который извлекается в цилиндрическую оправку (не показана). После достижения коронковым долотом 204 заданного предела керн отламывается путем наклона корпуса 206 долота и втягивается в корпус модуля. Керн сохраняется в контейнере 210 керна во флюиде формации.

Взятие образцов кернов в гидравлически изолированной зоне имеет по меньшей мере три преимущества. Во-первых, так как давление в области 118 понижено, и область 118 гидравлически изолирована от остальной скважины 12, взятие керна может быть проведено в условиях сбалансированных или ниже сбалансированных, то есть когда флюид в формации находится приблизительно при таком же давлении, что и флюид в области 118, или при более высоком давлении. Взятие керна в условиях, ниже сбалансированных, может быть выполнено быстрее, чем при обычных условиях, выше сбалансированных, которые имеют место при общепринятых операциях взятия керна. Во-вторых, так как область 118 заполнена относительно чистым пластовым флюидом, модуль 112 отбора проб пластового флюида через магистраль 114 и отверстие 116 может отбирать этот чистый пластовый флюид до, во время или после взятия образца или образцов керна. Как было отмечено выше, эти пробы флюида могут быть проанализированы и сохранены. Модуль 112 отбора проб пластового флюида может также выполнять другие задачи, такие как измерение профиля давления или исследование скважины методом понижения уровня. Более того, образцы кернов могут храниться вместе с относительно чистым пластовым флюидом. В-третьих, так как в области 18 производят взятие корнов с чистым пластовым флюидом, риск того, что образцы кернов будут загрязнены скважинными флюидами, снижается, если не исчезает вообще. Следовательно, работа в условиях, близких к сбалансированным или ниже сбалансированных, может обеспечить более чистое и более быстрое взятие кернов и получить в итоге образцы более высокого качества. Поэтому нужно понимать, что с использованием вариантов выполнения настоящего изобретения можно получить керн, который вырезан, извлечен и сохранен в чистом пластовом флюиде.

Как видно на фиг.6, после получения керна коронковое долото 204 втягивается в корпус модуля 200, и керн сохраняется в контейнере 210 керна во флюиде формации, а лапы 222 прижима к стенке также втягиваются в корпус модуля 200. Модуль 200 может быть затем поднят и извлечен из скважины 12 каротажным кабелем 14, и керн извлечен из модуля 200 для проведения анализа. Кроме того, одно устройство 202 взятия керна может быть использовано для получение нескольких образцов керна, каждый из которых сохраняется в отдельной емкости.

Должно быть понятно, что идеи настоящего изобретения могут быть также использованы со средствами доставки, отличными от каротажного кабеля, такими как трос для работ в скважине, гибкая труба и буровая труба.

Предшествующее описание ориентировано на раскрытие конкретных вариантов выполнения настоящего изобретения, приведенных для иллюстрации и объяснения. Однако для специалиста в данной области будет ясно, что на основе приведенного выше возможны многочисленные модификации и изменения в вариантах, не выходящие за объем и сущность изобретения. Предполагается, что нижеследующая формула изобретения охватывает все такие модификации и изменения.

1. Способ взятия образца из подземной формации, при осуществлении которого:
доставляют зонд в скважину, пересекающую подземную формацию,
по существу, изолируют кольцевую область вблизи зонда;
откачивают флюид из кольцевой области;
извлекают, по меньшей мере, один образец керна из подземной формации в этом кольцевом пространстве после того, как оно в основном заполнено пластовым флюидом; и
функционально подсоединяют к устройству взятия керна электронный модуль для обеспечения выполнения, по меньшей мере, одного из действий, включающих подачу питания и передачу сигналов связи.

2. Способ по п.1, в котором снижают давление в кольцевом пространстве до сбалансированных или ниже сбалансированных условий в этом пространстве.

3. Способ по п.1, включающий взятие пробы флюида из кольцевого пространства.

4. Способ по п.3, включающий сохранение пробы флюида в отдельном месте.

5. Способ по п.3, включающий проведение анализа взятой пробы флюида.

6. Способ по п.3, в котором сохраняют пробу флюида вместе с, по меньшей мере, одним образцом керна в том же контейнере.

7. Способ по п.1, в котором выполняют в кольцевом пространстве одну из операций, включающих измерение профиля давления и исследование скважины методом понижения уровня.

8. Установка для отбора образца из скважины, пробуренной в подземной формации, содержащая:
устройство взятия керна;
изолирующий элемент, по существу, изолирующий кольцевое пространство вблизи устройства взятия керна;
насос, сообщающийся со скважиной и кольцевым пространством; и
электронный модуль, функционально соединенный с устройством взятия керна и обеспечивающий выполнение, по меньшей мере, одного из действий, включающих подачу питания и передачу сигналов связи.

9. Установка по п.8, в которой насос способен понижать давление в кольцевом пространстве до, по меньшей мере, сбалансированных условий.

10. Установка по п.8, в которой насос приспособлен для откачивания флюида из кольцевого пространства до тех пор, пока оно не будет в основном заполнено пластовым флюидом.

11. Установка по п.8, содержащая, по меньшей мере, один датчик для анализа флюида, отобранного из кольцевого пространства.

12. Установка по п.8, включающая устройство взятия пробы флюида для отбора пробы флюида из кольцевого пространства.

13. Установка по п.8, содержащая контейнер, в который помещают, по меньшей мере, один образец керна, отобранный устройством взятия керна.

14. Установка по п.8, содержащая, по меньшей мере, два разнесенных по оси изолирующих элемента.

15. Установка по п.8, содержащая гидравлический модуль, приводящий в действие одно из устройств из группы, включающей устройство взятия керна, кольцевой изолирующий элемент и насос.

16. Установка по п.8, содержащая, по меньшей мере, одну лапу, смещающую по радиусу устройство взятия керна.

17. Установка по п.8, содержащая каротажный кабель, соединенный с устройством взятия керна.



 

Похожие патенты:

Изобретение относится к испытанию геологического пласта, в частности к управлению насосом или блоком перемещения текучих сред инструмента для испытания пласта. .

Изобретение относится к области разработки месторождений жидких полезных ископаемых и может быть использовано для обнаружения гидравлического взаимовлияния между двумя разобщенными продуктивными пластами.

Изобретение относится к устройствам для отбора проб высоковязкой нефти с различного уровня и донных осадков в скважинах и может быть использовано в нефтяной промышленности.

Изобретение относится к исследованиям подземных пластов. .

Изобретение относится к системе и способу для отбора проб скважинных текучих сред. .

Изобретение относится к нефтегазовой промышленности и может найти применение при освоении и разработке неоднородных массивных или многопластовых газонефтяных или нефтегазоконденсатных месторождений.

Изобретение относится к способам определения момента прорыва пластового флюида и может быть использовано, например, для определения глубины внедрения фильтрата. .

Изобретение относится к области геолого-гидродинамического моделирования разработки нефтяных месторождений

Изобретение относится к технологии бурения скважин, а именно к определению естественных упругих характеристик горных пород в условиях залегания, необходимых для выполнения технологических расчетов

Изобретение относится к нефтяной промышленности, а именно к исследованию строения пластов для контроля за разработкой и для оптимизации размещения эксплуатационных скважин на исследуемом месторождении, в частности, к способам оценки фильтрационных потоков, формирующихся при разработке нефтяных месторождений

Изобретение относится к бурению грунта или горных пород, в частности к устройствам для выбуривания кернов из стенок скважин или каналов для исследования, и может быть использовано в области атомной энергетики для выбуривания кернов графита из кладок уран-графитовых реакторов канального типа

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано при разработке нефтяных и газовых залежей, а также при интерпретации ГИС (геофизических исследований скважин)

Изобретение относится к нефтяной промышленности, а именно к исследованию строения пластов

Изобретение относится к области исследований газоконденсатных разведочных и эксплуатационных скважин

Изобретение относится к горному делу и предназначено для регистрации сейсмических волн и деформаций в скважине

Изобретение относится к области измерительной техники и может быть использовано в сельском хозяйстве при агрохимических анализах почв, а также при химических анализах кормов, растений, пищевого сырья и природных вод
Наверх