Способ обеспечения вихревой безопасности полета летательного аппарата

Изобретение относится к способам обеспечения безопасности эксплуатации летательных аппаратов. Заявленный способ включает передачу летательным аппаратом (ЛА)-генератором информации о создаваемом им вихревом следе, скорости полета, координатах, времени передачи путем радиосвязи "борт-борт" в радиовещательном режиме и/или в режиме "точка-точка" и последующий прием этой информации ЛА-абонентом или ЛА-абонентами, при этом соответствующий ЛА-абонент производит текущие, соответствующие параметрам приходящего к нему вихревого следа от ЛА-генератора расчеты величины действующего на него возмущающего момента крена и измерения вихревой обстановки перед ЛА-абонентом, проводит расчеты возмущающего момента крена, производит сравнение величин возмущающего момента крена, рассчитанных по результатам этих измерений, с величинами возмущающего момента крена, полученных расчетом на основании переданной информации с ЛА-генератора, при этом требуемые для определения вихревой обстановки перед ЛА-абонентом данные получают путем измерений с помощью датчиков статического давления, устанавливаемых в передних "критических" точках его крыльев, причем наибольшее из вычисленных значений возмущающего момента крена выбирают как ожидаемое воздействие вихревого следа на ЛА-абонент и выбранную величину в качестве корректирующей вводят в систему управления ЛА-абонента. Достигаемый технический результат - повышение безопасности эксплуатации ЛА в полете. 3 ил.

 

Предлагаемое изобретение относится к способам обеспечения безопасности эксплуатации летательных аппаратов и может быть использовано для информирования пилотов о попадании летательного аппарата (ЛА) в зону вихревого следа генератора вихрей.

Известен способ мониторинга окружающего пространства (см., например, "Система вихревой безопасности аэропортов", http://www.lsystems.ru/catalog/spec_systems/safety aeroport/ от 07.02.2011), включающий зондирование произвольно выбранного сектора обзора с помощью доплеровского лидара.

Данный способ обеспечивает возможность получения информации об интенсивности и динамике вихревых следов за летательным аппаратом генератором вихрей (ЛА-генератором), а также о пространственном распределении компонент скоростей ветра, интенсивности турбулентности в вихревых следах и о профиле скорости, однако при его применении определяют состояние атмосферы с возможными вихревыми следами в районе аэродрома от ЛА-генератора, а не опасность от вихревого следа ЛА-генератора непосредственно для ЛА-абонента.

Известен способ предотвращения попадания ЛА в вихревой след (см., например, Золотухин В.В. "Моделирование вихревых следов в задачах управления воздушным движением". Международный журнал "Программные продукты и системы", №1,2011 год), включающий в себя следующие этапы:

- получение от ЛА-генератора, попавшего в поле зрения ЛА-абонента полетных данных;

- расчет характеристик вихревого следа: время затухания, протяженность, высота опускания, размеры полуосей вихревого эллипса вихревого следа;

- получение данных о траектории движения за промежуток времени, равный расчетному времени затухания;

- проверка, остается ли ЛА-генератор в поле зрения. Если остается, то провести с ним обмен полетными данными, наблюдать за его вихревым следом (или его частью), находящимся в зоне видимости;

- если ЛА-генератор вне зоны видимости, проверить, исчез ли его вихревой след. Если исчез, алгоритм завершается;

- определение расчетом, приведет ли сохранение текущего курса к попаданию в вихревой след. Если не приведет, продолжить движение текущим курсом;

- проверка, попадет ли ЛА при текущем курсе в вихревой след, выполнить расчет размеров следа в точке пересечения к моменту пересечения. Если исчезнут, продолжить движение текущим курсом, итерация завершается;

- если при расчете выяснится, что вихри в точке пересечения не исчезают, следует выбрать оптимальный маневр, чтобы избежать попадания ЛА-абонента в вихревой след.

С помощью данного способа расчетом определяют размеры вихревого эллипса и его местоположение до момента затухания, и, если при этом ЛА-абонент попадает в рассчитанный вихревой эллипс, то ему предписывают выполнение необходимого маневра. Однако при оценке по этому способу опасности влияния вихревого следа возможны значительные погрешности определения расчетных размеров вихревого эллипса.

Наиболее близким аналогом-прототипом является способ предупреждения от возможного попадания ЛА в опасную зону вихревого следа (см., например, патент РФ №2324203 с приоритетом от 25.07.2003, МПК: G01S 13/95), включающий получение информации о конфигурации, местонахождении и ориентации ЛА относительно инерциальной системы координат в текущий момент времени, получение и сохранение информации о параметрах движения генератора вихрей (ГВ) и его положении, геометрических и массовых характеристиках относительно той же системы координат в текущий момент времени, получение информации о параметрах окружающей среды в области совместного размещения ЛА и ГВ, определение траектории и интенсивности вихревого следа ГВ как совокупности траекторий центров областей завихренности, генерируемых указанным ГВ, в инерциальной системе координат в текущий момент времени, сохранение информации о координатах точек траектории и интенсивности вихревого следа ГВ как совокупности траекторий центров областей завихренности в инерциальной системе координат, выбор времени упреждения, в течение которого ЛА может, по меньшей мере, выполнить маневр изменения траектории полета, обеспечивающий уклонение ЛА от вихревого следа ГВ после предупреждения о возможности попадания в него, вычисление упреждающего расстояния, равного расстоянию, преодолеваемому ЛА за время упреждения, моделируют контрольную плоскость, расположенную в пространстве перед ЛА, и определяют прогнозируемый момент времени полета ЛА через указанную контрольную плоскость в инерциальной системе координат, а также осуществляют для пользователя индикацию события равенства нулю расстояния до опасной зоны вихревого следа указанного ГВ.

Данный известный способ обеспечивает информирование пользователя о возможности опасной ситуации, однако точность нахождения координат выделенной опасной вихревой зоны и соответственно вероятность попадания в нее ЛА определяется точностью расчета характеристик опасной зоны без подтверждения фактическими измерениями.

Кроме этого, для реализации данного метода потребуется установка дорогостоящих лидаров на каждый ЛА и создание объединенных в единую информационную систему систем, размещенных на ЛА, кораблях, аэродромах, пунктах управления воздушным движением и т.д., что сопряжено с необходимостью значительных финансовых затрат и в ряде случаев нецелесообразно.

Задача изобретения состоит в разработке высокоточного способа обеспечения вихревой безопасности полета ЛА за счет получения информации о параметрах вихревого следа перед ЛА-абонентом непосредственно его бортовой системой измерений, что с момента проявления первых признаков наличия вихревых образований перед ЛА-абонентом позволит предупредить пилотов об опасности попадания в вихревой след ЛА-генератора вихрей и, используя экспериментально полученные данные и информацию от ЛА-генератора вихрей, определить наибольшее значение ожидаемой величины действующего на ЛА-абонент возмущающего момента крена М и внести с его учетом коррективы в систему управления ЛА-абонентом.

Сущность изобретения состоит в том, что в способе обеспечения вихревой безопасности полета, включающем передачу ЛА-генератором вихревого следа информации о создаваемом им вихревом следе, скорости полета, координатах, времени передачи путем радиосвязи "борт-борт" в радиовещательном режиме и/или в режиме "точка-точка" и последующий прием этой информации ЛА-абонентом или ЛА-абонентами, соответствующий ЛА-абонент производит текущие, соответствующие параметрам приходящего к нему вихревого следа от ЛА-генератора вихревого следа расчеты величины действующего на него возмущающего момента крена и измерения вихревой обстановки перед ЛА-абонентом, по результатам которых также проводит расчеты возмущающего момента крена, а затем производит сравнение величин возмущающего момента крена, рассчитанных по результатам этих измерений, с величинами возмущающего момента крена, полученных расчетом на основании переданной информации с ЛА-генератора вихревого следа, при этом требуемые для определения вихревой обстановки перед ЛА-абонентом данные получают путем измерений с помощью датчиков статического давления, устанавливаемых в передних "критических" точках его крыльев, причем наибольшее из вычисленных значений возмущающего момента крена выбирают как ожидаемое воздействие вихревого следа на ЛА-абонент и выбранную величину в качестве корректирующей вводят в систему управления ЛА-абонента.

При этом рассчитываемые величины, характеризующие создаваемый ЛА-генератором вихревого следа вихревой след - тангенциальную скорость , статическое давление P1, а также величину возмущающего момента крена M1, действующего при этом на крыло ЛА-абонента, вычисляют из соотношений:

где:

- изменение циркуляции, [м2/с];

- начальная циркуляция, [м2/с];

m - масса ЛА-генератора вихревого следа, [кг];

g - ускорение свободного падения, [м/с2];

ρ1 - плотность атмосферного воздуха в зоне нахождения ЛА-генератора вихревого следа, [кг/м3];

L1 - размах крыла ЛА-генератора вихревого следа, [м];

- скорость полета ЛА-генератора вихревого следа, [м/с];

γ=0,82q/l, [м/с2];

q - турбулентность, [м/с];

- расстояние между вихрями ЛА-генератора вихревого следа, [м];

r - радиус вихря от ЛА-генератора вихревого следа, [м];

- радиус ядра вихря от ЛА-генератора вихревого следа, [м];

- начальный радиус ядра вихря от ЛА-генератора вихревого следа, [м];

- турбулентная вязкость этого вихря;

ν1 - турбулентная вязкость атмосферного воздуха;

b - хорда крыла ЛА-абонента, [м];

- скорость полета ЛА-абонента, [м/с];

ρ2 - плотность атмосферного воздуха в зоне нахождения ЛА-абонента, [кг/м3];

L2 - размах крыла ЛА-абонента, [м];

z - координата, [м]; t - время, [сек],

а тангенциальную скорость вихря и величину действующего на крыло ЛА-абонента возмущающего момента крена М2 определяют из соотношений:

где Р2 - измеряемое статическое давление, а остальные обозначения соответствуют указанным ранее.

Техническим результатом предлагаемого изобретения является повышение безопасности эксплуатации ЛА в полете за счет высокоточного получения информации о параметрах вихревого следа перед ЛА-абонентом непосредственно его бортовой системой измерений, оповещения в режиме реального времени о попадании соответствующего ЛА-абонента в зону вихревого воздействия ЛА-генератора вихревого следа и учета влияния этого воздействия в виде возмущающего момента крена.

На фиг.1 представлена диаграмма изменения статического давления (разрежения), образующегося за обтекаемым телом вихря от максимального (в центре вихря) до атмосферного (на краю вихря) с уменьшением по мере увеличения расстояния от источника, на фиг.2 показана картина взаимодействия вихревого следа от ЛА-генератора вихревого следа с набегающим потоком у ЛА-абонента, на фиг.3 представлена схема элементов поверхности крыла ЛА, встречающими набегающий поток первыми, по сравнению с другими элементами поверхности ЛА.

При полете в атмосфере ЛА создает вихревой след, который может представлять опасность для других воздушных судов. Так, по данным В.В.Вышинского, А.Л.Стасенко, опубликованным в статье «Физические модели, численные и экспериментальные исследования аспектов авиационной экологии и безопасности полетов» Труды МФТИ, 2009, том 1 №3Б, в летном эксперименте при полете самолета A310 со скоростью 230 м/с на расстоянии 7500 метров за ним, статическое давление составило 3650 Па, при этом тангенциальная скорость вихря, подсчитанная по формуле равна 32 м/с, в связи с чем появляется возмущающий момент крена. Появление возмущающего момента крена фиксируется на борту ЛА и в систему управления подается сигнал на изменение режимов работы силовой установки и механизации крыла. Например, если не происходит изменение высоты, то парирование момента крена осуществляется увеличением оборотов одного из двигателей до компенсации появившегося момента крена. Как показано в отчете ФГУП "ГосНИИАС" "Моделирование теплообмена в неоднородном турбулентном потоке", образующийся за обтекаемым телом вихрь имеет статическое давление (разрежение), изменяющееся от максимального (в центре вихря) до атмосферного (на краю вихря) с уменьшением по мере увеличения расстояния от источника (фиг.1).

Вихревой след от ЛА-генератора вихревого следа, имеющий области пониженного давления, "подходит" к ЛА-абоненту (фиг.2), взаимодействует с набегающим потоком, вследствие чего изменяются его аэродинамические характеристики, и может появиться возмущающий момент крена. Степень изменения аэродинамических характеристик и величина возмущающего момента крена зависит от условий полета, геометрических и весовых характеристик ЛА, состояния атмосферы.

Предлагаемый способ обеспечения вихревой безопасности полета ЛА решает эту проблему за счет информирования экипажа ЛА-абонента о попадании в вихревой след от ЛА-генератора на основании информации от ЛА-генератора вихревого следа и выполнения на борту ЛА-абонента измерений статического давления в передних "критических" точках (фиг.3) в режиме реального времени. При этом все ЛА в полете, в режиме реального времени осуществляют дискретные измерения статического давления Р в передних "критических" точках с помощью, например, приемников статического давления (см., например, Испытания и обеспечение надежности авиационных двигателей и энергетических установок / Под ред. И.И.Онищика: Учебник для вузов. - Издание второе, исправленное и дополненное. - М.: Изд-во МАИ, 2004, с.68), и, если установлено наличие понижения давления по сравнению с давлением окружающей атмосферы, то это свидетельствует о попадании в вихревое образование.

Передние "критические" точки - это элементы поверхности ЛА, первыми по сравнению с другими элементами поверхности ЛА встречающие набегающий поток. Количество передних "критических" точек ЛА-абонента, где необходимо измерение статического давления для оценки факта попадания в вихревой след, определяется для каждого ЛА в зависимости от его геометрических и летно-технических характеристик, например, следующим образом. Поверхности крыльев ЛА разделяются на n участков, подъемная сила каждого из которых одинакова и равна , где F - суммарная подъемная сила. Принимаем, что Fi это такая часть F, которая может компенсироваться системой автоматического управления ЛА. Как правило, Fi=0,2F. Тогда n=5 и, следовательно, (фиг.3) . Чтобы обоснованно определить наличие вихревого следа на длине С, необходимо выполнить не менее двух измерений в точках 1/4 С и 3/4 С (фиг.3).

При этом заинтересованные пользователи воздушного пространства осуществляют радиосвязь "борт-борт": каждый ЛА-генератор вихревого следа по радиовещательному каналу многостанционного доступа и/или по радиосвязи "точка-точка" передает информацию о своих параметрах и условиях полета, а ЛА-абонент принимает эту информацию, выполняет расчет тангенциальной скорости давления и также выполняет расчет возмущающего момента крена M1 по этой информации, а на основании экспериментов осуществляет расчетную оценку возмущающего момента крена М2, после чего производит сравнение значений M1 и М2, и выбирают наибольшее из этих значений, определяя по нему ожидаемое воздействие вихревого следа на конструкцию ЛА-абонента, причем выбранную величину в качестве корректирующей вводит в систему управления своего самолета.

Способ обеспечения вихревой безопасности полета летательного аппарата (ЛА), включающий передачу ЛА-генератором вихревого следа информации о создаваемом им вихревом следе, скорости полета, координатах, времени передачи путем радиосвязи "борт-борт" в радиовещательном режиме и/или в режиме "точка-точка" и последующий прием этой информации ЛА-абонентом или ЛА-абонентами, отличающийся тем, что ЛА-абонент производит текущие, соответствующие параметрам приходящего к нему вихревого следа от ЛА-генератора вихревого следа, расчеты величины действующего на него возмущающего момента крена и измерения вихревой обстановки перед ЛА-абонентом, по результатам которых также проводит расчеты возмущающего момента крена, а затем производит сравнение величин возмущающего момента крена, рассчитанных по результатам этих измерений, с величинами возмущающего момента крена, полученных расчетом на основании переданной информации с ЛА-генератора вихревого следа, при этом требуемые для определения вихревой обстановки перед ЛА-абонентом данные получают путем измерений с помощью датчиков статического давления, устанавливаемых в передних "критических" точках его крыльев, причем наибольшее из вычисленных значений возмущающего момента крена выбирают как ожидаемое воздействие вихревого следа на ЛА-абонент и выбранную величину в качестве корректирующей вводят в систему управления ЛА-абонента.



 

Похожие патенты:

Изобретение относится к радионавигации и может использоваться в пилотажно-навигационных системах ориентации летательного аппарата (ЛА), например, при заходе на посадку по приборам.

Изобретение относится к радионавигации и может использоваться в системах посадки летательных аппаратов по приборам. .

Изобретение относится к светотехнике, в частности к светосигнальным системам, предназначенным для ориентации в ночное время, в сумерках и сложных метеоусловиях пилотов летательных аппаратов (ЛА) при взлете, посадке и пробеге относительно оси взлетно-посадочной полосы (ВПП).

Изобретение относится к системам и средствам обеспечения посадки летательных аппаратов. .

Изобретение относится к способу и устройству управления летательными аппаратами. .

Изобретение относится к гидроавиации, в частности к самолетам-амфибиям, и предназначено для использования в автоматических системах управления посадкой и взлетом с водной поверхности самолетов-амфибий

Изобретение относится к инструментальным системам захода самолетов на посадку

Изобретение предназначено для применения в области авиационного приборостроения, в частности в пилотажно-навигационном оборудовании летательных аппаратов (ЛА). Технический результат - повышение надежности и безопасности совершения посадки ЛА, увеличение точности формирования заданной траектории посадки. Способ управления ЛА при заходе на посадку включает измерение параметров движения ЛА, коррекцию, с помощью любого из известных методов комплексной обработки информации, погрешностей параметров движения по данным от спутниковой навигационной системы, формирование, на основе откорректированных координат ЛА и координат торцов взлетно-посадочной полосы (ВПП), курса ВПП, длины ВПП, дальности до ближнего торца ВПП, высоты ЛА относительно ВПП, автоматическое или ручное управление угловым положением ЛА по крену и тангажу с учетом сигналов углов отклонения по курсу и глиссаде, дополнен операциями, в соответствии с которыми для формирования заданной траектории посадки задают угол наклона траектории посадки, размещают под точкой стандартного размещения курсового радиомаяка на продолжении заданной траектории посадки виртуальный курсо-глиссадный радиомаяк (ВКГРМ) и формируют его пеленг и угол места, а углы отклонения по курсу и глиссаде от траектории посадки формируют соответственно как рассогласование пеленга ВКГРМ и курса ВПП и как рассогласование угла места ВКГРМ и заданного экипажем угла наклона траектории посадки. 5 ил.

Изобретение относится к области авиации, в частности к области способов помощи в навигации для определения траектории летательного аппарата. Технический результат - ограничение использования процедур увода при потере спутниковой навигационной информации, что позволяет уменьшить насыщенность воздушного пространства и ограничить затраты и продолжительность полетов. Способ помощи в навигации заключается в определении будущей траектории захода на посадку, с помощью произведения оценки прогнозируемых безопасных радиусов на будущей траектории, основанной на вычислении предельного момента, начиная с которого прогнозируемый безопасный радиус превышает или равен пределу выдачи тревожного сигнала и вычисления предельного момента ухода, который соответствует максимальному моменту, в который летательный аппарат должен покинуть заранее определенную траекторию, по которой он двигался, чтобы иметь возможность выйти на безопасную высоту. 3 н. и 12 з.п. ф-лы, 5 ил.

Изобретение относится к авиационной технике. Система автоматического управления самолетом при заходе на посадку содержит посадочную радиотехническую систему, включающую в себя связанные через радиоканал наземный глиссадный радиомаяк, бортовой глиссадный радиоприемник и дальномер. Также в системе имеется блок умножения, вычислитель комплексной системы управления и связанные с ним датчики вертикальной перегрузки, угловой скорости тангажа и угла атаки, рулевой привод, интеграторы, сумматоры и фильтр. Система дополнительно содержит взаимосвязанные фильтры, сумматоры, шесть нелинейных блоков, датчик вмешательства летчика в управление самолетом, датчик угла крена, инвертор, двухпозиционный ключ, три блока статических коэффициентов передачи сигналов и датчик вертикальной скорости полета самолета. Достигается повышение помехозащищенности, точности и надежности системы. 5 ил.

Способ посадки летательного аппарата, при котором используется штатные приводные радиолокационные и навигационные системы, а также лазерная система автоматического управления посадкой, содержащая два полусферических, сферический, четыре цилиндрических датчика лазерного излучения, контроллер лазерной системы, лазерный излучатель, включающий лазер и два электромеханических преобразователя, объединенные в двухкоординатный модуль поворота мощного лазера. Статор электромеханических преобразователей по продольной оси ортогонально прикреплен к несущему основанию летательного аппарата. Датчики лазерного излучения включают контроллер, имеющий многоканальный вход, радиоприемопередатчик, контроллер радиоприемопередатчика, контроллер лазера, фотодиоды, расположенные на поверхности датчика с дискретным шагом по углам пеленга и места. Обеспечивается надежность посадки летательных аппаратов в экстремальных метеоусловиях, ближнее и дальнее выравнивание при подлете к взлетно-посадочной полосе. 6 ил.

Изобретение относится к способу управления летательным аппаратом (ЛА) при заходе на посадку. Для управления ЛА при заходе на посадку измеряют с помощью инерциальной навигационной системы (ИНС), систем воздушных сигналов (СВС), спутниковой навигационной системы (СНС) курс, крен и тангаж ЛА, угловую, горизонтальную и вертикальную скорости ЛА, координаты и высоту ЛА, формируют курс взлетно-посадочной полосы (ВПП) на основе уточненных координат высоты ЛА и координат высоты ВПП, формируют сигналы управления угловым положением ЛА по крену и тангажу, измеряют в автоматическом или ручном режиме угловое положение ЛА в соответствии со сформированными сигналами управления, формируют траекторию посадки с заданным экипажем углом наклона, совпадающую по направлению с курсом ВПП, с помощью курсового, глиссадного и дальномерного радиомаяков (КРМ, ГРМ и ДРМ). В случае отсутствия на борту ЛА сигналов «Готовность курса (глиссады или дальности)» сигналы управления формируют с помощью параметров виртуального курсового (глиссадного или дальномерного) маяков (ВКРМ, ВГРМ, ВДРМ), размещенных определенным образом. Определяют координаты и высоту ВГРМ, пеленг ВКРМ и угла места ВГРМ относительно ЛА. Определяют рассогласование пеленга ВКРМ относительно ЛА и курса ВПП, рассогласование угла места ВГРМ относительно ЛА и заданного экипажем угла наклона траектории посадки для корректировки сигналов управления. Обеспечивается надежность системы посадки. 5 ил., 1 табл.

Изобретение относится к авиации, в частности к многопозиционным системам посадки воздушных судов (ВС) в условиях сложного рельефа местности. Достигаемый технический результат - повышение надежности безопасного вывода ВС на посадку. Достижение указанного технического результата обеспечивается в системе, содержащей наземный передатчик-запросчик и, по меньшей мере, три наземных приемника ответных сигналов, причем наземные приемники ответных сигналов подключены выходами через сигнальные линии связи к наземному модулю расчета координат воздушного судна (ВС) и отклонения его от траектории посадки, входящему в наземную электронно-вычислительную машину управления, управляющий выход которой через радиолинию управления посадкой ВС соединен с бортовой аппаратурой управления воздушного судна, при этом бортовой передатчик-ответчик, входящий в бортовую аппаратуру управления ВС, соединен через радиолинию «запрос-ответ» с наземным передатчиком-запросчиком, бортовой измеритель высоты ВС соединен выходом со входом бортового передатчика-ответчика бортового ответчика (БО), при этом два наземных приемника ответных сигналов установлены по бокам от осевой линии взлетно-посадочной полосы (ВПП) в районе ее центра со смещением от осевой линии не менее чем на пятьсот метров, и, по меньшей мере, один приемник - со стороны, противоположной заходу воздушного судна на посадку, и на расстоянии, не меньшем четырехсот метров от торца ВПП, кроме того, система содержит, по меньшей мере, два наземных передатчика, высокочастотными выходами подсоединенных к входу соответствующего из упомянутых наземных приемников, выполненных многоканальными, низкочастотными выходами подключенными к соответствующему входу наземного модуля расчета координат воздушного судна и отклонения его от траектории посадки, причем каждый из упомянутых передатчиков и соответствующий многоканальный приемник связаны между собой и конструктивно объединены в приемо-передающий модуль, при этом наземный передатчик-запросчик связан с наземным модулем расчета координат ВС двунаправленной шиной, при этом бортовая аппаратура управления ВС содержит бортовой модуль расчета координат воздушного судна, причем бортовой передатчик и бортовой приемник выполнены многоканальными, связаны между собой и с бортовым измерителем высоты ВС. 1 з.п. ф-лы, 8 ил.

Группа изобретений относится к способу и устройству сигнализации приводнения и взлета с водной поверхности самолета-амфибии. Для сигнализации приводнения и взлета самолета-амфибии измеряют уровень вибрации и уровень гидростатического давления на корпус лодки самолета-амфибии, сравнивают измеренные величины с пороговыми значениями, контролируют выпуск шасси, принимают решение о приводнении при превышении значений пороговых уровней, а также при условии, что выпуск шасси не был произведен, в противном случае принимают решение о нахождении самолета-амфибии в воздушной среде. Устройство сигнализации приводнения и взлета самолета-амфибии содержит датчик вибраций, блок цифровой обработки сигналов, датчик гидростатического давления, датчик выпуска шасси. Блок цифровой обработки сигналов содержит цифровой полосовой фильтр, вычислитель среднеквадратичного отклонения, два пороговых устройства, схемы «ИЛИ», «И», «НЕ», цифровой фильтр нижних частот, вычислитель математического ожидания, соединенные определенным образом. Обеспечивается точность определения моментов касания и отрыва от водной поверхности самолета-амфибии. 2 н.п. ф-лы, 2 ил.

Изобретение относится к способу определения посадочных траекторий летательных аппаратов (ЛА) в ограниченной области пространства. Для определения посадочной траектории на заданную взлетно-посадочную полосу (ВПП) вычисляют в определенные моменты времени на основании регистрируемых пространственных координат ЛА многомерные пространственные посадочные траектории движения ЛА, выравнивают во времени при необходимости, формируют выборку зарегистрированных траекторий определенным образом, выделяют в сформированной выборке асимптотически сходящийся пучок многомерных пространственных посадочных траекторий ЛА, удаляют траектории выделенного пучка из сформированной выборки, используют выделенные пучки траекторий, соответствующие посадкам ЛА на заданные ВПП, для посадки ЛА. Обеспечивается посадка ЛА в аэропортах, находящихся в зоне сложного географического ландшафта или без сопровождения диспетчерских служб. 1 з.п. ф-лы, 5 ил.
Наверх