Устройство контроля токораспределения в алюминиевых электролизерах

Изобретение относится к устройству для контроля силы тока в анодных штырях, анодах и катодных блюмсах электролизеров с самообжигающимися и с обожженными анодами. Устройство содержит электромагнитный датчик силы тока, нормализатор входных сигналов, аналого-цифровой преобразователь АЦП, микропроцессор, электромагнитный датчик силы тока, расположенный на одном конце шеста, выполненного из не проводящего ток материала, длина которого достаточна для свободного доступа к любой из штанг, подводящих ток к анодным штырям или блюмсам, установленную в месте крепления датчика ограничительную планку, обеспечивающую идентичность расположения электромагнитного датчика относительно штанги во время измерения протекающего в ней тока, и расположенные на противоположном конце шеста последовательно соединенные нормализатор входных сигналов, АЦП, микропроцессор, при этом выход электромагнитного датчика силы тока соединен с входом нормализатора входных сигналов витой парой. Обеспечивается стабилизация технологического режима процесса электролиза, снижение потерь электроэнергии в анодном узле за счет своевременного устранения перекосов в распределении электрического тока по анодным штырям. 2 ил.

 

Изобретение относится к цветной металлургии, в частности к электролитическому получению алюминия из глинозема, и может быть использовано для контроля силы тока в анодных штырях электролизеров с самообжигающимися анодами, так и в электролизерах с обожженными анодами, а также для контроля токораспределения по катодным блюмсам.

Известно устройство, реализующее «Способ контроля токораспределения в алюминиевых электролизерах» (заявка №2008126523 от 30.06.08., прототип), содержащее: коммутатор входных сигналов, электромагнитные датчики, линии связи электромагнитных датчиков с коммутатором входных сигналов, нормализатор входных сигналов, АЦП, микропроцессор, устройство согласования, автоматизированную система управления (АСУ). В прототипе входы коммутатора входных сигналов подключены к выходам электромагнитных датчиков, установленных на анодных штырях, выход коммутатора входных сигналов подключен через последовательно соединенные нормализатор и АЦП к микропроцессору, выход которого через устройство согласования подключен к входу АСУ.

Промышленные испытания на действующем электролизере КрАЗа выявили недостаток данного устройства определения токораспределения (in по анодным штырям электролизера с самообжигающимся анодом, который заключается в сложности установки электромагнитных датчиков непосредственно на анодных штырях и необходимости переустановки датчиков при замене штырей. Кроме того, при перестановке штырей происходит повреждение датчиков и выход их из строя.

Известно «Устройство контроля токораспределения в анодном узле алюминиевого электролизера», содержащее: коммутатор входных сигналов, электромагнитные датчики, линии связи электромагнитных датчиков с коммутатором входных сигналов, нормализатор входных сигналов, АЦП, микропроцессор, устройство согласования, автоматизированную система управления (АСУ), швеллер и элементы его крепления, швеллер с размещенными в нем электромагнитными датчиками и витыми парами проводников, соединяющих выходы датчиков, которые располагают ниже анодной шины по центру плоскости алюминиевых штанг, подводящих ток к штырям, электромагнитные датчики подключены к входам коммутатора входных сигналов, а выход коммутатора входных сигналов подключен через последовательно соединенные нормализатор и АЦП к микропроцессору, выход которого через устройство согласования подключен к входу АСУ.

Испытания данного устройства на действующем электролизере КрАЗа показали высокую точность контроля силы тока в каждом штыре, подводящем ток к аноду электролизера с самообжигающимся анодом, что позволяет своевременно ликвидировать неравномерность подвода тока к отдельным участкам анода, уменьшить нежелательные гидродинамические процессы в расплаве и снизить падение напряжения в аноде.

Внедрение таких устройств на всех электролизерах позволило бы в автоматическом режиме вести контроль качества подвода тока к анодам, но требует проведения монтажных работ на анодных узлах действующих электролизеров, что сопряжено с существенными технологическими трудностями. Монтаж устройств на электролизерах в процессе капитального ремонта не вызывает трудностей в монтаже, но существенно увеличивает сроки внедрения, поскольку отключения электролизеров на капитальный ремонт производят через 3-5 лет, что следует отнести к основному недостатку данных устройств.

Задачей предлагаемого технического решения является устранение отмеченного недостатка, а именно создание переносного малогабаритного устройства, позволяющего оперативно производить съем информации о токораспределении в анодных штырях или блюмсах электролизеров за короткий промежуток времени. Оперативность контроля, с применением переносного прибора, повышает эффективность устройства контроля токораспределения в алюминиевых электролизерах.

Для решения поставленной задачи в «Устройство контроля токораспределения в анодном узле алюминиевых электролизерах», содержащее электромагнитный датчик, нормализатор входных сигналов, АЦП, микропроцессор, где выход электромагнитного датчика, подключен через последовательно соединенные нормализатор и АЦП к микропроцессору, дополнительно электромагнитный датчик располагают на одном конце шеста, выполненного из не проводящего ток материала, длиной, достаточной для свободного доступа к любой из штанг, подводящих ток к анодным штырям, в месте крепления датчика устанавливают ограничительную планку, обеспечивающую идентичность расположения электромагнитного датчика относительно штанги во время измерения протекающего в ней тока, на противоположном конце шеста располагают последовательно соединенные нормализатор входных сигналов, АЦП, микропроцессор, а выход электромагнитного датчика соединяют с входом нормализатора входных сигналов витой парой. Выход микропроцессора оснащен USB разъемом для считывания накопленной информации об измеренных значениях тока в анодных штырях электролизеров.

Существенным отличием данного технического решения является то, что электромагнитный датчик размещают на одном конце шеста, выполненного из непроводящего ток материала, длиной, достаточной для свободного доступа к любому из анодных штырей человеком, проводящим замеры, и перемещающегося по полу электролизного цеха с глухой и лицевой стороны электролизера.

Вторым отличием является то, что выход электромагнитного датчика соединяют с входом нормализатора входных сигналов, расположенного на противоположном конце шеста (относительно электромагнитного датчика), витой парой проводников, а в месте крепления датчика устанавливают ограничительную планку, обеспечивающую идентичность расположения электромагнитного датчика относительно штанги во время измерения протекающего в ней тока.

Данное техническое решение позволяет повысить оперативность и технологичность контроля токораспределения по штырям в анодном узле электролизеров и своевременно принимать решения по перестановке анодных штырей, что сократит потери энергии в анодном узле и количество технологических расстройств работы электролизеров.

На фиг.1 представлен эскизный чертеж устройства контроля токораспределения в анодном узле алюминиевых электролизерах

На фиг.1 введены следующие обозначения: 1 - электромагнитный датчик; 2 - шест из не проводящего ток материала; 3 - место расположения электронных узлов и источника питания устройства; 4 - ограничительная планка, обеспечивающая идентичность расположения электромагнитного датчика относительно штанги во время измерения протекающего в ней тока; 5 - ручка для управления штангой во время измерений; 6 - витая пара проводников для соединения выхода индукционного датчика с входом нормализатора входных сигналов - 7; 8 - АЦП; 9 - микропроцессор; 10 - источник питания; 11 - USB разъем для считывания накопленной информации об измеренных значениях тока в анодных штырях электролизеров, на которых выполнены измерения; 12 - кнопка «измерение», подключает сигнал с выхода АЦП к входу микропроцессора, после того как электромагнитный датчик зафиксирован на штанге, подводящей ток к анодному штырю; 13 - кнопка включения электропитания прибора.

На фиг.2 представлен график экспериментально снятой зависимости величины силы тока в каждом из 72 штырей анода электролизера.

Устройство контроля токораспределения в анодном узле алюминиевого электролизера работает следующим образом. В исходном положении выход электромагнитного датчика (1) соединен с входом нормализатора (7) с помощью витой пары проводников (6). Выход нормализатора (7) подключен к входу АЦП (8), выход которого через кнопку (12) подключен к микропроцессору (9). Перед началом измерений кнопкой (13) включают электропитание прибора. С помощью шеста (2) подносят электромагнитный датчик (1) к штанге, подводящей ток к штырю анода. Расположение датчика на штанге, подводящей ток к штырю анода, фиксируют с помощью ограничительной планки (4), обеспечивая идентичность расположения электромагнитного датчика относительно штанги во время измерения протекающего в ней тока. После того как электромагнитный датчик (1) зафиксирован на штанге, нажимают кнопку «измерение», в результате сигнал с выхода электромагнитного датчика (1), пропорциональный силе тока в анодном штыре, поступает на вход нормализатора входных сигналов (7), который обеспечивает необходимую фильтрацию, усиление и согласование по уровню с выходом АЦП (8) для преобразования в цифровой код. Преобразованный в АЦП (8) цифровой сигнал поступает на микропроцессор (9), который рассчитывает ток, протекающий через анодный штырь (X). Измеренные показания тока в каждом штыре записывают в память микропроцессора. По окончании замеров полученные данные переносят в АСУ ТП через USB разъем, необходимую для технологов информацию выводят на дисплей и/или печать в виде графика, представленного на фиг.2.

Из графика фиг.2, построенного на основе экспериментально снятой зависимости распределения силы тока по штырям самообжигающегося анода электролизера, видно, насколько велико отклонение величины силы тока в отдельных штырях от среднего значения. Большие отклонения тока от среднего значения приводят к неравномерному выгоранию подошвы анода, локальным перегревам электролита и снижению выхода по току. Периодический контроль токораспределения позволит своевременно устранять неравномерности распределения тока по штырям и тем самым повысить эффективность работы электролизеров.

С помощью переносного прибора время измерения величины тока на всех 72 штырях анода составляет 10-15 минут.

Положительный технический эффект от реализации данного способа контроля токораспределения по анодным штырям заключается в стабилизации технологического режима процесса электролиза, снижении потерь электроэнергии в анодном узле за счет своевременного устранения перекосов в распределении электрического тока по анодным штырям.

Устройство контроля токораспределения в анодном узле алюминиевого электролизера, содержащее электромагнитный датчик силы тока, нормализатор входных сигналов, аналогоцифровой преобразователь (АЦП), микропроцессор, в котором выход электромагнитного датчика силы тока подключен через последовательно соединенные нормализатор и АЦП к микропроцессору, отличающееся тем, что электромагнитный датчик силы тока расположен на одном конце шеста, выполненного из непроводящего ток материала, длина которого достаточна для свободного доступа к любой из штанг, подводящих ток к анодным штырям или блюмсам, причем в месте крепления датчика установлена ограничительная планка, обеспечивающая идентичность расположения электромагнитного датчика силы тока относительно штанги во время измерения протекающего в ней тока, а на противоположном конце шеста расположены последовательно соединенные нормализатор входных сигналов, АЦП, микропроцессор, при этом выход электромагнитного датчика силы тока соединен с входом нормализатора входных сигналов витой парой, а выход микропроцессора оснащен USB - разъемом для считывания накопленной информации об измеренных значениях силы тока в анодных штырях или блюмсах электролизера.



 

Похожие патенты:

Изобретение относится к цветной металлургии, в частности к способу контроля состава расплавленного электролита в алюминиевом электролизере. .

Изобретение относится к металлургии, а именно к средствам контроля химического состава расплава электролизера, в частности алюминиевого. .

Изобретение относится к цветной металлургии, в частности к электролитическому получению алюминия на электролизерах с предварительно обожженным анодом, и может быть применено для управления пневматическим цилиндром пробойника системы автоматической подачи глинозема в расплавленный электролит.

Изобретение относится к электролитическому получению алюминия и может быть использовано при технологическом контроле состава электролита методом рентгенофазового анализа (РФА).

Изобретение относится к способам обслуживания алюминиевого электролизера, преимущественно к способу удаления угольной пены из алюминиевого электролизера. .

Изобретение относится к способу прогнозирования своевременной подготовки алюминиевого электролизера к отключению для капитального ремонта. .

Изобретение относится к цветной металлургии, в частности к электролитическому получению алюминия из глинозема, и может быть использовано на электролизерах как с самообжигающимися анодами, так и с обожженными анодами для контроля токораспределения в анодном узле.

Изобретение относится к устройству для определения уровней металла и электролита в электролизере в процессе его эксплуатации. .
Изобретение относится к цветной металлургии, а именно к электролитическому получению алюминия. .

Изобретение относится к способу и системе для рекуперации энергии и (или) охлаждения по меньшей мере в одной электролизной ячейке для производства металла, в частности алюминия, где ячейка(-и) снабжена(-ы) одним или несколькими теплообменниками и где теплообменный носитель циркулирует через упомянутый(-е) теплообменник(и) и далее направляется по меньшей мере на один блок преобразования тепла, такой как турбина-расширитель.

Изобретение относится к способу производства алюминия в электролизере. Способ включает этапы, при которых задают последовательность периодов управления с длительностью Т, идентифицируют возмущающие операции обслуживания на электролизере, которые могут привносить избыточный глинозем в электролитическую ванну, отмечают выполнение возмущающих операций обслуживания, определяют скорость В(k') подачи при регулировании для каждого периода k' управления и задают установленную скорость SR(k') подачи, равной М(k')×В(k'), где М(k') - заранее определенный коэффициент модуляции, который модулирует скорость В(k') подачи при регулировании так, чтобы учесть уменьшение потребностей электролизера, вызванное избыточным глиноземом. Обеспечивается значительное снижение частоты возникновения анодных эффектов. 18 з.п. ф-лы, 8 ил.

Изобретение относится к способу защиты углеродной футеровки алюминиевого электролизера при получении алюминия из металлургического глинозема в криолит-глиноземном расплаве и может быть использовано при вводе алюминиевого электролизера в эксплуатацию. Способ защиты углеродной футеровки алюминиевого электролизера включает нагрев до температуры 1300-1400°C с последующей выдержкой при максимальном значении температуры в течение 2-3 часов над предварительно прокаленным карбонатом лития, покрытым слоем кремниевой пыли. Пары лития, образовавшиеся при взаимодействии карбоната лития и кремниевой пыли, изменяют поверхностную структуру и основные свойства углеграфитовых блоков, за счет глубокого проникновения паров лития в поры угольного блока с последующей интеркаляцией слоев графита и обеспечивают формирование защитного антидиффузионного слоя толщиной 20-30 мм, блокирующего проникновение расплава в угольную подину электролизера и предотвращающего инфильтрацию жидкого алюминия и натрия в процессе работы электролизера. Обеспечивается снижение рабочего напряжения, повышение производительности, увеличение срока службы, повышение сортности алюминия, снижение расхода электроэнергии. 2 з.п. ф-лы, 1 ил., 2 табл.

Изобретение относится к цветной металлургии, в частности к электролитическому производству алюминия, а именно к области управления электролизом алюминия. Способ автоматического контроля криолитового отношения электролита алюминиевого электролизера, включающий измерение силы тока, напряжения на электролизере, расчет текущих значений сопротивления электролита и определение криолитового отношения электролита, сравнение криолитового отношения с заданным значением и корректировку криолитового отношения электролита при отклонении от заданного значения. Данным способом определяют удельное сопротивление электролита при перемещении анодной рамы с фиксированной длительностью, через равные промежутки времени, в направлении вверх-вниз, после чего преобразуют удельное сопротивление в коэффициент перемещения, измеряют температуру ликвидуса и определяют криолитовое отношение электролита в зависимости от коэффициента перемещения и/или температуры ликвидуса. При этом коэффициент перемещения равен: Uуд=ТП×6/VМПА, где: Uуд - удельное сопротивление электролита, коэффициент перемещения [мВ/мм]; VМПА - скорость привода механизма перемещения анодной рамы [мм/мин]; ТП - тестовое перемещение [мВ/с], определяемое как: ТП=(ΔUвверх+ΔUвниз)/2/τ, где: ΔUвверх - разница напряжения при перемещении анодной рамы вверх, мВ; ΔUвниз - разница напряжения при перемещении анодной рамы вниз, мВ; τ - время перемещения, с. Определяют удельное сопротивление электролита при перемещении анодной рамы в течение от 0,5 с до 60 с через промежутки времени от 0,08 ч до 24 ч. Способ позволяет снизить стандартное отклонение фактического криолитового отношения от целевого значения с 0,059 до 0,038. 2 з.п. ф-лы, 6 ил.

Изобретение относится к системе, способу и устройству для измерения и передачи рабочих условий электролитической ячейки. Система содержит избирательно устанавливаемый элемент, соединенный с устройством для измерения и передачи рабочих условий электролитической ячейки, при этом избирательно устанавливаемый элемент сконфигурирован с возможностью перемещения устройства для измерения и передачи рабочих условий электролитической ячейки с физическим соединением с ванной и без него. Система может также содержать устройство для разрушения корки для разрушения поверхности ванны и электронное устройство для измерения уровня ванны. Раскрыт также способ измерения и передачи рабочих условий электролитической ячейки. Обеспечивается объединение длинных и трудоемких процедур измерения в один этап, снижение трудозатрат, повышение производительности. 13 з.п. ф-лы,16 ил.

Изобретение относится к устройству для определения профиля износа катода и профиля бортовой(ых) настыли(ей) алюминиевого электролизера, заполненного расплавом алюминия и имеющего бортовую(ые) настыль(и). Устройство содержит систему определения положения с подвижным и стационарным элементами и пику с термостойким наконечником пики для погружения в расплав на катод или поверхность бортовой(ых) настыли(ей) электролизера, причем подвижный элемент прикреплен к пике, а стационарный элемент выполнен с возможностью определения положения наконечника пики путем определения положения подвижного элемента. Раскрыт способ определения профиля износа катода и профиля бортовой(ых) настыли(ей) в алюминиевом электролизере посредством указанного устройства, погружения наконечника пики устройства в расплав алюминия на катод или поверхность бортовой настыли электролизера и определения положения наконечника пики в качестве высоты катода или бортовой настыли в данном месте в электролизере. Обеспечивается быстрое и точное определение точного профиля износа катода и бортовой футеровки электролизера без его остановки. 2 н. и 14 з.п. ф-лы, 3 ил.

Изобретение относится к электролитическому способу получения алюминия. Технический результат - повышение точности измерений и оперативности определения концентрации глинозема. Устройство для определения концентрации глинозема в электролите алюминиевого электролизера содержит автономный источник напряжения переменного тока, регистратор напряжения постоянного тока с градуировкой, низкочастотный электрофильтр и графитовым датчиком. При этом автономный источник напряжения переменного тока выполнен с возможностью подачи напряжения переменного тока в цепь графитовый датчик - катодная шина. Выход низкочастотного электрофильтра подключен к регистратору напряжения постоянного тока, а вход соединен с автономным источником напряжения переменного тока. 1 ил.

Изобретение относится к способу управления алюминиевым электролизером по минимальной мощности. Способ включает измерение падения напряжения на сопротивлении электролизера, сравнение измеренного значения с заданной величиной падения напряжения на электролизере и устранение рассогласования соответствующим перемещением анода. Перемещением анода снижают рассогласование греющей мощности от заданного значения до выделения на электролизере минимальной мощности, выделение минимальной мощности определяют по самопроизвольному росту электрохимической составляющей напряжения электролизера и поддерживают данное рассогласование соответствующим перемещением анода без изменения теплового состояния электролизера. Рассогласование греющей мощности от заданного значения с выделением на электролизере минимальной мощности создают за период тепловой постоянной электролизера и поддерживают данное рассогласование в каждом периоде времени измерения падения напряжения на сопротивлении электролизера. Перемещение анода определяют по рассогласованию минимальной мощности на электролизере от заданного значения в текущем периоде его работы и прогнозу выделения минимальной мощности на последующий период его работы. Выделение на электролизере минимальной мощности без изменения теплового состояния электролизера поддерживают перемещением анода на величину возможного снижения мощности на электролизере до минимального значения и увеличением мощности на величину самопроизвольного роста электрохимической составляющей напряжения электролизера. Выделение минимальной мощности определяют по самопроизвольному росту электрохимической составляющей напряжения электролизера одновременно со всеми переменными параметрами технологического процесса электролиза алюминия от вносимых в технологический процесс возмущений. Заданную мощность на последующий период работы электролизера определяют по сумме заданной мощности в текущий период его работы и рассогласованию минимальной мощности от заданного значения за соответствующий период времени работы электролизера. Обеспечивается снижение расхода электроэнергии, повышение выхода металла по току, снижение трудоемкости обслуживания электролизеров. 5 з.п. ф-лы, 2 ил., 1 табл.

Изобретение относится к способу управления подачей глинозема в электролизеры для получения алюминия для поддержания концентрации глинозема в электролите, равной или близкой к концентрации насыщения. В способе измеряют приведенное напряжение (U) или псевдосопротивление (R), регистрируют результаты измерений через фиксированные интервалы времени и формируют циклы питания, включающие подачу глинозема в недостаточном или избыточном количестве в сравнении с теоретической скоростью расхода глинозема в процессе электролиза, причем длительность периодов недостаточного питания выбирается в зависимости от концентрации глинозема в электролите, а длительность периодов избыточного питания определяется по изменению одной или нескольких из регистрируемых на электролизере величин: приведенного напряжения, псевдосопротивления, скоростей изменения приведенного напряжения (dU/dt) и псевдосопротивления (dR/dt), регулирование межполюсного расстояния для поддержания энергетического баланса электролизера может осуществляться в любой из фаз питания. Обеспечивается повышение технико-экономических показателей процесса получения алюминия за счет отсутствия анодных эффектов в электролизерах с углеродными анодами и применения новых конструктивных и электродных материалов, которые имеют высокую скорость износа в электролите с низкой концентрацией глинозема. 10 з.п. ф-лы, 4 ил.

Изобретение относится к способу защиты углеграфитовой футеровки алюминиевого электролизера при производстве алюминия электролизом криолит-глиноземных расплавов, и может быть использовано при вводе алюминиевого электролизера в эксплуатацию. Способ включает формирование слоя электрического сопротивления на подине проекции анода, отдачу пускового сырья в пространство "борт-анод" и включение тока серии. Слой электрического сопротивления формируют из шихты, содержащей кокс, карбонат лития и кристаллический кремний, после формирования слоя проводят обжиг подины при температуре от 950 до 970°С. Обеспечивается снижение негативных эффектов, связанных с адсорбцией и проникновением натрия в углеграфитовую футеровку на стадии пуска электролизера, повышение стойкости и прочности углеграфитовой футеровки, увеличить срок службы и производительности электролизера, улучшение сортности получаемого алюминия и снижение расхода электроэнергии за счет уменьшения удельного электрического сопротивления углеграфитовой футеровки. 3 табл.

Изобретение относится к способу автоматического контроля нарушений работы системы АПГ алюминиевого электролизера. Способ включает измерение напряжения на анодной шине электролизера и определение токов по анодам путем решения обратной задачи для уравнения распределения напряжения по анодной шине. Рассчитанные значения тока по анодам фильтруют, рассчитывают абсолютный прирост фильтрованного тока по каждому аноду на конец режима недостаточного питания глиноземом, сравнивают его с заданным интервалом значений приращения тока для нарушений в системе АПГ, определяют ближайшую точку АПГ к аноду с наибольшим значением по заданному критерию, перераспределяют дозу глинозема равномерно с данной точки питания на остальные и сообщают о нарушении работы системы АПГ. Обеспечивается возможность оперативно и точно определять нарушения работы системы АПГ. 3 з.п. ф-лы, 3 ил.
Наверх