Преобразователь линейных перемещений в напряжение

Изобретение относится к измерительной технике. Устройство содержит измерительный мост, состоящий из первого и второго резисторов, датчика линейных перемещений и компенсирующего элемента, а также источник питания, логический элемент 2И, инструментальный усилитель с подключенным к нему резистором, генератор импульсов, двоичный счетчик и выходную шину, генератор шума, логический элемент НЕ, семь дополнительных инструментальных усилителей с подключенными к ним резисторами, буферный регистр, аналоговый коммутатор с цифровым управлением и фильтр, причем первые входы дополнительных инструментальных усилителей соединены между собой и подключены к связанным между собой первым выходом датчика линейных перемещений, вторым выходом второго резистора и первым входом инструментального усилителя, вторые входы дополнительных инструментальных усилителей также соединены между собой и подключены к объединенным между собой первым выходом компенсирующего элемента; вторым выходом первого резистора и вторым входом инструментального усилителя, вторые выходы дополнительных инструментальных усилителей связаны с общей шиной, первые выходы усилителей подключены к аналоговым входам аналогового коммутатора, цифровыми входами управления объединенного с выходом буферного регистра, первый вход которого соединен с выходом двоичного счетчика, а второй - со связанными между собой выходом генератора импульсов и входом логического элемента НЕ, выход которого подключен к первому входу логического элемента 2И, второй вход логического элемента 2И объединен с выходом генератора шума, а выход - с входом двоичного счетчика, выход аналогового коммутатора с цифровым управлением соединен с входом фильтра, выход которого связан с выходной шиной. Технический результат изобретения - расширение функциональных возможностей и повышение точности измерений. 1 ил.

 

Предлагаемое изобретение относится к измерительной технике и может быть использовано при разработке различного рода автоматизированных систем контроля, в частности, при проектировании автоматизированного измерительного комплекса, используемого для определения физико-механических свойств материалов методом кинетического индентирования.

Известен преобразователь величины силы воздействия в напряжение [1]. Недостатком этого преобразователя является высокая погрешность измерений малых сигналов.

Известен также преобразователь механических величин в напряжение с автоматической балансировкой "нуля", представляющий собой наиболее близкое техническое решение к предлагаемому изобретению [2].

Недостатком этого преобразователя также является высокая погрешность измерений малых сигналов. Этот недостаток значительно ограничивает функциональные возможности преобразователя.

Технический результат предлагаемого изобретения выражается в расширении диапазона измерений электрических величин в области малых сигналов.

Технический результат достигается за счет того, что преобразователь линейных перемещений в напряжение (фиг.1) содержит измерительный мост, состоящий из первого и второго резисторов 3 и 7 соответственно, датчика 8 линейных перемещений и компенсирующего элемента 4, а также источник 5 питания, логический элемент 2И, инструментальный усилитель 18 с подключенным к нему резистором 10, генератор 2 импульсов, двоичный счетчик 26 и выходную шину 30, причем первые выходы источника 5 питания, первого и второго резисторов 3 и 7 соответственно объединены между собой, вторые выходы источника 5 питания, датчика 8 линейных перемещений, инструментального усилителя 18 и компенсирующего элемента 4 соединены между собой и подключены к общей шине, первый выход датчика 8 линейных перемещений и второй выход второго резистора 7 связаны между собой и соединены с первым входом инструментального усилителя 18, второй вход инструментального усилителя 18 подключен к объединенным между собой первому выходу компенсирующего элемента 4 и второму выходу первого резистора 3, дополнительно содержит генератор 1 шума, логический элемент 6 НЕ, семь дополнительных инструментальных усилителей 19, 20, 21, 22, 23, 24 и 25 соответственно с подключенными к ним резисторами 11, 12, 13, 14, 15, 16 и 17 соответственно. Преобразователь линейных перемещений в напряжение также дополнительно содержит буферный регистр 27, аналоговый коммутатор 28 с цифровым управлением, фильтр 29, причем первые входы дополнительных инструментальных усилителей 19, 20, 21, 22, 23, 24 и 25 соответственно соединены между собой и подключены к связанным между собой первым выходом датчика 8 линейных перемещений, вторым выходом второго резистора 7 и первым входом инструментального усилителя 18, вторые входы дополнительных инструментальных усилителей 19, 20, 21, 22, 23, 24 и 25 соответственно также соединены между собой и подключены к объединенным между собой первому выходу компенсирующего элемента 4, второму выходу первого резистора 3 и второму входу инструментального усилителя 18, вторые выходы дополнительных инструментальных усилителей 19, 20, 21, 22, 23, 24 и 25 соответственно связаны с общей шиной, первые выходы инструментального усилителя 18 и дополнительных инструментальных усилителей 19, 20, 21, 22, 23, 24 и 25 соответственно подключены к аналоговым входам аналогового коммутатора 28, цифровыми входами управления объединенного с выходом буферного регистра 27, первый вход которого соединен с выходом двоичного счетчика 26, а второй - со связанными между собой выходом генератора 2 импульсов и входом логического элемента 6 НЕ, выход которого подключен к первому входу логического элемента 9 2И. Второй вход логического элемента 9 2И объединен с выходом генератора 1 шума, а выход - с входом двоичного счетчика 26, выход аналогового коммутатора 28 с цифровым управлением соединен с входом фильтра 29, выход которого связан с выходной шиной 30.

Рассмотрим работу преобразователя линейных перемещений в напряжение (далее - преобразователь) на его конкретном применении в автоматизированном измерительном комплексе.

При линейных перемещениях менее одного микрометра с выхода измерительного моста на первый и второй входы всех инструментальных усилителей 18, 19, 20, 21, 22, 23, 24 и 25 соответственно поступает дифференциальное напряжение (Uдифф), величина которого соизмерима с величиной собственных шумов (Uшум18, Uшум 19 и так далее) инструментальных усилителей. Коэффициенты усиления (Кус) инструментальных усилителей 18, 19, 20, 21, 22, 23, 24 и 25 соответственно устанавливаются равнозначными и необходимой величины, используя предназначенные для этого резисторы 10, 11, 12, 13, 14, 15, 16 и 17 соответственно. На выходах каждого из инструментальных усилителей 18, 19, 20, 21, 22, 23, 24 и 25 соответственно и соответствующих им аналоговых входах аналогового коммутатора 28 будет сформировано напряжение (Uвых 18, Uвых 19 и так далее). Выходное напряжение инструментального усилителя 18 будет равно алгебраической сумме произведений Uдифф∗Кус и Кус∗Uшум 18. Выходное напряжение инструментального усилителя 19 убудет равно алгебраической сумме произведений Uдифф∗Кус и Кус∗Uшум 19 и так далее. Характеристики шума каждого из инструментальных усилителей не зависимы друг от друга, т.е. их взаимная корреляционная функция равна нулю.

С выхода генератора 2 импульсов на вход логического элемента 6 НЕ и второй вход буферного регистра 27 поступает последовательность импульсов с одинаковыми периодами следования. При наличии на выходе генератора 2 импульсов логического "нуля" на первом входе логического элемента 9 2И будет установлена логическая "единица", разрешающая прохождение импульсов с выхода генератора 1 шума через логический элемент 9 2И на вход двоичного счетчика 26. Эти импульсы суммируются двоичным счетчиком 26. Код с выхода двоичного счетчика 26 (трехразрядный) поступает на первый вход буферного регистра 27. Следующая за логическим "нулем" логическая "единица" на выходе генератора 2 импульсов установит логический "ноль" на первом входе логического элемента 9 2И, который запретит прохождение импульсов с выхода генератора 1 шума на вход двоичного счетчика 26. Эта же логическая "единица", поступив на второй вход буферного регистра 27, запишет выходной код двоичного счетчика 26 в буферный регистр 27. Выходной код буферного регистра 27 поступает на цифровые входы управления аналогового коммутатора 28 с цифровым управлением и в соответствии с величиной этого кода аналоговый коммутатор 28 с цифровым управлением подключит на свой выход и соответственно вход фильтра 29 сигнал с выхода одного из восьми инструментальных усилителей 18, 19, 20, 21, 22, 23, 24 и 25 соответственно. Далее с приходом очередного импульса с выхода генератора 2 импульсов процесс подключения сигнала с выхода одного из восьми инструментальных усилителей 18, 19, 20, 21, 22, 23, 24 и 25 соответственно будет аналогичен вышеописанному. Генератор 1 шума, генератор 2 импульсов, логический элемент 6 НЕ, логический элемент 9 2И, двоичный счетчик 26 и буферный регистр 27 применительно к данному преобразователю представляют собой с некоторым допущением генератор случайных кодов. С каждым импульсом генератора 2 импульсов на вход фильтра 29 будет поступать сигнал с выходов инструментальных усилителей 18, 19, 20, 21, 22, 23, 24 и 25 соответственно в случайном порядке. Частота генератора 2 импульсов в данном преобразователе установлена на три порядка выше предельной частоты с первого выхода датчика 8 линейных перемещений, а коэффициент ослабления сигнала фильтром 29 на частоте генератора 2 импульсов выбран не менее 40 дБ. Таким образом, в процессе работы на выходе фильтра 29 и соответственно выходной шине 30 будет сформировано напряжение, равное алгебраической сумме Uдифф∗Кус и уменьшенное на 40 дБ Кус∗Uшум. Величина сигнала инструментальных усилителей 18, 19, 20, 21, 22, 23, 24 и 25 соответственно может значительно превышать уровень сигнала с первого выхода датчика 8 линейных перемещений, т.е. расширяется диапазон усиления в области малых сигналов.

Источники информации

[1] Патент РФ №2304283 от 16.12.2005 г.

[2] Патент РФ №2304284 от 21.10.2005 г.

Преобразователь линейных перемещений в напряжение, содержащий измерительный мост, состоящий из первого и второго резисторов, датчика линейных перемещений и компенсирующего элемента, а также источник питания, логический элемент 2И, инструментальный усилитель с подключенным к нему резистором, генератор импульсов, двоичный счетчик и выходную шину, причем первые выходы источника питания, первого и второго резисторов объединены между собой, вторые выходы источника питания, датчика линейных перемещений, инструментального усилителя и компенсирующего элемента соединены между собой и подключены к общей шине, первый выход датчика линейных перемещений и второй выход второго резистора связаны между собой и соединены с первым входом инструментального усилителя, второй вход инструментального усилителя подключен к объединенным между собой первым выходом компенсирующего элемента и вторым выходом первого резистора, отличающийся тем, что дополнительно содержит генератор шума, логический элемент НЕ, семь дополнительных инструментальных усилителей с подключенными к ним резисторами, буферный регистр, аналоговый коммутатор с цифровым управлением и фильтр, причем первые входы дополнительных инструментальных усилителей соединены между собой и подключены к связанным между собой первым выходом датчика линейных перемещений, вторым выходом второго резистора и первым входом инструментального усилителя, вторые входы дополнительных инструментальных усилителей также соединены между собой и подключены к объединенным между собой первым выходом компенсирующего элемента; вторым выходом первого резистора и вторым входом инструментального усилителя, вторые выходы дополнительных инструментальных усилителей связаны с общей шиной, первые выходы инструментального усилителя и дополнительных инструментальных усилителей подключены к аналоговым входам аналогового коммутатора, цифровыми входами управления объединенного с выходом буферного регистра, первый вход которого соединен с выходом двоичного счетчика, а второй - с связанными между собой выходом генератора импульсов и входом логического элемента НЕ, выход которого подключен к первому входу логического элемента 2И, второй вход логического элемента 2И объединен с выходом генератора шума, а выход - с входом двоичного счетчика, выход аналогового коммутатора с цифровым управлением соединен с входом фильтра, выход которого связан с выходной шиной.



 

Похожие патенты:

Изобретение относится к испытательной технике и может найти применение для определения нагрузок при строительстве и эксплуатации наземных и подземных сооружений.

Изобретение относится к контрольно-измерительной технике и может быть использовано, в частности, в гидравлических системах летательных аппаратов, где требуется информация о перемещениях исполнительных гидроцилиндров.

Тензометр // 2483277
Изобретение относится к измерительной технике и может быть использовано для продолжительных измерений напряженно-деформированного состояния морских ледостойких сооружений.

Изобретение относится к области неразрушающего контроля, а именно к диагностике и мониторингу состояния конструкции зданий или других инженерно-строительных сооружений в процессе строительства и эксплуатации.

Изобретение относится к области измерения линейных размеров устройствами, в которых использованы электрические и магнитные средства, и может быть использовано при неразрушающем контроле толщины покрытия из непроводящего материала на токопроводящей подложке.

Изобретение относится к технической диагностике и может быть использовано для обнаружения дефектов поверхности катания колес железнодорожных транспортных средств в движении.

Изобретение относится к области контрольно-измерительной техники и может быть использовано для измерения угловых перемещений в авиационной технике, в том числе в различных цепях управления электротехнических, электромеханических устройств.

Изобретение относится к контрольно-измерительной технике и может быть использован, в частности, в гидравлических системах летательных аппаратов, где требуется информация о перемещениях исполнительных гидроцилиндров.

Изобретение относится к способу и устройству для измерения толщины слоя частично кристаллизованных расплавов, в особенности на ленточном транспортере, в рамках способа литья полосы.

Изобретение относится к измерительной технике

Изобретение относится к методам неразрушающего контроля и может быть использовано на трубопроводах нефти и газа на химических и нефтехимических предприятиях, тепловых и атомных энергоустановках

Изобретение относится к области контроля перемещения и положения нагретых металлических изделий

Изобретение относится к горному делу, в частности к приборам измерения проявления горного давления, а именно к датчикам для измерения натяжения анкера

Изобретение относится к измерительной технике и предназначено для измерения длины линейно протяженных ферромагнитных объектов (стальных труб, прутков, рельс, канатов, проволок и т.п.) в процессе их изготовления или эксплуатации

Изобретение относится к области автоматизации производственных технологических процессов

Изобретение относится к измерительной технике и может быть использовано в системах управления технологическими процессами

Изобретение относится к машиностроению, в частности к способам изучения процесса износа поверхностей деталей машин. Сущность: подают ток на контактирующие детали, нагруженные в соответствии с реальными условиями эксплуатации. Регистрируют изменение силы тока в цепи во времени. Рассчитывают текущее значение общего сопротивления электрической цепи, используя зависимость для текущего изменения опорной контактной площади микронеровности, являющейся функцией изменения величины контактного сближения поверхностей. Определяют текущее значение силы тока по высоте микрорельефа. Задаются рядом значений моментов времени и определяют изменение величины контактного сближения поверхностей от времени (эксплуатационного износа) и изменение опорной контактной площади микронеровности от времени. Технический результат: расширение возможности исследования микрогеометрии поверхностей, возможность прогнозировать кинетику изменения микрорельефа в реальных условиях эксплуатации и сделать выводы о предпочтительности применения того или иного микрорельефа в реальных условиях эксплуатации. 6 ил.

Предлагаемое техническое решение относится к измерительной технике и льдотехнике. Техническим результатом является расширение функциональной возможности устройства. Технический результат достигается тем, что устройство для определения толщины льда содержит чувствительный элемент, выполненный в виде полой герметичной эластичной цилиндрической оболочки, а также введены микроволновой генератор, полый диэлектрический цилиндр, снабженный металлическим цилиндрическим резонатором, имеющим одной из торцевых стенок тонкую диафрагму и измеритель амплитудно-частотных характеристик, причем полость эластичной герметичной цилиндрической оболочки соединена с первым плечом, полого диэлектрического цилиндра, выход микроволнового генератора подключен ко второму плечу полого диэлектрического цилиндра, третье плечо которого соединено со входом измерителя амплитудно-частотных характеристик, выход которого является выходом устройства. 1 ил.

Изобретение относится к электронной технике. Сущность изобретения: устройство для контроля толщины проводящей пленки изделий электронной техники непосредственно в технологическом процессе ее формирования в вакууме путем измерения электрического сопротивления содержит подложку из диэлектрического или полупроводникового материала, металлические контактные площадки, выполненные на противоположных концах упомянутой подложки с лицевой ее стороны, для обеспечения соединения с измерительным прибором, заданную проводящую пленку. В устройстве каждая металлическая контактная площадка выполнена двуслойной в виде ступенчатой структуры со стороны, противоположной концу упомянутой подложки, при этом первый слой металлической контактной площадки, расположенный непосредственно на упомянутой подложке, выполнен толщиной, превышающей толщину заданной проводящей пленки в 1-2 раза, а второй - толщиной (0,5÷1)×10-6 м, смещение по горизонтали второго слоя ступенчатой структуры относительно первого в сторону соответствующего конца упомянутой подложки определяют из определенного выражения, при этом заданная проводящая пленка выполнена непосредственно на лицевой стороне обеих металлических контактных площадок и свободной части упомянутой подложки между ними, идентичной контролируемой проводящей пленке на рабочих подложках изделий. Технический результат изобретения - повышение точности и соответственно воспроизводимости. 7 з.п. ф-лы, 1 ил., 1 табл.
Наверх