Тяговый модуль постоянного детонационного горения паровоздушной топливной смеси

Тяговый модуль постоянного детонационного горения паровоздушной топливной смеси состоит из полусферического резонатора, продольного трубчатого газодинамического резонатора, кругового сопла, трех радиальных щелевых сопел плоского истечения подогретой паровоздушной топливной смеси под давлением и двух ступеней камеры смешения воздуха с парами топлива. Продольный трубчатый газодинамический резонатор входит своим соплом в центральную осевую часть снаружи полусферического резонатора, подводящего поток высокотемпературных отработанных газов. Круговое сопло расположено по краю полусферического резонатора и обеспечивает, за счет своей конструкции, направление потока подогретой взрывоопасной паровоздушной топливной смеси по внутренней поверхности полусферического резонатора. Три радиальные щелевые сопла, плоского истечения подогретой паровоздушной топливной смеси под давлением, расположены по наружному краю полусферического резонатора через 120 град и направлены в центральную часть полусферического резонатора в место истечения высокотемпературного потока отработанных газов. Изобретение направлено на повышение мощности и эффективности работы реактивных детонационного горения тяговых модулей. 3 з.п. ф-лы, 3 ил.

 

Изобретение относится к двигателестроению, в частности к авиационным реактивным тяговым модулям атмосферного использования.

Суть изобретения заключается в том, что тяговый модуль постоянного детонационного горения может работать от известных осевых авиационных компрессоров с расположением в их внутренней осевой полости специального двигателя, обеспечивающего вращение компрессора и подачу воздуха с необходимыми производительностью и давлением и одновременно обеспечивающего подачу высокотемпературного потока отработанных газов, с температурой порядка 1200 град С и давлением порядка 15 атм, через продольный трубчатый газодинамический резонатор тягового модуля с дальнейшим их истечением через сопло в виде газопламенной струи в центре полусферического резонатора тягового модуля.

При истечении, в центре полусферического резонатора тягового модуля, высокотемпературная газопламенная струя отработанных газов под давлением (порядка 15 атм) встречается с двумя типами встречных потоков паровоздушной окислившейся и предварительно подогретой (в необходимой мере) паровоздушной, взрывоопасной топливной смесью под давлением, создаваемым осевым воздушным компрессором (порядка 10 атм).

Техническим результатом, на который направлена идея изобретения, является повышение эффективности работы реактивных детонационного горения тяговых модулей, значительное повышение их мощности, освоение принципиально новой технологии их работы (постоянного детонационного горения).

Описание изобретения.

Известны способы получения тягового усилия в пульсирующих модулях детонационного горения топливной смеси по патентам РФ №94031235, 2066426, 2078974, 22822044, которые отличаются наличием газодинамических резонансных трубок разного количества, расположенных перпендикулярно оси основного рабочего потока, отличаются наличием той или иной степени пульсации рабочего процесса тягового модуля.

Известны патент РФ №2034996 и расчетно - экспериментальное исследование к.т.н. «МАИ» Ларионова С.Ю. которые отличаются от иных тем, что организовывают, до подачи основной топливовоздушной смеси в резонатор, смешение продуктов предварительного сжигания топлива, с избытком окислителя, с основной долей горючего и воздуха для организации детонационного процесса горения в полусферическом резонаторе.

Известен так же тяговый модуль детонационно-пульсирующего сгорания топлива по патенту РФ №2375601, состоящий из полусферического резонатора с кольцевым соплом радиальной подачи горючей смеси, выхлопного сопла расширяющихся газов, камерой смешения паров горючего и воздуха, связанной с окружающей средой, теплообменниками на резонаторе и на выхлопном сопле.

Прямых аналогов и прототипа устройства тягового модуля с использованием именно постоянного детонационного горения паровоздушной топливной смеси не найдено. Возможно они на сегодня еще не существуют.

Основным недостатком известных детонационных тяговых модулей является:

- во многих ранних, это необходимость наличия прямого, значительной длины, участка выхлопной трубы расширяющихся газов, за счет которой в основном и обеспечивается возникновение сверхкритического перепада давления и возникновение пульсации горения;

- наличие самой пульсации горения как таковой, при которой чем выше пульсация тем больше мощность, а достижение бесконечно высокой степени пульсации и есть постоянное горение с максимально возможной мощностью;

- высокие (порядка 50%) потери возможной мощности тяговых модулей, происходящие сразу после истечения радиального потока топливовоздушной смеси из кругового сопла полусферического резонатора при разделении его после центрального, диафрагменного соударения на два потока, один из которых уходящий в сторону выхлопного проема трубы и есть утраченный для получения полезной тяговой мощности, а второй уходящий в сторону рабочей поверхности полусферического резонатора, и в работе которого так же происходят потери возможной мощности за счет излишних соударений, отражений этого потока;

- использование технологии получения продуктов пиролиза для организации детонационного горения.

Предлагаемое изобретение тягового модуля постоянного детонационного горения взрывоопасной паровоздушной топливной смеси заключается в устранении выше отмеченных недостатков детонационно-пульсирующих тяговых модулей, с устранением значительной длины выхлопных труб, переход от пульсирующего детонационного горения к постоянному, устранении потерь мощности, связанных с разделением встречных потоков.

Намеченный технический результат достигается тем, что постоянное детонационное горение в предлагаемом тяговом модуле организуется за счет создания для его возникновения высокотемпературных условий, встречающихся под высоким давлением газодинамического потока отработанных газов и подогретой, окисленной взрывоопасной паровоздушной топливной смеси.

Тяговый модуль постоянного детонационного горения паровоздушной топливной смеси состоит из полусферического резонатора, продольного трубчатого газодинамического резонатора, входящего своим соплом в центральную осевую часть снаружи полусферы резонатора (подводящего поток высокотемпературных отработанных газов), кругового сопла по краю полусферического резонатора, обеспечивающего за счет своей конструкции направление потока подогретой, взрывоопасной паровоздушной топливной смеси по внутренней поверхности полусферического резонатора, трех радиально направленных щелевых сопел, плоского истечения подогретой паровоздушной топливной смеси под давлением (расположенных по наружному краю полусферического резонатора через 120 град и направленных в центральную часть полусферического резонатора в место истечения высокотемпературного потока отработанных газов).

От воздушного компрессора организована подача сжатого (порядка 10 атм) воздуха, его смешение с парами топлива, исходящими под давлением от испарителя топлива, в первой и второй ступенях камеры смешения, для последующей подачи организованной паровоздушной топливной смеси в полусферический резонатор через круговое и радиальные сопла к месту детонационного горения.

Сущность изобретения поясняется чертежами с указанием основных частей, из которых состоит тяговый модуль постоянного детонационного горения паровоздушной топливной смеси взрывоопасной концентрации.

Фиг.1 - продольный разрез тягового модуля.

1 - двигатель-привод вращения воздушного компрессора, 2 - воздушный компрессор, 3 - полусферический резонатор, 4 - трубчатый газодинамический резонатор, 5 - сопло трубчатого газодинамического резонатора, 6 - круговое сопло полусферического резонатора, за счет своей конструкции обеспечивающее направление истечения взрывоопасной паровоздушной топливной смеси по внутренней поверхности полусферического резонатора до места соударения с высокотемпературной газопламенной струей отработанных газов, 7 - радиальное щелевое сопло полусферического резонатора (3 шт.), 8 - направляющий аппарат закручивания воздушного потока, 9 - система трубопроводов, подводящих топливо под давлением, 10 - испаритель топлива, 11 - первая ступень камеры смешения паровоздушной топливной смеси в весовом соотношении 1/30 - 1/45, обеспечивающем гарантированную взрывобезопасность и невоспламеняемость в условиях камеры смешения, 12 - вторая ступень камеры смешения паровоздушной топливной смеси, 13 - высокотемпературная газопламенная струя отработанных газов, 14 - ударная волна детонационного горения, 15 - направляющие лопатки, обеспечивающие закручивание воздушного потока, 16 - подача жидкого топлива (керосина) в трубчатый газодинамический резонатор.

Фиг.2 - разрез 1-1 направляющего аппарата закручивания воздушного потока.

4 - трубчатый газодинамический резонатор, 8 - направляющий аппарат закручивания воздушного потока, 10 - испаритель топлива, 15 - направляющие лопатки закручивания воздушного потока.

Фиг.3 - поперечный разрез 2-2 полусферического резонатора.

3 - полусферический резонатор, 5 - сопло трубчатого газодинамического резонатора, 6 - круговое сопло полусферического резонатора, за счет своей конструкции обеспечивающее направление истечения взрывоопасной паровоздушной топливной смеси по внутренней поверхности полусферического резонатора до места соударения с высокотемпературной газопламенной струей отработанных газов, 7 - радиальное щелевое сопло полусферического резонатора (3 шт.) 13 - высокотемпературная газопламенная струя отработанных газов 14 - ударная волна детонационного горения.

Принцип работы тягового модуля постоянного детонационного горения паровоздушной топливной смеси.

Работа тягового модуля постоянного детонационного горения взрывоопасной паровоздушной топливной смеси (или иной газовой) становится возможной в результате организации подачи нескольких потоков специально подготовленной паровоздушной топливной смеси (подогретой, окисленной), под давлением, навстречу высокотемпературному, под давлением, потоку отработанных газов двигателя компрессора, прошедших через газодинамический трубчатый резонатор.

Воздушный поток, под давлением порядка 10 атм. с повышенной температурой, поступающий от осевого компрессора 2, проходя через направляющий аппарат 8, закручивается направляющими лопатками 15 в вихревой поток вокруг газодинамического трубчатого резонатора 4. и вокруг испарителя топлива 10, от которых воздух дополнительно нагревается до необходимой температуры, и этот нагрев возможен до значительных температур так как высокотемпературный поток отработанных газов двигателя привода компрессора может иметь температуру до 1200 град С.

Далее вихревой поток подогретого воздуха поступает в первую ступень 11 камеры смешения воздуха и паров топлива, истекающих из испарителя 10 под давлением, где и смешивается в паровоздушную топливную смесь невзрывоопасной и несамовоспламеняющейся концентрации паров топлива и воздуха в весовом соотношении порядка 1/30-1/45. Затем окислившийся вихревой поток паровоздушной смеси первой степени концентрации поступает во вторую ступень 12 камеры смешения, где в короткий промежуток времени, перед выходом из кругового сопла 6, смешивается с дополнительной долей массы паров топлива, образуя при этом паровоздушную (или иную газовую) топливную смесь взрывоопасной концентрации по объему (к примеру керосин от 1% до 7%), и тут же двумя путями истекает под давлением из второй ступени камеры смешения 12.

В первом случае взрывоопасный поток паровоздушной топливной смеси (или иной) из второй ступени камеры смешения 12 через круговое сопло 6 под давлением поступает в полость полусферического резонатора 3 по его внутренней рабочей поверхности.

Во втором случае поток паровоздушной взрывоопасной топливной смеси из второй ступени камеры смешения 12 через три радиальных щелевых сопла 7 под давлением устремляется в центральную часть полусферического резонатора 3 навстречу высокотемпературному потоку отработанных газов 13, истекающих из сопла трубчатого газодинамического резонатора 4, где при встрече под высоким давлением четырех высокотемпературных потоков (особенно на участке встречи высокотемпературной газопламенной струи и трех потоков из радиальных щелевых сопел) топливной смеси созданы условия возникновения взрыва взрывоопасной паровоздушной топливной смеси с образованием сверхзвуковой ударной волны со стабильным фронтом детонационного горения за счет:

1. - предельно возможной, заранее подготовленной температуры топливной смеси (порядка 650 град С), обеспечивающей своевременную деструкцию паров топлива.

2. - высокой температуры (порядка 1200 град С) газопламенной струи отработанных газов с продуктами горения топлива,

3. - давления паровоздушной топливной смеси 10 атм,

4. - давления газопламенной струи отработанных газов 15 атм,

5. - высокой турбулизации паровоздушной топливной смеси при столкновении потоков,

6. - взрывоопасной концентрации паров топлива в пределах нижней и верхней норм концентрации.

Возникшее детонационное горение может продолжаться сколь угодно долго в случае уравновешивания скорости детонационного горения со скоростью и объемом подачи взрывоопасной паровоздушной топливной смеси, как это делается в случае спиновой детонации в круговой трубке при постоянной радиальной подаче топлива и окислителя впереди бегущей ударной волны, только в данном случае ударная волна как бы остается на одном месте, а ее бег компенсируется своевременной подачей с необходимой скоростью и объемом взрывоопасной паровоздушной топливной смесью.

Заявленное решение соответствует критерию «изобретательский уровень», так как оно характеризуется совокупностью ряда новых конструктивных и технологических решений, обеспечивающих детонационное горение с возникновением ударной волны и фронтом горения, таких как:

- использование воздушного осевого компрессора для подачи потока необходимого объема воздуха с необходимым давлением;

- использование высокотемпературного, под давлением, потока отработанных газов, пропуская их через сопло трубчатого газодинамического резонатора для встречи с паровоздушными потоками топливной смеси;

- организация встречи четырех радиальных потоков паровоздушной топливной смеси под давлением с высокотемпературным потоком отработанных газов для организации детонационного горения;

- организация движения потока паровоздушной топливной смеси по внутренней поверхности полусферического резонатора через круговое сопло;

- организация испарения под давлением топлива в испарителе;

- смешение воздуха с парами топлива в первой ступени камеры смешения во взрывобезопасной и невоспламеняющейся концентрации 11/30-1/45 в весовом соотношении, обеспечивающем гарантированную взрывобезопасность и невоспламеняемость в условиях камеры смешения;

- смешения с дополнительной долей массы паров топлива, образуя при этом паровоздушную (или иную газовую) топливную смесь взрывоопасной концентрации.

Перечень используемой литературы

- Зельдович Я.Б. «Теория ударных волн».

- Зельдович Я.Б., Компанеец А.С. «Теория детонации».

- Солоухин Р.И. « Ударные волны и детонация в газах».

1. Тяговый модуль постоянного детонационного горения паровоздушной топливной смеси, состоящий из полусферического резонатора, продольного трубчатого газодинамического резонатора, входящего своим соплом в центральную осевую часть снаружи полусферического резонатора (подводящего поток высокотемпературных отработанных газов), кругового сопла по краю полусферического резонатора, обеспечивающего за счет своей конструкции направление потока подогретой взрывоопасной паровоздушной топливной смеси по внутренней поверхности полусферического резонатора, трех радиальных щелевых сопел плоского истечения подогретой паровоздушной топливной смеси под давлением (расположенных по наружному краю полусферического резонатора через 120° и направленных в центральную часть полусферического резонатора в место истечения высокотемпературного потока отработанных газов), двух ступеней камеры смешения воздуха с парами топлива.

2. Тяговый модуль постоянного детонационного горения паровоздушной топливной смеси по п.1, отличающийся тем, что имеет направляющий аппарат подачи сжатого воздуха от компрессора.

3. Тяговый модуль постоянного детонационного горения паровоздушной топливной смеси по п.1, отличающийся тем, что имеет испаритель топлива, подаваемого под давлением, на трубчатом газодинамическом резонаторе.

4. Тяговый модуль постоянного детонационного горения паровоздушной топливной смеси по п.1, отличающийся тем, что имеет две ступени камеры смешения воздуха с парами топлива под давлением, в первой ступени происходит смешение воздуха в паровоздушную топливную смесь в весовом соотношении 1/30-1/45, обеспечивающем гарантированную взрывобезопасность и невоспламеняемость в условиях камеры смешения, во второй ступени камеры смешения топливная смесь первой ступени обогащается парами топлива до состояния взрывоопасной концентрации паров топлива в пределах нижней и верхней норм концентрации.



 

Похожие патенты:

Изобретение относится к камерам сгорания прерывистого действия, таким как камеры пульсирующего горения для сжигания газообразных и жидких топлив, а также к камерам сгорания пульсирующих воздушно-реактивных двигателей.

Изобретение относится к энергетике и может быть использовано для сжигания различных видов топлив. .

Изобретение относится к энергетике, а именно к способам и устройствам для сжигания топлива, в частности, к способам инициирования детонации в горючих смесях и устройствам для их реализации.

Изобретение относится к области испытаний порохов и взрывчатых веществ. .

Изобретение относится к теплоэнергетике и может быть использовано, в частности, в прямоточных котлах. .

Изобретение относится к энергетике и может быть использовано для получения пульсирующего потока продуктов сгорания в различных водогрейных установках. .

Изобретение относится к теплоэнергетике и может быть использовано для организации пульсирующего горения газообразных и жидких топлив в подогревателях жидкости различных мощностей.

Изобретение относится к области авиадвигателестроения, в частности к прямоточным воздушно-реактивным двигателям, и может быть использовано в качестве силовых установок летательных аппаратов со сверхзвуковым полетом.

Изобретение относится к авиадвигателестроению, в частности к реактивным двигателям, и может использоваться для концевого привода воздушных винтов летательных аппаратов, судов на воздушной подушке.

Изобретение относится к области воздушно-реактивных двигателей (ВРД) (реактивной техники) и может быть использовано, в частности, для повышения эффективности полета сверх- и гиперзвуковых летательных аппаратов (ЛА).

Изобретение относится к области прямоточной ракетной техники и может быть использовано при разработке летательных аппаратов упрощенной конструкции, ракетопланов, дельтапланов, парапланов, любительских вертолетов, а также моделей с прямоточными воздушно-реактивными двигателями.

Изобретение относится к авиации и ракетной технике и может быть использовано при создании комбинированных двигательных установок гиперзвуковых летательных аппаратов.

Способ определения полноты сгорания топливной смеси в камере сгорания сверхзвукового прямоточного воздушно-реактивного двигателя заключается в том, что двигатель жестко соединяют с горизонтальной мерительной платформой, платформу устанавливают на поперечные упругие опоры и соединяют с датчиком силы. Датчик силы тарируют грузом заданной массы и измеряют усилие на датчике силы. После этого подают холодный воздух на вход в камеру сгорания и измеряют усилие на датчике силы. Потом дополнительно подают в камеру сгорания топливо, воспламеняют образовавшуюся топливную смесь и в процессе горения смеси измеряют усилие на датчике силы, затем вычисляют полноту сгорания топливной смеси по соотношению, защищаемому настоящим изобретением. Изобретение позволяет повысить точность, надежность и упростить определения полноты сгорания топливной смеси в камере сгорания сверхзвукового прямоточного воздушно-реактивного двигателя. 1 ил.
Наверх