Хрупкое покрытие для исследования деформаций и напряжений на основе карамели

Изобретение относится к определению напряженно-деформированного состояния металлических конструкций высокорисковых объектов нефтяной, газовой и химической отраслей промышленности, систем транспорта и переработки нефти и газа с помощью тензочувствительных хрупких покрытий, что позволяет получить наглядную картину наибольшей концентрации напряжений, получить данные для оценки и прочности потенциально опасных объектов. Хрупкое покрытие для исследования деформаций и напряжений выполнено из смеси, содержащей воду и сахар, при следующем соотношении компонентов, мас.%: вода 65-75, сахар 25-35. Техническим результатом изобретения является обеспечение возможности снижения вредного воздействия на окружающую среду. 1 табл.

 

Изобретение относится к определению напряженно-деформированного состояния металлических конструкций высокорисковых объектов нефтяной, газовой и химической промышленности, систем транспорта и переработки нефти и газа с помощью тензочувствительных хрупких покрытий, что позволяет получить наглядную картину наибольшей концентрации напряжений, получить данные для оценки и прочности потенциально опасных объектов.

Известно хрупкое покрытие на основе искусственных смол, содержащее резорциноформальдегидную смолу СФ-282 с добавлением карбамидоформальдегидного концентрата КФ-85, отвердителя и гексаметилентетрамин /RU 2313551 C1, C09D 161/12, опубл. 27.12.2007/. В качестве отвердителя жидкого карбамидоформальдегидного концентрата взят водный раствор формалина, этиленгликоля и карбоксиметилцеллюлозы.

Недостатком известного покрытия является то, что оно формировалось в течение длительного времени (порядка 20 часов).

Известно хрупкое тензочувствительное покрытие на основе искусственных смол, выполненное из смеси, содержащей резорциноформальдегидную смолу марки СФ-282 с добавлением карбамидоформальдегидного концентрата КФК-85 и отвердитель жидкий карбамидоформальдегидного концентрата ОЖ-102, в качестве которого использована смесь формалина, этиленгликоля и крахмала, при этом на 100 массовых частей резорциноформальдегидной смолы СФ-282 компоненты взяты в следующем соотношении, %: карбамидоформальдегидный концентрат КФК-85 - 35-50; отвердитель ОЖ-102 - 22-25 соответственно /RU 2313551 C1, C09D 161/12, опубл. 27.12.2007/.

Применение хрупких тензочувствительных покрытий дает возможность для выявления наиболее напряженных зон в детали и определения в них величин деформаций для проверки ее прочности.

Критерием прочности материала хрупкого покрытия является максимальное растягивающее напряжение, т.е. трещина в хрупком покрытии возникает тогда, когда величина максимального растягивающего напряжения в покрытии достигает определенной критической величины, не зависящей от типа напряженного состояния.

Основная задача, на решение которой направлено заявленное техническое решение, - это создание для оценки прочности и безопасности сложных технических систем хрупкого покрытия безвердного для человека и окружающей среды. В тонком слое хрупкого покрытия при деформации наблюдается картина трещин, отражающих поле наибольших главных напряжений, возникающих в конструкции, в процессе ее нагружения. Анализируя картины трещин можно оценить не только нагруженность различных зон исследуемой конструкции, но и определить уровень этих напряжений с применением характеристик тензочувствительности хрупкого покрытия.

При осуществлении изобретения поставленная задача решается за счет достижения технического результата, который заключается в снижении вредного воздействия на окружающую среду.

Указанный технический результат достигается тем, что хрупкое покрытие для исследования деформаций и напряжений выполнено из смеси, содержащей воду и сахар, при следующем соотношении компонентов, мас.%: вода 65-75, сахар 25-35.

Данный состав смешивается при нормальных условиях в весовых частях. Последовательность приготовления хрупкого покрятия: отмеряется необходимое количество сахара, затем, перемешивая, добавляется требуемое количество воды. Затем при помешивании данный состав доводится до готовности при температуре 100-130°C. После полного растворения сахара и образования густой консистенции состав наносится на образец.

Технология приготовления покрытия очень проста, не требует определенных затрат. Приготовленная смесь используется сразу же, при помощи лакового нанесения. Покрытие отверждается при температуре 0-35°C, влажности 0-85% в течение 15 часов. Изменение условий влияет лишь на скорость отверждения. Для нанесения покрытия на образцы использовалась кисть.

Тарировочные испытания проводились при температуре воздуха 5, 10, 15, 25°C, влажности 18-70%.

Для нанесения покрытия на образцы - сталь №3 - использовалась кисть. При тарировочных испытаниях образец консольно закрепляли и нагружали на свободном конце.

Для получения сопоставительных данных приготовленную смесь наносили на образцы размерами 285×20×0,6 (см. таблицу).

Компоненты Взятое количественное содержание компонентов, мас. %
вода 60 65 70 75
сахар 40 35 30 25

Изменение вводимого в состав соотношения сахара ниже 25% или выше 35% снижает чувствительность покрытия, приводит к появлению пластичности, что снижает качество хрупкого покрытия. При содержании воды в составе более 75% заметно возрастает его чувствительность к изменению температуры и влажности среды, что оказывает воздействие на отверждение покрытия и при его охлаждении наблюдается появление усадочных трещин.

Хрупкое покрытие для исследования деформаций и напряжений, выполненное из смеси, содержащей воду и сахар, при следующем соотношении компонентов, мас.%:

вода 65-75
сахар 25-35



 

Похожие патенты:

Изобретение относится к подъемно-транспортному машиностроению. .

Изобретение относится к машиностроению. .

Изобретение относится к областям измерительной техники и неразрушающего контроля и предназначено для определения компонентов тензора механических напряжений в изделиях из ферромагнитных материалов при двухмерном напряженно-деформированном состоянии.

Изобретение относится к метрологии, в частности к визуальным индикаторам давления и манометрам. .

Изобретение относится к измерительной технике и может быть использовано для взвешивания в движении транспортных средств. .

Изобретение относится к способам оперативного диагностирования деталей из полимерных композиционных материалов (ПКМ) в эксплуатации и может быть использовано для выявления появляющихся дефектов изделий, агрегатов, узлов и деталей в авиакосмической, авиационной, судостроительной и других отраслях машиностроения.

Изобретение относится к горному делу, в частности к приборам измерения проявления горного давления, а именно к датчикам для измерения натяжения анкера. .

Изобретение относится к области измерительной техники и может быть использовано для измерения усилий в подъемных устройствах. .

Изобретение относится к измерительному преобразователю давления для датчика давления для определения, по меньшей мере, одного давления в технологической среде. .

Изобретение относится к области измерительной техники и может быть использовано в приборостроении и машиностроении для измерения деформации. .

Изобретение относится к области приборостроения, в частности к элементам системы безопасности работы реакторных установок (РУ)

Изобретение относится к измерительной технике и может быть использовано при определении закалочных остаточных напряжений в деталях и заготовках. Заявленный способ определения закалочных остаточных напряжений включает закалку образцов и определение закалочных остаточных напряжений, при этом из тонких пластин одинакового размера, предварительно пронумерованных и размеченных, формируют пакет, подвергают его закалке, после чего измеряют деформации изгиба пластин в двух плоскостях, по которым рассчитывают закалочные остаточные напряжения. Технический результат, достигаемый от реализации заявленного способа, заключается в повышении точности определения закалочных остаточных напряжений. 6 ил.

Изобретение относится к метрологической технике, а именно к технике обеспечения единства измерения силы. Техническим результатом является упрощение конструкции устройства. Машина силовоспроизводящая эталонная состоит из нагружающего модуля, включающего силовую раму, образованную основанием с силовыми гидроцилиндрами с поршнями-колоннами и траверсой, реверсной рамы, соосной с силовой рамой и снабженной устройством установочного перемещения ее относительно траверсы силовой рамы, опирающейся на траверсу силовой рамы через посредство эталонного датчика силы сжатия, и соединяемую поверяемым датчиком силы растяжения с основанием, системы гидропривода нагружения системы управления, системы индикации силы нагружения штатного эталонного датчика силы, электрических и гидравлических линий связей агрегатов и блоков машины. Машина силовоспроизводящая эталонная снабжена расположенной в рабочей зоне силовой рамы дополнительной траверсой, жестко связанной посредством колон-стоек с основанием силовой рамы и образующей с нижней поперечиной реверсной рамы зону установки поверяемых датчиков силы (динамометров) сжатия. 1 ил.

Изобретение относится к области измерений и может быть использовано в машиностроении. Способ заключается в измерении магнитоупругим датчиком, оснащенным угломерным устройством, в заданных точках на поверхности изделия углов наклона площадок наибольших главных напряжений, в подготовке пластин-образцов из материала исследуемого изделия, контроле в них изменения углов наклона площадок наибольших главных напряжений в ходе нагружения. При этом в срединной части пластин-образцов наносят определенным образом риски, формирующие полосы заданной ширины и шероховатости поверхности. В пределах полос до и после нагружения пластин-образцов контролируют изменение углов наклона площадок наибольших главных напряжений к продольным осям пластин-образцов. По результатам контроля делается вывод о возможности применения магнитоупругого метода для определения напряжений в изделиях с различными шероховатостями поверхностей. Технический результат заключается в повышении точности измерений механических напряжений в изделиях из ферромагнитных материалов, прошедших обработку на металлорежущих станках. 1 ил., 1 табл.

Изобретение может быть использовано для измерения малых давлений с повышенной чувствительностью и точностью. Тензорезисторный преобразователь силы содержит упругий элемент, выполненный за одно целое с опорном кольцом. Упругий элемент выполнен с четырьмя сквозными отверстиями с поперечными прорезями в боковой грани. На плоской поверхности упругого элемента над сквозными отверстиями размещены тензорезисторы. Ширина плоской поверхности упругого элемента в местах расположения тензорезисторов выполнена переменной и определяется соответствующим математическим выражением. где b - максимальная ширина плоской поверхности упругого элемента; hmin - минимальная толщина поверхности упругого элемента над сквозным отверстием; l - длина рабочей части упругого элемента; ХT - текущая координата тензорезистора; r - радиус сквозного отверстия. Техническим результатом является увеличение чувствительности тензорезисторного преобразователя силы и повышение точности измерения малых давлений. 3 ил.

Группа изобретений относится к области измерения давления, а именно к фиксации фактов превышения допустимого давления и регистрации величины максимального давления. Способ фиксации факта превышения допустимого давления гидравлической среды и регистрации его максимальной величины основан на использовании зависимости между силой сжатия и упругой деформацией пружины. Фиксация факта превышения давления осуществляется посредством повреждения контрольной мембраны штоком, приводимым в движение поршнем под воздействием силы давления гидравлической среды. Положение штока после фиксации факта свидетельствует о максимальном давлении, воздействию которого подверглись элементы гидравлической системы. Имеется устройство, реализующее приведенный выше способ фиксации факта превышения допустимого давления гидравлической среды. Техническим результатом группы изобретений является разработка способа и устройства, позволяющих зафиксировать факт превышения допустимого давления и его максимальное значение без участия оператора. 2 н.п. ф-лы, 2 ил.

Изобретение относится к элементам конструкции измерителей давления, предотвращающим влияние перегрузки давлением измеряемой среды на точность измерений, и может использоваться в измерительной технике, в частности в датчиках давления с разделительными мембранами. Техническим результатом является обеспечение защиты гофрированной разделительной мембраны датчика давления от перегрузки при быстром изменении давления. Узел разделительной мембраны содержит корпус, на котором неразъемно по периферии прикреплена разделительная гофрированная мембрана. Гофры разделительной мембраны соответствуют гофрам на корпусе под ней и образуют рабочий зазор с корпусом, заполненный разделительной несжимаемой жидкостью. Рабочий зазор соединен с полостью сенсора с помощью двух отверстий на краевом гофре. На гофрированной поверхности корпуса выполнены два радиальных углубления, соединяющих зазор под центральной областью мембраны с отверстиями, соединяющими рабочий зазор с полостью сенсора. 3 ил.

Струйное устройство для измерения отношения абсолютных давлений относится к технике автоматического управления и, в частности, к струйной пневмоавтоматике и может быть использовано в системах регулирования клапанами перепуска воздуха и направляющими аппаратами компрессора газотурбинного двигателя. Содержит чувствительный элемент с каналом питания, приемным каналом и межсопловой камерой, подключенной к каналу управления элемента сравнения с наклонным каналом питания. Угол наклона оси канала питания относительно продольной оси элемента сравнения в сторону канала управления, соединенного с источником низкого давления, менее угла наклона выходных каналов устройства. Технический результат: повышение точности измерения отношения абсолютных давлений, что в свою очередь улучшает качество регулирования компрессоров газотурбинных двигателей. 4 ил.

Изобретение относится к измерительной технике и может быть использовано для измерения давления контролируемой среды. Вибрационный датчик избыточного давления состоит из герметично перекрываемого корпуса, чувствительного элемента, датчика возбуждения колебаний, датчика съема колебаний, усилителя, преобразователя и регистратора. Чувствительный элемент расположен внутри корпуса и принимает давление измеряемой среды. Чувствительный элемент выполнен в виде первичного преобразователя, состоящего из двух соосных труб разного диаметра, соединенных верхними основаниями друг с другом и нижними основаниями друг с другом посредством верхних и нижних фигурных патрубков соответственно. Нижние фигурные патрубки прикреплены к корпусу через вентильный блок. Внутренняя труба первичного преобразователя выполнена с отверстиями. Во внешнюю трубу первичного преобразователя вкручены датчик съема колебаний и датчик возбуждения колебаний, сдвинутые относительно друг друга на 90 градусов. Усилитель соединен входом с датчиком съема колебаний, а выходом с датчиком возбуждения колебаний и преобразователем. Выход преобразователя подключен к регистратору, отображающему величину избыточного давления измеряемой среды. Техническим результатом изобретения является повышение точности, увеличение диапазона и надежности измерения. 2 ил.

Изобретение относится к верхнему строению пути, к рельсам, а именно к способам определения механических напряжений путем измерения изменений магнитных свойств металла. Техническим результатом является повышение точности и непрерывность измерения механических напряжений, снижение трудоемкости работ. Способ определения механических напряжений в рельсах заключается в том, что над неподготовленной поверхностью каждой рельсовой нити на расстоянии 2-5 мм от их поверхности параллельно друг другу устанавливают сканирующие устройства, с помощью которых измеряют остаточную намагниченность металла рельсов. Подключают сканирующие устройства к приемному устройству, установленному на передвигающемся по рельсам приспособлении. Переводят с помощью программного обеспечения получаемые при перемещении сканирующих устройств данные остаточной намагниченности в данные механических напряжений в рельсах. Фиксируют полученные результаты как в реальном времени, так и накапливают в блоке памяти. 4 ил.
Наверх