Измерительное устройство

Изобретение относится к области измерительной техники и может быть использовано в производстве арматуры питания газогидравлических машин для изготовления компенсирующих втулок. Заявленное измерительное устройство содержит штангу со шкалой на одном ее конце, установленную на другом конце штанги втулку, подпружиненную в осевом направлении и отсчетную систему в виде лимбов, сменные кольца на штанге и втулке с диаметрально противоположными радиальными пазами, с размещенными внутри лимбами в одной плоскости, согласно изобретению в нем, втулка разделена на две сопрягаемые части, с возможностью перемещаться относительно друг друга в радиальном направлении, между сменными кольцами и поясками штанги и втулки установлены поворотные кольца, причем отсчетная система снабжена дополнительными лимбами, установленными на наружных поверхностях поясков штанги, втулки, и на поверхности одной из сопрягаемых частей тулки. Технический результат от применения предложенного измерительного устройства состоит в повышении точности определения действительных геометрических размеров замыкающего компенсирующего звена ограниченной длины и увеличенными смещениями фланцев и его изготовления, что положительно сказывается на качестве выполнения сварных швов соединений (за счет уменьшения щелевых зазоров в стыках уменьшается вероятность проплавов, уменьшается усадка материала и т.д.); в сокращении числа измерительных приспособлений, приборов и операций и снижении трудоемкости измерений, в снижении затрат по изготовлению и монтажу компенсирующих замыкающих звеньев газогидравлических машин, а также в расширение области применения и функций измерительного приспособления, а именно - для измерения действительных геометрических параметров замыкающего звена газогидравлической машины, выполненного в виде компенсатора с эксцентриситетом и наклоном стыковочных фланцев. 10 ил.

 

Изобретение относится к области измерительной техники и может быть использовано в производстве арматуры питания газогидравлических машин для изготовления компенсирующих втулок.

Известно измерительное устройство, которое содержит цилиндр, поворачиваемый относительно вертикальной оси, поддерживающий стержень, вокруг которого может поворачиваться плечо с противовесом. Второй стержень, поддерживаемый указанным плечом, обеспечивает поворот второго плеча с противовесом, на котором укреплен зонд. Детали устройства могут смещаться относительно друг друга на три угла в пространстве (заявка Великобритании №1498009, кл. G1X, G1M).

В данном устройстве имеется много деталей достаточно больших линейных размеров, что затрудняет установку его на участке малой длины. Кроме того, данное устройство измеряет не все параметры, определяющие габариты и конфигурацию компенсатора, а также использование его в арматуростроении требует наличия специальной базы для установки.

Недостатком известного технического решения является невозможность измерения радиальных смещений фланцев стыкуемых трубопроводов с компенсатором, выполненным с эксцентриситетом и наклонами фланцев.

Известен измерительный инструмент, содержащий трубчатый элемент, внутри которого скользит второй трубчатый элемент. Имеется пружина, которая стремиться раздвинуть трубчатые элементы так, чтобы их общая длина была максимальной. Предусмотрено приспособление, ограничивающее продольное перемещение и предотвращающее поворот второго трубчатого элемента относительно первого. Продольное перемещение второго трубчатого элемента относительно первого измеряется цилиндрическим указателем. Указатель имеет третий элемент, на наружной поверхности которого нанесена винтовая шкала. Винтовая шкала взаимодействует с отсчетной меткой на первом трубчатом элементе (патент США №4092781, кл. G01B - прототип).

Недостатком известного технического решения является ограниченная область применения, т.е. только для измерения удлинения цепей.

Угловые параметры и смещения осей в радиальном направлении (эксцентриситеты) таким инструментом измерять нельзя.

Задачей предлагаемого изобретения является расширение области применения и функций измерительного приспособления, а именно - для измерения действительных геометрических параметров замыкающего звена газогидравлической машины, выполненного в виде компенсатора с эксцентриситетом и наклоном стыковочных фланцев.

Поставленная задача достигается тем, что в измерительное устройство, содержащее штангу со шкалой на одном ее конце, установленную на другом конце штанги втулку, подпружиненную в осевом направлении и отсчетную систему в виде лимбов, сменные кольца на штанге и втулке с диаметрально противоположными радиальными пазами, с размещенными внутри лимбами в одной плоскости, согласно изобретению в нем, втулка разделена на две сопрягаемые части, с возможностью перемещаться относительно друг друга в радиальном направлении, между сменными кольцами и поясками штанги и втулки установлены поворотные кольца, причем отсчетная система снабжена дополнительными лимбами, установленными на наружных поверхностях поясков штанги, втулки, и на поверхности одной из сопрягаемых частей втулки.

Действительными геометрическими параметрами замыкающего звена газогидравлической машины, выполненного в виде компенсатора с эксцентриситетом и наклоном стыковочных фланцев, являются следующие:

- углы наклона фланцев компенсатора к осям из их центров - α1, α2;

- длина или расстояние между центрами замыкающих фланцев - L;

- углы разворота плоскостей наклона фланцев (углов α1, α2) относительно плоскости эксцентриситета;

- эксцентриситет смещения осей фланцев - e.

Для измерения названных параметров в устройстве имеются линейные шкалы и угломерные лимбы.

На фиг.1 приведен схематичный продольный разрез измерительного устройства и замыкающих фланцев системы трубопроводов. На фиг.2 схематично представлено поворотное кольцо 6. На фиг.3 показаны виды устройства со стороны замыкающих фланцев, на которых выполнены местные разрезы и видно взаимное расположение цапф и угломерных лимбов. На фиг.4 изображены лимбы измерения углов β1, β2 разворота плоскостей наклона фланцев (углы α1, α2) относительно плоскости эксцентриситета е.

На фиг.5 показан разрез устройства в плоскости, перпендикулярной к плоскости, проходящей через оси цапф.

На фиг.6 приведено изображение шкалы измерения эксцентриситета е.

На фиг.7 показан эскиз компенсатора с эксцентриситетом и наклоном фланцев, приведены параметры, определяющие его геометрию.

На фиг.8 приведена схема сварного соединения трубопроводов при помощи компенсатора.

На фиг.9 показана эксцентриковая втулка (компенсатор) по ОСТ 92-8595-74.

На фиг.10 приведен схематичный разрез ассиметричного компенсатора с наклонными фланцами, показан (косвенно) эксцентриситет е.

Элементами измерительного устройства (смотри фиг.1, 2, 3, 4) являются следующие:

1 - штанга;

2 - шкала измерения длины L;

3 - поясок штанги;

4 - бурт пояска штанги;

5 - паз поворотного кольца;

6 - поворотное кольцо;

7 - сферическая боковая поверхность поворотного кольца;

8 - полукольца (см. фиг.2);

9 - радиальная ось пояска;

10 - отверстия в сменных и поворотных кольцах;

11 - радиальные пазы для прохода лимбов;

12 - радиальные пазы для монтажа лимбов;

13 - лимбы измерения угла α1;

14 - поясок сдвигаемой части втулки;

15 - сдвигаемая часть втулки;

16 - лимбы измерения угла аз;

17 - основание втулки;

18 - втулка;

19 - стержень с резьбой;

20 - пружина;

21 - гайка;

22 - лимб измерения угла β1;

23 - лимб измерения угла β2;

24 - цапфа;

24а - поясок втулки (сдвигаемой части);

25 - сменное кольцо;

26 - штифт фиксации составных частей втулки 2;

27 - рукоятка для проворота поворотного кольца 21;

28 - шток штанги;

29 - шкала измерения эксцентриситета е;

30 - риска;

31 - шкала измерения эксцентриситета е;

32 - штифт фиксации штанги 1 от проворота относительно втулки 2;

33 - паз сдвигаемой части;

34 - паз втулки.

Элементами арматуры питания двигателя являются:

40 - первый замыкающий фланец системы трубопроводов;

41 - второй замыкающий фланец системы трубопроводов;

42 - проточка замыкающего фланца;

43, 44 - оси замыкающих фланцев;

45 - компенсатор;

S - сварные швы.

Штанга 1 (см. фиг.1) со шкалой 2 с одной стороны имеет поясок 3, на бурте 4 которого по пазу 5 установлено поворотное кольцо 6 со сферической боковой поверхностью 7, состоящее из 2-х скрепленных по периметру между собой полуколец 8 (см. фиг.2). На радиальной оси 9 с двух сторон в поворотном кольце с обеих диаметрально противоположных сторон выполнены отверстия 10, а на перпендикулярной к этой оси - радиальные пазы 11. В пазы 12 впрессованы лимбы 13 измерения угла α1 (см. фиг.3, 5). С другой стороны устройства в аналогичные пазы второго поворотного кольца 6, установленного на пояске 14 сдвигаемой части втулки 15, в пазы 12 впрессованы лимбы 16 измерения угла α2 (см. фиг.3, 5).

В основание 17 втулки 18 закреплен стержень 19 с резьбами по своим концам, который проходит внутри штанги 1. На стержень 19 одета пружина 20, стремящаяся раздвинуть штангу 1 относительно втулки 18 с установленными на поворотными и сменными кольцами. Штанга 1 вставлена во втулку 18 и закреплена с ней при помощи гайки 21, навернутой на стержень 19. На поворотных кольцах 6 (с их внутренних сторон) в виде концентрических колец установлены лимбы 22, 23 (см. фиг.4) измерения углов β1, β2 разворота плоскостей наклона фланцев относительно плоскости эксцентриситета компенсатора 45 и служат для отсчета углов β1 и β2.

На поворотных кольцах 6, смонтированных на поясках 3 штанги 1 и 14 втулки 18, при помощи цапф 24 установлены сменные кольца 25, выполненные с осевым отверстием, равным диаметру сферы поворотного кольца 6, радиальными отверстиями для установки цапф и радиальными пазами для прохода лимбов 13, 16 измерения углов α1 и α2.

Наружные стыковочные линейные размеры и диаметры колец 25 выполнены равными проточкам 42 замыкающих фланцев 40, 41 системы трубопроводов.

Пружиной 20 штанга 1 и втулка 18 раздвинуты в стороны, а кольца 25 прижаты к замыкающим фланцам 40 и 41. Для ограничения перемещения сдвигаемой части втулки 15 и втулки 18 имеется штифт 26, размещенный в пазу 33 сдвигаемой части и запрессованный в стенке штанги 1. Вращение поворотных колец 6 вокруг поясков штанги и втулки производится при помощи рукоятки 27, ввернутой в поворотное кольцо. Измерение величины эксцентриситета е смещения осей стыковочных фланцев 40, 41 выполняется по шкале 29 (см. фиг.6). Для обеспечения состояния собранного измерительного устройства в шток 28 штанги впрессован штифт 32, а во втулке 18 выполнен паз 34.

Работа измерительного устройства заключается в следующем.

Усилием рук рабочего-сборщика на штангу 1 и втулку 16 сжимается пружина 30 и устройство вставляется между замыкающими фланцами 40 и 41 трубопроводов. Перед установкой устройства визуально определяют расположение плоскости смещения замыкающих фланцев (эксцентриситета е) и устройство вставляют в промежуток между этими фланцами. Затем медленным вращением поворотных колец 6 за рукоятки 27 добиваются точного стыковочного прилегания сменных колец 25 к замыкающим фланцам 40 и 41, т.е. пока оси колец 26 не совпадут с осями 43, 44 фланцев.

После установки измерительного устройства между стыками фланцев 40, 41 трубопроводов по его шкале 2 определяют длину компенсатора, по шкале 29 - эксцентриситет е смещения осей 43 и 44 замыкающих фланцев, по лимбам 13 и 16 - величины углов α1 и α2 наклона фланцев, по лимбам 22 и 23 - разворот плоскостей наклона фланцев (углы β1, β2) относительно плоскости эксцентриситета е.

Полученные значения параметров компенсатора передаются исполнителю (токарю, фрезеровщику) для его изготовления, у которого имеется чертеж с буквенными обозначениями вышеуказанных параметров компенсатора.

Предложенное техническое решение целесообразно применить в случае необходимости изготовления компенсатора ограниченной длины и со значительными смещениями (≈ до 10 мм) замыкающих фланцев трубопроводов, когда применение известных эксцентриковых компенсаторов, например, по ОСТ 92-8595-74 (см. фиг.9) с такими значениями эксцентриситета вызывает повышенное гидравлическое, газовое сопротивление в магистрали или изготовление известных ассиметричных компенсаторов с наклонными фланцами (см. фиг.10) не представляется возможным из-за ограниченности допустимого угла подрезки торцов (до 5°) из конструктивных соображений. Конструкция компенсатора, измеряемого данным устройством, представляет собой комбинацию эксцентрикового и ассиметричного компенсатора, поэтому величина его эксцентриситета равна: e=e1+e2,

где e1 - задаваемое значение эксцентриситета в чертеже конструктором (например 3 мм);

e2 - смещение осей стыков за счет наклона фланцев (например, 5 мм при L=50 мм dу=60 мм компенсатора и углах наклона фланцев 5°).

Таким образом, суммарный эксцентриситет компенсатора в предложенном исполнении составит

e=3+5=8 мм.

При этом сопротивление магистрали в районе компенсатора меняется плавно вследствие отсутствия резких переходов проточной части конструкции.

Приведенными на фиг.9 и 10 компенсаторами по отдельности компенсировать величину, приведенного в качестве примера, эксцентриситета не представляется возможным, тогда как компенсатором, представленным на фиг.7, она компенсируется.

Технический результат от применения предложенного измерительного устройства состоит в обеспечении измерения параметров компенсатора с вышеописанными особенностями.

Применение предложенного измерительного устройства в производстве арматуры питания газогидравлических машин позволит:

1. Повысить точность определения действительных геометрических размеров замыкающего компенсирующего звена ограниченной длины и увеличенными смещениями фланцев и его изготовления, что положительно сказывается на качестве выполнения сварных швов соединений (за счет уменьшения щелевых зазоров в стыках уменьшается вероятность проплавов, уменьшается усадка материала и т.д.);

2. Сократить число измерительных приспособлений, приборов и операций, а следовательно, снизить трудоемкость измерений, особенно при установке на газогидравлической машине нескольких компенсаторов. Все геометрические параметры компенсатора измеряются одной установкой измерительного устройства;

3. Определять параметры компенсаторов различного диаметра за счет замены сменных колец соответствующих диаметров стыков.

Изготовление измерительного устройства вполне доступно производству, его применение окупается снижением затрат по изготовлению и монтажу компенсирующих замыкающих звеньев газогидравлических машин.

Измерительное устройство для измерения действительных геометрических параметров замыкающего звена газогидравлической машины, содержащее штангу со шкалой на одном ее конце, установленную на другом конце штанги втулку, подпружиненную в осевом направлении, и отсчетную систему в виде лимбов, сменные кольца на штанге и втулке с диаметрально противоположными радиальными пазами, с размещенными внутри лимбами в одной плоскости, отличающееся тем, что в нем втулка разделена на две сопрягаемые части с возможностью перемещаться друг относительно друга в радиальном направлении, между сменными кольцами и поясками штанги и втулки установлены поворотные кольца, причем отсчетная система снабжена дополнительными лимбами, установленными на наружных поверхностях поясков штанги, втулки и на поверхности одной из сопрягаемых частей втулки.



 

Похожие патенты:

Изобретение относится к области вооружения, а именно к ракетной технике, в частности к ракетам, регулярно вращающимся по углу крена, например со стартом из ствольной установки.

Изобретение относится к измерительной технике, в частности к способам для измерения ширины и отклонения расположения паза относительно оси несопряженного с ним отверстия.

Изобретение относится к области неразрушающего контроля и может быть использовано для раннего выявления и измерения опасных деформаций ползучести в труднодоступных элементах конструкций.

Изобретение относится к измерительной технике и может быть использовано для измерения угла поворота вала в системах координатного позиционирования инструмента станков с числовым программным управлением, в датчиках абсолютного положения перемещающихся или вращающихся объектов.

Изобретение относится к инженерной биологии и биоиндикации загрязнения окружающей среды измерениями качества ростовых органов различных видов растений, преимущественно древесных растений, например проб в виде отдельных листьев древесных растений с равномерной выпукло-волновой листовой пластинкой, например, дуба.

Изобретение относится к измерительной технике, а именно к средствам для линейных измерений средних диаметров резьбы. .

Изобретение относится к измерительной технике, а именно к профилометрии, топографии. .

Изобретение относится к измерительной технике, а именно к профилометрии, топографии. .

Изобретение относится к области диагностики поверхности твердого тела, в частности к технологии тестирования рельефа сверхгладкой поверхности. .

Изобретение относится к измерительной технике и может быть использовано для контроля размеров, формы и взаимного расположения поверхностей. .

Группа изобретений относится к способам и устройствам для установки заданного взаимного положения стволов и визирных каналов наведения этих стволов. Сущность: наводят базовую ось на первую метку с помощью первого визирного устройства и фиксируют ее в пространстве. Сопрягают устанавливаемое изделие со вторым визирным каналом путем его ввода в канал изделия. Наводят второй визирный канал путем поворота изделия на соседнюю с первой удаленную метку, установленную с учетом параллакса. Разворачивают второй визирный канал вокруг его продольной оси на полуокружность. При этом после наведения второго визирного канала на вторую удаленную метку путем поворота изделия в пространстве измеряют угловые положения изделия в горизонтальной и вертикальной плоскостях. Запоминают полученные значения. После разворота второго визирного канала на полуокружность вокруг его продольной оси путем поворота изделия в пространстве повторно наводят второй визирный канал на вторую удаленную метку. Измеряют угловые положения изделия в горизонтальной и вертикальной плоскостях. Вычисляют средние значения угловых положений изделия в горизонтальной и вертикальной плоскостях. Определяют углы рассогласования между текущим и средним положением изделия в горизонтальной и вертикальной плоскостях. После этого поворачивают изделие в горизонтальной и вертикальной плоскостях на указанные углы рассогласования. Устройство для наведения оси длинномерного изделия содержит пульт управления наведением, визирный канал с приводом вертикального наведения, привод горизонтального наведения визирного канала, привод вертикального и горизонтального наведения изделия, блок вертикального рассогласования, блок горизонтального рассогласования, датчик угла вертикального наведения, датчик угла горизонтального наведения, четыре запоминающих устройства, два двухканальных коммутатора, два сумматора, два блока деления, четыре блока вычитания. Технический результат: уменьшение ошибки выверки, связанной с несоосностью корпуса и телекамеры прибора. 2 н.п. ф-лы, 2 ил.

Изобретение относится к измерительной технике, в частности к способам измерения ширины и отклонения расположения паза, выполненного на торце вала. Корпус с отсчетной головкой и двумя установочными пальцами устанавливают на торец вала, размещая упомянутые пальцы в измеряемом пазу и обеспечивая контакт измерительного щупа с наружной цилиндрической поверхностью в первой ее точке. Выверяют взаимное угловое положение корпуса и вала путем возвратно-поворотных движений корпуса, добиваясь касания установочных пальцев с первой боковой поверхностью измеряемого паза, расположенной с первой точкой касания измерительною щупа по одну сторону от оси упомянутого паза. Снимают первый отсчет. Смещают корпус по торцу вала в направлении ширины измеряемого паза до касания установочных пальцев со второй боковой поверхностью упомянутого паза. Снимают второй отсчет. Переустанавливают с поворотом на 180° корпус, добиваясь касания измерительного щупа с наружной цилиндрической поверхностью вала во второй точке, расположенной диаметрально противоположно ее первой точке. Повторяют выверку взаимного углового положения, добиваясь касания установочных пальцев со второй боковой поверхностью измеряемого паза. Снимают третий отсчет. Определяют ширину измеряемого паза по разнице первых двух отсчетов и с учетом диаметра установочных пальцев, а отклонение от симметричности - по полуразнице первого и третьего отсчетов. Технический результат: измерение параметров паза, расположенного на торце вала. 2 ил.

Способ калибровки рычажных профилемеров включает установку прибора с раскрытыми рычагами, последующую установку калибрующего устройства сверху на профилемер с совмещением пазов калибрующего устройства и паза для перемещения рычага под калибрующим элементом, выставленным на определенный размер радиуса раскрытия рычагов, затем перемещение калибровочного устройства вдоль оси прибора и установку под калибрующим элементом другого рычага калибруемого профилемера, при этом наружная поверхность калибруемого профилемера и опорная поверхность калибровочного устройства совмещаются соосно и беззазорно с помощью прижима опорной поверхности калибруемого прибора и опорной поверхности калибровочного устройства, и величины раскрытия всех рычагов последовательно калибруются однонаправленным устройством. Устройство для осуществления способа калибровки рычажных профилемеров содержит корпус, выполненный в виде сектора, вырезанного из соответствующего размера цилиндра, на нем установлена система выборки зазора между калибруемым прибором и калибровочным устройством и обеспечения соосности корпусов прибора и калибровочного устройства, система состоит из двух соосных с корпусом прибора упоров, жестко связанных с корпусом калибровочного устройства, в центральной части упоров прорезаны перпендикулярно устройству пазы, в которых размещены регуляторы степени прижима, состоящие из связанных между собой через резьбу двух винтов и двух протяженных по длине пластин. На корпусе закреплены штанги с калибрующими элементами, каждый из которых соответствует заданным радиусам раскрытия рычагов прибора. Это позволяет калибровать рычажные измерители профиля и диаметров буровых скважин, профилемеры, каверномеры и радиусомеры с высокой точностью. 2 н.п. ф-лы, 4 ил.

Изобретение относится к области машиностроения и может быть использовано в судостроении, энергетике, нефтяной и газовой промышленности для монтажа центруемых механизмов. Способ включает в себя предварительную центровку, измерение текущих значений параметров центровки валов, окончательную центровку и крепление механизмов. При этом перед центровкой производят нагружение валов механизмов с помощью приспособления заданным изгибающим моментом и поперечной силой. Измеряют прогибы и углы поворота валов обоих механизмов. Снимают приспособление. Рассчитывают излом и смещение в соединении валов по зависимостям: где I - излом в соединении валов; S - смещение в соединении валов. По рассчитанным значениям изломов и смещений производят окончательную центровку механизмов. Технический результат - повышение точности контроля монтажных нагрузок и напряжений в валах и расширение технологических возможностей процессов центровки механизмов. 1 ил.

Изобретение относится к измерительной технике и может быть использовано в машиностроении. Сущность способа заключается в том, что измеритель, например штангенциркуль, измерительными ножками устанавливают на одни поверхности валов (или вала-отверстия), затем переставляют штангенциркуль измерительными ножками на противоположные поверхности (стороны) валов (или вала-отверстия) и алгебраически суммируют известным методом первые показания измерителя со вторыми показаниями, после чего получают удвоенную величину несоосности. Вводят корректирующую величину, равную сумме радиусов валов (или вала-отверстия), известным способом, устанавливают измерительные ножки на максимально удаленные поверхности валов, например, в вертикальном положении и определяют вертикальную несоосность, поворачивают штангенциркуль между этими поверхностями, определяют экстремальную несоосность, а в горизонтальном положении - горизонтальную несоосность. Через заданное время работы механизма, а также через заданный пробег подвижного состава осуществляют повторные измерения несоосности в одном пространственном положении измеряемых поверхностей и по разнице первого и повторных замеров определяют суммарную величину износа отверстия, подшипника и вала. Технический результат заключается в упрощении процесса измерения несоосности и обеспечении возможности проведения измерений в труднодоступных местах. 3 ил.

Изобретение относится к измерительной технике и может быть использовано в машиностроении. Сущность способа заключается в том, что измеритель, например штангенциркуль, измерительными ножками устанавливают на одни поверхности валов (или вала-отверстия), затем переставляют штангенциркуль измерительными ножками на противоположные поверхности (стороны) валов (или вала-отверстия) и алгебраически суммируют известным методом первые показания измерителя со вторыми показаниями, после чего получают удвоенную величину несоосности. Вводят корректирующую величину, равную сумме радиусов валов (или вала-отверстия), известным способом, устанавливают измерительные ножки на максимально удаленные поверхности валов, например, в вертикальном положении и определяют вертикальную несоосность, поворачивают штангенциркуль между этими поверхностями, определяют экстремальную несоосность, а в горизонтальном положении - горизонтальную несоосность. Через заданное время работы механизма, а также через заданный пробег подвижного состава осуществляют повторные измерения несоосности в одном пространственном положении измеряемых поверхностей и по разнице первого и повторных замеров определяют суммарную величину износа отверстия, подшипника и вала. Технический результат заключается в упрощении процесса измерения несоосности и обеспечении возможности проведения измерений в труднодоступных местах. 3 ил.

Использование: для контроля процесса трещинообразования хрупких тензоиндикаторов при изменении уровня нагруженности в исследуемых зонах конструкции. Сущность изобретения заключается в том, что выполняют акустико-эмиссионные измерения сигналов образования трещин в хрупком тензопокрытии с дополнительным измерением концентрации аэрозолей в приповерхностном слое хрупкого тензопокрытия. Концентрацию микрочастиц от толщины оксидной пленки определяют по формуле: , где δ10 - минимальная толщина оксидной пленки, условно принятая равной 10 мкм; Kδ - коэффициент, зависящий от толщины оксидной пленки тензоиндикатора и определяемый экспериментально. Технический результат: обеспечение возможности регистрации процесса структурной перестройки материала задолго до начала разрушения конструкции. 1 з.п. ф-лы, 5 ил.

Использование: для исследования деформации и напряжений в хрупких тензоиндикаторах. Сущность: что проводят акустико-эмиссионнные измерения сигналов образования трещин в хрупком тензопокрытии, при этом дополнительно измеряют концентрацию аэрозолей в приповерхностном слое хрупкого тензопокрытия, при этом при скорости изменения нагрузки до 0,1 кН/с с учетом 30-секундной поправки на задержку регистрации диагностируют процесс разрушения оксидной пленки тензоиндикатора и материала подложки. Технический результат: обеспечение возможности диагностики предельного состояния и раннего предупреждения об опасности разрушения конструкций в процессе их технической эксплуатации, а также оценки прочности, выявления дефектов и зон действия максимальных напряжений в условиях стендовых и натурных испытаний образцов и деталей. 4 ил.

Группа изобретений относится к устройству и способу измерения и корректировки отклонения от параллельности в стержне для ядерного топлива, в частности, отклонения от параллельности на конце, снабженном верхней заглушкой. Устройство, расположенное на стойке (4), содержит место (31) с горизонтальной осью (X) для размещения вышеуказанного топливного стержня; средство (20) для измерения отклонения от параллельности и средство (22) для корректирования вышеуказанного отклонения. Устройство содержит средство (14) позиционирования устройства относительно топливного стержня, состоящее из двух параллельных опор, расположенных на расстоянии друга от друга, при этом каждая из них поддерживает конец вышеуказанного топливного стержня. Опоры выполнены в виде двух подковообразных частей (16.1. 16.2), внутренние концы которых предназначены для опирания на топливный стержень и отстоят друг от друга на заданном расстоянии так, чтобы обеспечить перекрывание опоры стойки, на которую опирается конец с верхней заглушкой топливного стержня, и которая имеет толщину, по существу, равную расстоянию между двумя подковообразными частями (16.1, 16.2). Также устройство содержит средство (32) для удерживания топливного стержня, выполненное с возможностью обеспечения вращения топливного стержня вокруг его продольной оси, которое расположено между средством (14) позиционирования и средствами измерения и корректирования. Средство (32) содержит нижний захват (34) и верхний захват (36), для захватывания топливного стержня, при этом нижний захват (34) образует базу для измерения отклонения от параллельности. Технический результат - обеспечение измерения отклонения от параллельности во время корректирования вышеуказанного отклонения. 2 н. и 10 з.п. ф-лы, 15 ил.

Нутромер самоцентрирующийся относится к общему машиностроению, в частности к контрольно-измерительной технике, и предназначено для измерения и контроля диаметров отверстий и глубоких канавок. Устройство содержит корпус с узлом фиксации, подпружиненный толкатель, размещенный во внутренней полости корпуса соосно последнему с возможностью возвратно-поступательного движения и взаимодействия с индикатором посредством индикаторной головки, установленные параллельно относительно друг друга два несущих рычага, первый из которых жестко закреплен на толкателе, снабженные наконечниками на концах, размещенных соосно друг другу, ручку, закрепленную на толкателе и размещенную с возможностью перемещения в продольной прорези, выполненной в корпусе, причем второй из несущих рычагов снабжен ползуном, установленным с возможностью перемещения по наружной поверхности корпуса и фиксации, при этом корпус снабжен неподвижным упорным торцом, взаимодействующим с пружиной, поджимающей толкатель в сторону индикаторной головки, и дополнительной прорезью, расположенной противоположно первой, для размещения первого несущего рычага, а наконечники выполнены в виде плоских пластин, размещенных в плоскости, параллельной центральной оси, с возможностью взаимодействия своими боковыми поверхностями с поверхностью измеряемого отверстия, причем измерительный наконечник первого несущего рычага снабжен одним скругляющим радиусом, центр которого расположен на оси наконечников, а измерительный наконечник второго несущего рычага снабжен двумя равными скругляющими радиусами, центры которых находятся на оси, перпендикулярной оси наконечников, и на одинаковом расстоянии по обе стороны от нее, и плоскостью, касательной к указанным скругляющим радиусам. Заявленная конструкция устройства нутромера самоцентрирующегося позволит расширить его возможности, повысить точность измерения и удобства его в эксплуатации без применения настроечных колец. 3 ил.
Наверх