Способ защищенной передачи информации с использованием импульсного кодирования

Изобретение относится к радиотехнике и теории связи и может найти применение в системах связи, использующих хаотические маскирующие сигналы для повышения степени защиты передаваемой информации от несанкционированного доступа. Технический результат заключается в повышении степени защиты информации. Способ защищенной передачи информации включает формирование информационного сигнала с закодированной информацией, аддитивное суммирование этого сигнала с хаотическим маскирующим сигналом, передачу суммарного сигнала по каналу связи к приемному устройству, детектирование информации, в процессе детектирования проводят распознавание информационного сигнала на основе нейросетевого метода. 1 з.п. ф-лы, 4 ил.

 

Изобретение относится к радиотехнике и теории связи и может найти применение в системах связи, использующих хаотические маскирующие сигналы для повышения степени защиты передаваемой информации от несанкционированного доступа.

Применение хаотических сигналов в качестве маскирующих или несущих колебаний представляет собой один из новых способов защиты информации в системах связи, активно разрабатываемый с начала 1990-х годов. Первые работы, посвященные использованию явления динамического хаоса для обеспечения конфиденциальности передаваемой информации, заложили теоретические основы новых принципов кодирования и детектирования информационных сигналов (Cuomo K.M., Oppenheim A.V. Circuit implementation of synchronized chaos with applications to communications // Phys. Rev. Lett. 71, 1993, 65; Cuomo K.M., Oppenheim A.V. Communication using synchronized chaotic systems // US Patent №5291555 от 01.03.1994; Kocarev L., Halle K.S., Eckert K., Chua L.O., Parlitz U. Experimental demonstration of secure communications via chaotic synchronization // Int. J. Bifurcation Chaos. 2, 1992, 709; Dedieu H., Kennedy M.P., Hasler M. Chaos shift keying: modulation and demodulation of a chaotic carrier using self-synchronizing Chua′s circuit // IEEE Trans. Circuits Syst. 40, 1993, 634; Parlitz U. Estimating model parameters from time series by autosynchronization // Phys. Rev. Lett. 76, 1996, 1232). В предложенных структурных схемах практической реализации процедуры детектирования информационных сигналов, передаваемых путем модуляции параметров генератора хаотических колебаний, расположенного в передающем устройстве, или путем аддитивного суммирования информационного сигнала и хаотических маскирующих колебаний, был сделан акцент на явлении полной синхронизации колебаний. Однако эффективность таких структурных схем ограничивается требованием высокой идентичности генераторов приемника и передатчика, которую сложно обеспечить на практике. Несмотря на достигнутые успехи по передаче речевых и музыкальных сигналов в низкочастотном и в радио-диапазонах (Dmitriev A.S., Panas A.I., Starkov S.O. Experiments on speach and music signals transmission using chaos // Int. J. Bifurcation and Chaos. 5(4), 1995, 1249), стало ясно, что применение явления полной хаотической синхронизации не позволяет улучшать характеристики систем связи, использующие хаотические сигналы, так как приводит к серьезным ограничениям на качество канала связи.

Возможными решениями существующей проблемы являются модификации систем связи путем использования явления обобщенной хаотической синхронизации (Короновский А.А., Москаленко О.И., Попов П.В., Храмов А.Е. Способ секретной передачи информации // Патент РФ №2295835 от 20.03.2007) или отказ от принципов хаотической синхронизации и применение альтернативных способов детектирования. В качестве таких способов может быть использована, например, техника реконструкции динамических систем, позволяющая устранить ряд принципиальных проблем, присущих системам связи, использующим принцип синхронизации хаоса (Anishchenko V.S., Pavlov A.N. Global reconstruction in application to multichannel communication // Phys. Rev. E. 57, 1998, 2455; Павлов А.Н., Анищенко B.C. Способ многоканальной конфиденциальной передачи информации // Патент РФ №2382502 от 20.02.2010). Значительный прогресс в развитии систем связи, применяющих явление динамического хаоса, был достигнут в работах группы А.С. Дмитриева (ИРЭ РАН), предложивших схему прямохаотической радиосвязи и использование для передачи сообщений хаотических радиоимпульсов (Дмитриев А.С., Панас А.И., Старков С.О. и др. Способ передачи информации с помощью хаотических сигналов // Патент РФ №2185032 от 27.07.2000; Дмитриев А.С., Панас А.И. Динамический хаос. Новые носители информации для систем связи. М: Физматлит, 2002).

Вместе с тем следует отметить, что применение хаотических колебаний для защиты передаваемых информационных сообщений в настоящее время относится к числу развивающихся направлений, и разработка новых принципов кодирования и детектирования передаваемых сигналов, способных обеспечить возможности создания систем связи, конкурентоспособных по сравнению с существующими аналогами или превосходящих их, является актуальной задачей науки и техники. С этой целью представляется целесообразным использование современных информационных технологий в области анализа сложных сигналов и систем.

Наиболее близким к предлагаемому нами способу защищенной передачи информации является метод, предложенный в работе Cuomo K.M., Oppenheim A.V. Circuit implementation of synchronized chaos with applications to communications // Phys. Rev. Lett. 71, 1993, 65. Данный метод предусматривает добавление хаотического маскирующего сигнала к передаваемому информационному сигналу и проведение процедуры детектирования на основе явления полной синхронизации колебаний. Основным недостатком данного метода является принцип детектирования, не позволяющий обеспечить приемлемое качество передачи сообщений.

Задачей настоящего изобретения является разработка нового способа защищенной передачи информации с использованием импульсного кодирования и альтернативного принципа детектирования информационных сигналов.

Технический результат, достигаемый в предлагаемом способе передачи информации, состоит в упрощении его реализации за счет перехода от систем связи с двумя идентичными генераторами хаотических колебаний в приемном и передающем устройствах к системам связи, содержащим генераторы импульсных сигналов только в передающем устройстве и не требующих их идентичности. Кроме того, предлагаемый способ является более производительным, так как предусматривает новый принцип детектирования передаваемых сообщений, основанный на нейросетевом методе распознавания сигналов.

Поставленная задача достигается тем, что способ защищенной передачи информации, включающий формирование информационного сигнала с закодированной информацией, аддитивное суммирование информационного сигнала с хаотическим маскирующим сигналом, передачу суммарного сигнала по каналу связи к приемному устройству, детектирование информации, согласно решению в качестве информационного и маскирующего сигналов используют последовательности одиночных импульсов подобной формы, при этом кодирование информации осуществляют расстоянием между соседними импульсами информационного сигнала, и в процессе детектирования проводят распознавание формы импульсов на основе нейросетевого метода и преобразуют интервалы времени между импульсами информационного сигнала в информацию. При аддитивном суммировании информационного сигнала с хаотическим маскирующим сигналом дополнительно подмешивают шум.

Распознавание формы импульсов осуществляют с использованием блока цифровой обработки сигналов, выполненного с возможностью идентифицировать похожие по форме одиночные импульсы в условиях помех с использованием принципов нейросетевого распознавания образов.

Изобретение поясняется чертежами, где на фиг.1 и фиг.2 представлены результаты распознавания последовательностей близких по форме одиночных импульсов при наличии помех на основе стандартного метода анализа главных компонент (Jolliffe I.T. Principal Component Analysis, NY: Springer, 2002) (фиг.1) и метода искусственных нейронных сетей (Хайкин С. Нейронные сети: полный курс, М.: Вильямс, 2006) (фиг.2), схема для реализации системы передачи информации с использованием импульсного кодирования (фиг.3), а на фиг.4 представлены иллюстрации, характеризующие эффективность системы передачи информации, где приняты следующие обозначения:

1 - блок преобразования информации в точечный процесс;

2 - генератор одиночных импульсов;

3 - генератор хаотической последовательности маскирующих одиночных импульсов;

4 - источник шума;

5 - блок распознавания формы одиночного импульса;

6 - преобразователь точечного процесса в информацию;

7 - передаваемые изображения,

8 - пример детектирования в случае несанкционированного доступа,

9 - детектирование с помощью настроенной нейросети.

Способ заключается в следующем. Информация с помощью блока 1 преобразуется в точечный процесс, кодирующий информацию в интервалах времени между моментами генерации одиночных импульсов, форма которых задается генератором 2. Преобразование в точечный процесс аналогового сигнала может проводиться в рамках модели «накопление-сброс», предусматривающей интегрирование сигнала и генерацию импульсов при достижении интегралом заданного порогового уровня, после чего значение интеграла обнуляется (Racicot D., Longtin A. Interspike interval attractors from chaotically driven neuron models // Physica D, 104, 1997, 184). Полученный информационный сигнал суммируется с хаотической последовательностью маскирующих одиночных импульсов незначительно отличающейся формы, которая генерируется в блоке 3. Для обеспечения защиты передаваемой информации дополнительно подмешивается шум 4, приводящий к искажениям формы импульсов и усложняющий их распознавание. Интенсивность шума является достаточно большой для того, чтобы затруднить процедуру идентификации формы похожих импульсов. Дополнительно данная процедура осложняется наличием шумов в канале связи. В приемном устройстве, включающем блоки 5 и 6, проводится детектирование информационного сигнала. В процессе детектирования осуществляется распознавание зашумленных одиночных импульсов с помощью блока 5, содержащего микропроцессор, запрограммированный на реализацию процедуры нейросетевого метода. Использование микропроцессора является простым и дешевым вариантом исполнения, позволяющим эффективно решать задачу распознавания формы сигнала в условиях сильных помех, Выделенная последовательность одиночных импульсов информационного сигнала в далее преобразуется в информацию в блоке 6. По аналогии, данный способ может быть реализован для цифровых сигналов.

Процедура распознавания последовательности импульсов, кодирующей передаваемое сообщение во временных интервалах между импульсами, базируется на стандартном методе распознавания сигналов на основе искусственных нейронных сетей, использующих перцептронную структуру с применением модели нейрона Маккалока-Питса (Хайкин С. Нейронные сети: полный курс, М.: Вильямс, 2006). Более эффективные методы распознавания могут основываться на вейвлетных нейронных сетях (Q. Zhang, A. Benveniste, Wavelet networks // IEEE Trans. Neural Networks, 3, 1992, 889), способных снизить погрешность идентификации формы зашумленного импульса (Тупицын А.Н., Назимов А.И., Павлов А.Н. Идентификация потенциалов действия малых ансамблей нейронов с применением вейвлет-анализа и метода нейронных сетей // Известия Саратовского университета. Новая серия. Физика. 2, 2009, 49). Выбор того или иного типа нейросети не является принципиальным для практической реализации предлагаемого нами способа защиты передаваемой информации, и определяется техническими требованиями к характеристикам канала связи. В частности, при высоком уровне шумов использование вейвлетных нейронных сетей является более предпочтительным вариантом распознавания форм импульсных сигналов.

Распознавание сигналов с помощью нейросети требует предварительной процедуры ее адаптации (обучения) на заранее известных последовательностях одиночных импульсов, позволяющей далее проводить идентификацию формы зашумленных импульсов, поступающих на вход приемного устройства. Предварительная настройка нейросети на известной последовательности одиночных импульсов генераторов 2 и 3 является «ключом» к последующему отделению информационного сигнала от маскирующей хаотической последовательности импульсов похожей формы. Вне зависимости от выбора типа нейросети, правила обучения можно обобщить в виде следующего алгоритма вычислений:

1) Задаются начальные значения синаптических коэффициентов и пороговых уровней нейросети, а также вейвлет-коэффициентов (в случае использования вейвлетных нейросетей;

2) Проводится распознавание форм одиночных импульсов обучающей выборки. После распознавания каждой формы импульса вычисляется погрешность на основе стандартного алгоритма обратного распространения ошибки (Rumelhart D.E., Hinton G.E., Williams R.J. Learning representations of back-propagation errors // Nature (London) - 1986, 533), и корректируются коэффициенты и пороговые уровни нейросети;

3) Процедура распознавания и коррекции повторяется в течение определенного количества этапов обучения, которое определяется, исходя из специфики решаемой задачи (выбранных форм импульсных сигналов).

После предварительной настройки нейросеть позволяет разделять информационную последовательность одиночных импульсов, кодирующую передаваемое сообщение, и маскирующую хаотическую последовательность импульсов. Не располагая настроенной нейросетью, при высоком уровне шумов, подмешиваемых к передаваемому сигналу, сторонний наблюдатель не сможет достоверно различить формы импульсов генераторов 2 и 3. Это проиллюстрировано на фиг.1 и фиг.2, где приведены примеры распознавания информационной и маскирующей последовательностей близких по форме импульсов при наличии сильных помех. Метод анализа главных компонент, часто применяемый для решения задач распознавания сигналов импульсного типа, приводит к большой ошибке распознавания (более 40% при выбранном уровне фонового шума) (фиг.1), при этом нейросетевой метод обеспечивает ошибку, близкую к нулю (фиг.2).

Сравнительный анализ нейросетевых методов распознавания формы импульсных сигналов и других методов цифровой обработки экспериментальных данных свидетельствует об эффективности аппарата искусственных нейронных сетей при решении данных задач (Тупицын А.Н., Назимов А.И., Павлов А.Н. Идентификация потенциалов действия малых ансамблей нейронов с применением вейвлет-анализа и метода нейронных сетей // Известия Саратовского университета. Новая серия. Физика. 2, 2009, 49). Проведенные тестовые исследования свидетельствуют о возможности распознавания не менее трех последовательностей близких по форме одиночных импульсов с помощью нейросетевых методов. Это позволяет осуществить реализацию системы многоканальной связи, в рамках которой принимаемый на входе приемного устройства несущий сигнал будет содержать несколько информационных сигналов. С точки зрения практической реализации такой системы связи необходимо включить дополнительные блоки в схему, изображенную на фиг.3, а именно, количество блоков 1, 2 и 6 должно равняться количеству одновременно передаваемых информационных сигналов.

После разделения импульсов на кластеры в пространстве характеристик нейросетевого метода, принадлежность каждого конкретного импульса определенному кластеру идентифицируется с помощью стандартного метода k-средних (Lewicki M. А review of methods for spike sorting: the detection and classification of neural potencials // Net. Com. Neu. Sys., 9, 1998, R53). При использовании трех типов импульсов предлагаемый способ позволяет реализовать процедуру одновременной передачи двух информационных сообщений, для чего нужно предусмотреть наличие двух генераторов импульсных сигналов, кодирующих передаваемую информацию, и генератора хаотической последовательности маскирующих одиночных импульсов.

Проведенные исследования подтвердили возможность одновременной передачи не менее двух информационных сигналов, замаскированных в хаотической последовательности одиночных импульсов генератора 3 (фиг.4). К числу достоинств предложенного способа относятся:

1) Отсутствие проблемы идентичности генераторов приемного и передающего устройства, существенно ограничивающей возможности метода (Cuomo K.M., Oppenheim A.V. Circuit implementation of synchronized chaos with applications to communications // Phys. Rev. Lett. 71, 1993, 65), основанного на явлении полной синхронизации хаотических колебаний;

2) Высокая помехоустойчивость способа защищенной передачи информации, существенно превосходящая возможности альтернативного подхода, основанного на реконструкции динамических систем (Павлов А.Н., Анищенко B.C. Способ многоканальной конфиденциальной передачи информации // Патент РФ №2382502 от 20.02.2010);

3) Оригинальный метод детектирования. До настоящего времени аппарат искусственных нейронных сетей не применялся в системах связи, использующих хаотические маскирующие сигналы.

Таким образом, положительньми эффектами заявляемого способа защищенной передачи информации являются высокая помехоустойчивость, возможность многоканальной передачи информации в режиме реального времени и новый принцип детектирования информационных сообщений в приемном устройстве.

1. Способ защищенной передачи информации, включающий формирование информационного сигнала с закодированной информацией, аддитивное суммирование информационного сигнала с хаотическим маскирующим сигналом, передачу суммарного сигнала по каналу связи к приемному устройству, детектирование информации, отличающийся тем, что в качестве информационного и маскирующего сигналов используют последовательности одиночных импульсов подобной формы, при этом кодирование информации осуществляют расстоянием между соседними импульсами информационного сигнала, и в процессе детектирования проводят распознавание формы импульсов на основе нейросетевого метода и преобразуют интервалы времени между импульсами информационного сигнала в информацию.

2. Способ по п.1, отличающийся тем, что при аддитивном суммировании информационного сигнала с хаотическим маскирующим сигналом дополнительно подмешивают шум.



 

Похожие патенты:

Изобретение относится к устройствам обработки шифрования. .

Изобретение относится к области передачи данных. .

Изобретение относится к технике защиты подлинности электронных изображений, сжимаемых алгоритмами сжатия электронных изображений и передаваемых по общедоступным каналам передачи.

Изобретение относится к способу и устройству шифрования в мобильной системе вещания. .

Изобретение относится к системам для защиты каналов связи, реализующим заявленный способ аутентификации пользователя на основе биометрических данных посредством представления и выделения криптографического ключа и аутентификации пользователя.

Изобретение относится к области автоматики и вычислительной техники, в частности к средствам идентификации при предоставлении доступа к автономным ресурсам. .

Изобретение относится к средствам криптографического преобразования данных и может быть использовано в связных, вычислительных и информационных системах для криптографического закрытия информации и вычислении чисел, близких к случайным.

Изобретение относится к области электросвязи, а именно к области криптографических устройств для защиты информации, передаваемой по телекоммуникационным сетям.Устройство состоит из S 2 блоков управляемых подстановок (БУП) 1 и S-1 блоков фиксированных перестановок (БФП) 2.

Изобретение относится к электросвязи и вычислительной технике, а конкретнее к криптографическим способам и устройствам для шифрования данных. .

Изобретение относится к области электросвязи и вычислительной техники, а конкретно к области криптографических способов и устройств для шифрования данных. .

Предлагаются система, способ и сетевой интерфейс для сокрытия существования шифрованного трафика данных в сети связи. Набор знаков генерируют за счет использования набора ключей шифрования для ввода псевдослучайной функции. Каждый знак соответствует значению указателя. Шифрованные детали разделяют на множество частей. Каждую часть секционируют на множество групп и кодируют за счет отображения каждой группы знаком в наборе знаков в соответствии с его значением указателя. Отображенные знаки передают через сеть связи. 3 н. и 17 з.п.ф-лы, 4 ил.

Изобретение относится к устройствам обработки шифрования/дешифрования и компьютерной программе для выполнения обработки блочного шифра с общим ключом. Реализована конфигурация обработки блочного шифра с общим ключом, с улучшенным иммунитетом против атак, таких как атаки способом насыщения и алгебраические атаки (атаки РЯС). В устройстве обработки шифрования, которое выполняет обработку блочного шифра с общим ключом, S-блоки, использующиеся как модули обработки нелинейного преобразования в раундовой функции, установленные в модулях выполнения раундовых функций, выполнены с возможностью использования S-блоков, по меньшей мере, двух разных типов. С такой конфигурацией можно улучшить иммунитет против атак способом насыщения. Кроме того, типы S-блоков представляют собой смесь различных типов. При использовании такой конфигурации можно улучшить иммунитет против алгебраических атак (атак РЯС), реализуя, таким образом, в высокой степени защищенное устройство обработки шифрования. Техническим результатом является повышение трудности криптоанализа и воплощение в высокой степени защищенного алгоритма блочного шифра с общим ключом. 6 н. и 46 з.п. ф-лы, 19 ил.

Изобретение относится к вычислительной технике. Технический результат заключается в повышении безопасности проверки подлинности. Способ верификации динамического пароля, в котором создают мобильным устройством исходный код с помощью программного обеспечения токена и передают этот код через веб-страницу серверу верификации; после верификации исходного кода мобильное устройство с помощью алгоритма Диффи-Хеллмана создает ключ Диффи-Хеллмана согласно своему закрытому ключу Диффи-Хеллмана; и с помощью алгоритма хэширования создает начальное значения токена согласно своему ключу Диффи-Хеллмана; и создает текущий динамический пароль путем выполнения заранее заданного алгоритма обработки начального значения токена и текущего времени и передает этот пароль через веб-страницу серверу верификации; создают сервером верификации динамический пароль сервера верификации в соответствии с полученным исходным кодом с помощью того же алгоритма Диффи-Хеллмана, который был использован мобильным устройством; сервер верификации сравнивает динамический пароль сервера верификации с динамическим паролем, созданным мобильным устройством, и проверяют правильность динамического пароля, созданного мобильным устройством. 2 н. и 11 з.п. ф-лы, 6 ил., 1 табл.

Изобретение относится к широковещательному шифрованию, конкретно к способу управления правами авторизации в широковещательной системе передачи данных. Техническим результатом является снижение требований к средствам безопасности приемников для выполнения условий доступа, определенных в содержащих ключи сообщениях, и управление сложными условиями доступа, основанными на характеристике и свойствах приемного устройства или пользователя. Предложен способ для обеспечения выполнения правил доступа к транслируемому продукту, принимаемому приемниками, который реализуется управляющим центром. Доступ предоставляется ключом продукта, а управляющий центр управляет набором положительных (ПЛА) и отрицательных логических атрибутов (ОЛА) на приемниках, включающий шаги: связывают один ПЛА с одним приемником, имеющим право на указанный атрибут, и загружают в него состояние; связывают один ОЛА с этим приемником, не имеющим права на указанный атрибут, и загружают в него состояние; определяют вторую схему широковещательного шифрования, предназначенную для набора ОЛА и связывающую с каждым ОЛА соответствующий материал ключа дешифрования; формулируют условия доступа к продукту в форме логического выражения на основе атрибутов, объединяя один из ПЛА и один из ОЛА с помощью логической конъюнкции или дизъюнкции; генерируют криптограмму для передачи приемнику путем шифрования ключа доступа с помощью двух объединенных схем широковещательного шифрования в соответствии с указанным логическим выражением. 4 з.п. ф-лы, 1 ил.

Изобретение относится к способу и устройству выполнения криптографического преобразования в электронном компоненте. Технический результат заключается в повышении безопасности установки соединений с аутентификацией пароля за счет повышения эффективности выполнения криптографического преобразования. В способе выполняют получение точки P(X,Y) исходя из параметра t на эллиптической кривой, удовлетворяющей выражению Y2=f(X), и исходя из многочленов X1(t), X2(t), Х3(t) и U(t), удовлетворяющих равенству f(X1(t)).f(X2(t)).f(X3(t))=U(t)2 в Fq, при этом q=3 mod 4, далее получают значение параметра t и определяют точку Р путем выполнения подэтапов, на которых (i) вычисляют Х1=X1(t), X2=X2(t), Х3=Х3(t) и U=U(t), (ii) если элемент f(X1).f(X2) является квадратом, то проверяют, является ли элемент f(X3) квадратом в Fq, и если является, то вычисляют квадратный корень из элемента f(X3), чтобы получить точку Р(Х3), (iii) иначе проверяют, является ли элемент f(X1) квадратом, и если является, вычисляют квадратный корень из f(X1), чтобы получить точку P(X1), (iv) иначе вычисляют квадратный корень элемента f(X2), чтобы получить точку P(X2), и далее эту точку Р используют в криптографическом приложении. 2 н. и 6 з.п. ф-лы, 3 ил.

Изобретение относится к вычислительной технике. Технический результат заключается в повышении эффективности систем передачи и приема информации между первой и второй приемопередающими сторонами. Способ передачи и приема информации между первой и второй приемопередающими сторонами, в котором исходную информацию или ее часть заданного объема, передаваемую первой стороной и представленную соответствующей ей упорядоченно последовательно пронумерованной совокупностью целых чисел, преобразуют предложенным способом с элементами преобразования, известными только на первой стороне, и передают на вторую сторону. На второй стороне ее принимают, преобразуют предложенным способом с элементами преобразования, известными только на второй стороне, и передают на первую сторону. На первой стороне ее принимают, снова преобразуют предложенным способом с элементами преобразования, известными только на первой стороне, и передают обратно на вторую сторону. На второй стороне ее принимают, преобразуют предложенным способом с элементами преобразования, известными только на второй стороне, и восстанавливают исходную информацию или ее часть заданного объема предложенным способом.

Изобретение относится к криптографической обработке сообщений, основанной на использовании точек эллиптической кривой, и, в частности, такой криптографии, которая носит детерминистический характер. Техническим результатом является повышение уровня защиты и сокращение времени вычислений при криптографической обработке за счет эффективного получения точек на эллиптической кривой и отсутствия зависимости времени вычисления от кодируемого сообщения. В электронном компоненте выполняют криптографическое вычисление, содержащее этап получения точек Р на эллиптической кривой. Определяют параметр (11), затем получают координаты Х и Y точки Р (13) посредством применения к этому параметру функции (12). Функция является обратимой и детерминистической функцией. После этого точку Р используют для применения в криптографии для шифрования, или хеширования, или подписи, или аутентификации, или идентификации. 7 н. и 5 з.п. ф-лы, 1 ил.

Изобретение относится к радиотехнике, системам подвижной связи. Техническим результатом является повышение безопасности радиосвязи. Предложен способ идентификации оператора передающей радиостанции, а также устройство персональной подвижной оперативной цифровой широковещательной аудио, видео и текстовой связи - радиостанция. Радиостанция - портативное устройство с процессором, памятью, цветным сенсорным дисплеем, камерой, приемником ГЛОНАСС/GPS, картоприемником формата microSD, одним или более радиомодулем, позволяющее передавать, записывать и многократно воспроизводить видео, аудио, текстовую информацию с привязкой радиообмена к карте местности. Защита радиообмена от прослушивания достигается шифрованием всей передаваемой и хранимой информации алгоритмом с симметричным ключом. Идентификация передающей радиостанции производится путем электронной цифровой подписи передаваемых пакетов и верификации этой подписи на принимающих радиостанциях. Обмен открытыми ключами для верификации подписей производится радиостанциями в широковещательном режиме в составе X.509 сертификатов, которые подписаны авторизационным центром. 2 н.п. ф-лы, 8 ил.

Изобретение относится к защите исполнения криптографического алгоритма (ALG) от пассивного сниффинга. Технический результат - эффективная защита от пассивного сниффинга. Способ защиты исполнения криптографического алгоритма (ALG) от пассивного сниффинга реализует маскирование (MSK) данных, обработанных с помощью криптографического алгоритма. Маскирование (MSK) упомянутых данных включает в себя этап линейного кодирования, такой как х'=х·L+с, где х - данные, которые необходимо маскировать, х' - соответствующие маскированные данные, с - кодовое слово, включенное в линейный код С, и L - матрица, состоящая из линейно независимых векторов, не включенных в линейный код С. Настоящее изобретение также относится к устройству (SC), реализующему такой способ. 2 н. и 12 з.п. ф-лы, 2 ил.

Группа изобретений относится к области защиты данных, записанных в хранилище с долговременной памятью, и может быть использована для защиты доступности и конфиденциальности данных. Техническим результатом является повышение защищенности данных. В способе защиты доступности и конфиденциальности хранимых данных для каждого информационного блока из множества обратимых случайных преобразований выбирается случайным или псевдослучайным образом номер r одного кодирующего правила, которое затем применяется к кодовому блоку; полученное кодовое слово разбивается на t частей, к каждой из которых дописывается часть секрета, полученная по числу r с помощью подходящей схемы разделения секрета, после чего полученные части объединяются. 4 н. и 5 з.п. ф-лы, 20 ил.
Наверх