Оптический монокристалл

Монокристаллы предназначены для ИК-техники и для изготовления из них методом экструзии одно- и многомодовых ИК-световодов для спектрального диапазона от 2 до 50 мкм, при этом формируется нанокристаллическая структура ИК-световодов с размером зерна от 30 до 100 нм, определяющая их функциональные свойства. Монокристалл изготовлен на основе бромида серебра и твердого раствора бромида и йодида одновалентного таллия (TlBr0.46I0.54) при следующем соотношении компонентов в мас.%: бромид серебра - 99,5-65,0; твердый раствор TlBr0.46I0.54-0,5-35,0. Технический результат - воспроизводимость и прогнозируемость свойств, отсутствие эффекта спайности, устойчивость к радиационному, ультрафиолетовому, видимому и ИК-излучению.

 

Изобретение относится к монокристаллам, а именно к оптическим материалам, прозрачным без окон поглощения от 0,4 до 50,0 мкм.

Основными свойствами монокристаллов, предназначенных, в первую очередь, для изготовления из них методом экструзии фотонно-кристаллических инфракрасных (ИК) - световодов нанокристаллической структуры обладающих такими свойствами, как одномодовый режим работы и с расширенным полем моды, является отсутствие спайности у монокристаллов, радиационная прочность (устойчивость к ультрафиолетовому, видимому и ИК излучениям), прозрачность (спектральное пропускание) в диапазоне от 0,4 до 50,0. Кроме того, для изготовления указанных световодов необходимы монокристаллы с различными показателями преломления, т.е. переменного химического состава с воспроизводимыми и прогнозируемыми свойствами.

Известен оптический монокристалл на основе твердого раствора AgCl-AgBr, дополнительно содержащий две изовалентные примеси: катионную - одновалентный таллий и анионную - йод. Монокристалл содержит в мас.%:

хлорид серебра - 18,0-22,0;

бромид серебра - 77,5-76,5;

иодид серебра - 0,5-1,5;

иодид одновалентного таллия - 1,0-3,0.

[Патент на изобретение №2288489 РФ. Оптический монокристалл. Жукова Л.В., Жуков В.В., Пилюгин В.П. Заявл. 13.05.2005; опубл. 27.11.2006. Бюл. №33]. Но эти монокристаллы не обладают нужным химическим составом, т.е. требуемыми показателями преломления, которые необходимы для вновь создаваемых одномодовых и с расширенным полем моды ИК - световодов. Кроме того, кристаллы таких составов мене устойчивы к радиационному, ультрафиолетовому, видимому и ИК излучениям, чем требуется для практического применения.

Наиболее близким техническим решением является оптический монокристалл, включающий твердый раствор на основе бромида серебра и йодида одновалентного таллия, отличающийся тем, что он содержит бромид серебра, йодид одновалентного таллия при следующем соотношении ингредиентов, мас.%:

бромид серебра 99,5-90,0
йодид одновалентного таллия 0,5-10,0.

[Патент на изобретение №2413253 РФ. Оптический монокристалл. Корсаков А.С., Гребнева А.А., Жукова Л.В., Чазов А.И., Булатов Н.К. Заявл. 24.02.2009; опубл. 27.02.2011. Бюл. №6]. Но монокристаллы указанного химического состава также не удается стабильно получать с воспроизводимыми свойствами, а именно повышенной устойчивостью к ультрафиолетовому, видимому, инфракрасному и радиационному излучениям и требуемыми показателями преломления. Кроме того, монокристаллы прозрачны только до 45 мкм.

Задачей изобретения является создание монокристаллов оптимального химического состава на основе бромида серебра и твердого раствора TlBr0.46I0.54 с воспроизводимыми стабильными и прогнозируемыми свойствами, не обладающих эффектом спайности. Кристаллы имеют показатель преломления от 2,209 до 2,305 на длине излучения CO2 лазера (λ=10,6 мкм) и прозрачны в спектральном диапазоне от 0,4 до 50,0 мкм, а также по сравнению с прототипом устойчивы от 5 до 10 раз в, зависимости от химического состава, к радиационному, ультрафиолетовому, видимому и ИК-излучению.

Поставленная задача решается за счет того, что оптический монокристалл на основе бромида серебра дополнительно содержит твердый раствор бромида и йодида одновалентного таллия (TlBr0.46I0.54) при следующем соотношении компонентов в мас.%:

бромид серебра - 99,5-65,0;
твердый раствор TlBr0.46I0.54 - 0,5-35,0.

Новые монокристаллы обладают следующими преимуществами:

1. При помощи специальных технологий монокристаллы изготавливают оптимальных химических составов, поэтому они обладают воспроизводимыми и задаваемыми (прогнозируемыми) функциональными свойствами.

2. Показатель преломления монокристаллов в зависимости от химического состава имеет величину от 2,209 до 2,305 для работы на длине волны 10,6 мкм, по сравнению с прототипом от 2,203 до 2,24.

3. Повышена по отношению к прототипу устойчивость в 5-10 раз к радиационному, ультрафиолетовому, видимому и ИК-излучениям в зависимости от состава кристалла, т.е. оптические свойства монокристаллов не изменяются при прохождении электромагнитного излучения.

4. Расширен диапазон прозрачности в дальнюю инфракрасную область спектра до 50 мкм (в прототипе до 45 мкм).

Сущность изобретения состоит в том, что создан новый оптический монокристалл на основе AgBr, имеющего кубическую модификацию, и твердого раствора бромида и йодида одновалентного таллия (TlBr0.46I0.54), имеющего также кубическую модификацию. В связи с этим возможно ввести твердый раствор TlBr0.46I0.54 до 35 мас.% в кристаллическую решетку AgBr, против, как в прототипе, только до 10 мас.% йодида одновалентного таллия, т.к. TlI имеет ромбическую модификацию. За счет присутствия в монокристалле радиационно-стойких и тяжелых по молекулярной массе твердых растворов на основе галогенидов одновалентного таллия (TlBr0.46I0.54) повышается устойчивость к ультрафиолетовому, видимому, инфракрасному и радиационному излучениям, расширяется в длинноволновую область диапазон прозрачности кристаллов до 50 мкм, повышается их показатель преломления до 2,305 (см. пример 1). Разработанные монокристаллы предназначены для работы в спектральном диапазоне от 0,4 до 50,0 мкм.

При уменьшении содержания твердого раствора на основе галогенидов одновалентного таллия в бромиде серебра менее 0,5% по массе (см. пример 4) ограничивается диапазон прозрачности, понижается показатель преломления, кроме того кристалл становится менее устойчивым к ультрафиолетовому, видимому, инфракрасному и радиационному излучению. В случае увеличения содержания твердого раствора (TlBr0.46I0.54) в бромиде серебра более 40% по массе (см. пример 5) кристалл вырастает блочным и распадается по границам блоков.

Пример 1.

Вырастили монокристалл по методу Бриджмена с аксиальной вибрацией расплава. Он содержит в мас.%:

бромид серебра - 65,0;
твердый раствор TlBr0.46I0.54 - 35,0.

Монокристалл оптически обработали и измерили показатель преломления, который имел величину 2,305 на длине волны 10,6 мкм. Он прозрачен от видимой до дальней ИК области спектра, т.е. от 0,4 до 50,0 мкм. Оптические свойства монокристалла не изменяются при прохождении через него ультрафиолетового, видимого, ПК и радиационного излучений мощностью, в десять раз большей по отношению к прототипу.

Пример 2.

Вырастили монокристалл состава в мас.%:

бромид серебра - 99,5;
твердый раствор TlBr0.46I0.54 - 0,5.

Монокристалл оптически обработали и измерили следующие характеристики:

1. Показатель преломления: 2,209.

2. Спектральное пропускание: от 0,4 до 50,0 мкм.

Оптические свойства монокристалла не изменяются под действием указанных в примере 1 излучений мощностью, в 5 раз большей по отношению к прототипу.

Пример 3.

Вырастили монокристалл состава в мас.%:

бромид серебра - 80,0;
твердый раствор TlBr0.46I0.54 - 20,0.

Измерены оптические характеристики, указанные в примере 1:

1. Показатель преломления: 2,255.

2. Спектральное пропускание: от 0,4 до 50,0 мкм.

Под действием видимого, ультрафиолетового, инфракрасного и радиационного излучений мощностью, в 7 раз большей по отношению к прототипу, оптические свойства монокристалла не изменяются.

Пример 4.

Методом Бриджмена с аксиальной вибрацией расплава вырастили монокристалл, содержащий в мас.%:

бромид серебра - 99,8;
твердый раствор TlBr0.46I0.54 - 0,2.

Кристалл оптически обработали и измерили: показатель преломления составил 2,03; диапазон прозрачности - от 0,4 до 35,0 мкм. Кристалл устойчив к инфракрасному излучению, но под действием ультрафиолетового, видимого и радиационного излучений разлагается с выделением серебра и окисных соединений серебра.

Пример 5.

Методом Бриджмена вырастили монокристалл, содержащий в мас.%:

бромид серебра - 60,0;
твердый раствор TlBr0.46I0.54 - 40,0.

Кристалл вырос блочным и распадается по границам блоков.

Технический результат позволяет получать оптические монокристаллы на основе бромида серебра и твердых растворов (TlBr0.46I0.54) определенного состава, имеющих показатель преломления от 2,209 до 2,305. Монокристаллы прозрачны от видимой до дальней ПК-области спектра (от 0,4 до 50,0 мкм). Они необходимы для получения методом экструзии фотонно-кристаллических ИК-световодов (одномодовых и с расширенным диаметром поля моды) для спектрального диапазона от 2 до 50 мкм, при этом формируется нанокристаллическая структура ИК-световодов с размером зерна от 30 до 100 нм, определяющая их функциональные свойства.

Оптический монокристалл, включающий в качестве основы бромид серебра, отличающийся тем, что он дополнительно содержит твердый раствор бромида - йодида одновалентного таллия (TlBr0.46I0.54) при следующем соотношении компонентов, мас.%:

бромид серебра 99,5-65,0
твердый раствор (TlBr0.46I0.54) 0,5-35,0



 

Похожие патенты:

Изобретение может быть использовано в фотометрических устройствах для обеспечения диффузного отражения регистрируемого излучения, внутреннего покрытия интегральных фотометров и т.п.

Противоотражательная пленка содержит на своей поверхности структуру глаз мотылька, которая включает множество выпуклых частей, при этом ширина между вершинами смежных выпуклых частей не превышает длину волны видимого света.

Изобретение относится к технологии выращивания монокристаллов германия в форме диска из расплава и может быть использовано для изготовления объективов в устройствах регистрации инфракрасного излучения.
Изобретение относится к офтальмологическому продукту, представляющему собой герметизированную и стерилизованную упаковку, включающую упаковочный раствор и мягкую гидрогелевую контактную линзу, погруженную в упаковочный раствор.
Изобретение относится к области получения материалов прозрачных в инфракрасной области спектра, а именно кристаллов галогенидов серебра, которые могут быть использованы для изготовления оптических элементов прозрачных в области длин волн от 0,4 до 15 мкм, а также для изготовления волоконных световодов среднего ИК диапазона.

Изобретение относится к технологии линз для оптических систем современных оптических и оптоэлектронных приборов, работающих в ультрафиолетовой, видимой и ИК-областях спектров, и может быть использовано при получении плоских линз из лейкосапфира для необыкновенного луча.

Изобретение относится к технологии опто- и микроэлектроники и может быть использовано для получения опалоподобных структур. .

Изобретение относится к области офтальмологии и направлено на создание силикон-гидрогелевых контактных линз с пониженной адсорбцией белков, комфортных и безопасных при использовании, и при этом не требующих больших затрат при производстве, что обеспечивается за счет того, что способ согласно изобретению включает добавление в реакционную смесь эффективного количества соединения, снижающего абсорбцию белков, отверждение указанной смеси в форме для формирования контактной линзы и извлечение линзы из формы с по меньшей мере одним водным раствором. 2 н. и 21 з.п. ф-лы., 10 табл.

Способ состоит в том, что излучение лазера, сфокусированное на поверхности фоточувствительного слоя, модифицируют по глубине пропорционально плотности мощности излучения, распространяющегося в фоточувствительном слое. Перед входом в фокусирующий объектив излучение лазера коллимируют в параллельный пучок диаметром менее входной апертуры упомянутого объектива и смещают параллельно оптической оси на величину, при которой одна из образующих продольного сечения экспонирующего конуса излучения в слое фоторезиста становится параллельной оптической оси фокусирующего объектива. Во втором варианте дополнительно в промежуток между выходной линзой фокусирующего объектива и поверхностью фоточувствительного слоя вводят иммерсионную жидкость. Технический результат - повышение дифракционной эффективности киноформных линз за счет снижения потерь на обратных скатах зон путем увеличения крутизны скатов, формируемых непосредственно в ходе прямой лазерной записи. 2 н.п. ф-лы, 4 ил., 1 табл.

Изобретение может быть использовано для выравнивания поверхностей пластин интерферометров путем локального нанесения на поверхность тонких, компенсирующих неравномерности слоев. Способ включает локальное нанесение лазерным осаждением на поверхность слоя прозрачного или непрозрачного материала. Лазерное осаждение проводят на зеркально отражающие смежные поверхности или покрытия уже скрепленных в интерферометре пластин в зазоре между поверхностями. Зазор заполняют средой, создающей при лазерном облучении на поверхности пленку, и затем локально облучают лазерным излучением поверхность. Толщина наносимого слоя материала может контролироваться в ходе нанесения интерференционным измерением отклонения длины оптического пути луча света между зеркально отражающими поверхностями пластин интерферометра от резонансной для интерферометра. Лазерный луч может сканировать поверхность, причем его интенсивность может быть модулирована длиной оптического пути света между зеркально отражающими поверхностями. Технический результат - обеспечение корректировки формы поверхностей оптических деталей, уже скрепленных между собой в оптическом приборе. 2 з.п. ф-лы, 1 ил.

Изобретение относится к области офтальмологии и направлено на изготовление силиконовых гидрогелевых контактных линз, край которых определяется не соприкосновением формующих поверхностей, а пространственным ограничением излучения, что позволяет использовать форму многократно для изготовления высококачественных контактных линз с хорошей воспроизводимостью, что обеспечивается за счет того, что способ согласно изобретению включает стадии: предоставление формы для изготовления мягкой контактной линзы, где форма включает первую половину формы, образующую первую формующую поверхность, формирующую переднюю поверхность контактной линзы, и вторую половину формы, образующую вторую формующую поверхность, формирующую заднюю поверхность контактной линзы, где указанные первая и вторая половины формы устроены так, что соединяются друг с другом, так что между указанными первой и второй формующими поверхностями образуется полость, введение в полость смеси мономеров образующих линзу материалов, где смесь мономеров включает по меньшей мере один гидрофильный виниловый мономер амидного типа, по меньшей мере один включающий силоксан (мет)акриламидный мономер, по меньшей мере один полисилоксановый виниловый мономер или макромер и от примерно 0,05 до примерно 1,5 мас.% фотоинициатора, где образующий линзу материал характеризуется способностью отверждаться УФ-излучением, обладающим интенсивностью УФ-излучения, равной примерно 4,1 мВт/см2, примерно за 100 с; и облучение с помощью пространственно ограниченного актиничного излучения образующего линзу материала в форме в течение примерно 120 с или менее, чтобы сшить образующий линзу материал с образованием силиконовой гидрогелевой контактной линзы, где изготовленная контактная линза включает переднюю поверхность, сформированную первой формующей поверхностью, противолежащую заднюю поверхность, сформированную второй формующей поверхностью, и край линзы, сформированный в соответствии с пространственным ограничением актиничного излучения. 4 н. и 14 з.п. ф-лы, 9 табл.

Оптическая пленка содержит рельефную структуру типа «глаз мотылька», содержащую многочисленные выступы, которые включают многочисленные наклонные выступы, наклоненные относительно основной поверхности пленки, по существу, в одном и том же направлении на виде в плане основной поверхности пленки. Наклонные выступы расположены на периферическом участке оптической пленки и наклонены внутрь пленки на виде в плане основной поверхности оптической пленки. Способ изготовления содержит этап, на котором прикладывают физическое усилие к структуре типа «глаз мотылька» с тем, чтобы наклонить упомянутые многочисленные выступы. Указанный этап содержит подэтап полировки, заключающийся в том, что полируют структуру moth-eye в предварительно заданном направлении. Технический результат - обеспечение направленности оптических характеристик оптической пленки, например отражения и рассеяния. 3 н. и 16 з.п. ф-лы, 21 ил., 2 табл.

Дифрагирующая излучение пленка имеет поверхность наблюдения и включает упорядоченный периодический массив частиц, включенных в материал матрицы. Массив частиц обладает кристаллической структурой, которая имеет (i) множество первых плоскостей кристалла из упомянутых частиц, которые дифрагируют инфракрасное излучение, где упомянутые первые плоскости кристалла параллельны упомянутой плоскости наблюдения; и (ii) множество вторых плоскостей кристалла из упомянутых частиц, которые дифрагируют видимое излучение. При вращении пленки вокруг оси, перпендикулярной поверхности наблюдения, и при постоянном угле наблюдения упомянутой пленки видимое излучение с одной и той же длиной волны отражается от вторых плоскостей кристалла с интервалами, равными приблизительно 60°. Технический результат - создание пленки для подтверждения подлинности или идентификации объекта. 3 н. и 20 з.п. ф-лы, 5 ил., 5 пр.

Изобретение относится к получению кремнийорганических композиций, находящих свое применение в оптике, в частности для соединения, уплотнения и герметизации стеклянных оптических элементов различных оптических приборов. Композиция состоит из 90-96 мас.% основы - смеси полидиметилсилоксановой (40-60 мас.%) и полиметилфенилсилоксановой (60-40 мас.%) жидкостей вязкостью от 3000 до 40000 мм2/с при температуре 20°С и 4-10 мас.% загустителя - диоксида кремния. Композиция имеет показатель преломления 1,4100-1,4300, значение пенетрации 160-280 единиц и работает в интервале температур от (-70°C) до (+300°C). 2 табл., 12 пр.

Способ включает определение поверхностей остекленной конструкции, которые необходимо изготовить в виде чередующихся параллельных и/или криволинейных полос, при этом определяют коэффициенты отражения, пропускания и поглощения, показатели преломления, геометрические формы, размеры полос и необходимое изменение указанных параметров как вдоль полос, так и поперек них, а также необходимость распределения полос по зонам с разными характеристиками светопропускания так, чтобы при данных углах или диапазонах углов падения лучей через всю остекленную площадь направленно проходила только требуемая часть лучей требуемого диапазона длин волн. Для каждого угла падения в диапазоне 0÷90° определяют общий процент направленного светопропускания как отношение общей площади выходной поверхности, через которую проходят лучи, к площади всей первой приемной поверхности и изготавливают полосы на поверхностях остекленной конструкции путем дополнительной обработки наружной поверхности стекла, и/или приклеиванием на нее пленки с заранее нанесенными полосами, и/или размещением в ламинированном стекле между слоями. Технический результат - обеспечение селективного регулирования по заранее заданному закону величин световых потоков и направлений проходящих через остекленную конструкцию лучей в зависимости от их углов падения. 7 з.п. ф-лы, 12 ил.
Инфракрасный отражатель состоит из металлической подложки, характеризующейся тем, что она покрыта слоем нитрида циркония и хрома общей формулы (ZrxCr1-x)1-yNy с х в диапазоне от 0,15 до 0,7 и y в диапазоне от 0,01 до 0,265. Способ получения включает получение металлической подложки; нанесение на данную подложку слоя нитрида циркония и хрома методом физического осаждения из паровой фазы с использованием: цели, включающей от 15 до 70% по весу циркония, с остальной частью, состоящей из хрома и примесей, неизбежных в процессе обработки, и инжектирования азота с нейтральным газом-носителем в отношении от 4/16 до 16/16 с одновременным напылением циркония и хрома. Технический результат: создание инфракрасного отражателя, обладающего одновременно высокой теплоотражательной способностью и высокой устойчивостью к воздействию высоких температур в коррозионных или окислительных средах. 3 н. и 14 з.п. ф-лы.

Противоотражающий оптический элемент содержит основание и множество структур, расположенных на поверхности основания и представляющих собой выемки или выступы конической формы. Структуры расположены с шагом, меньшим или равным длине волны света области длин волн в окружающей среде использования указанного элемента. Нижние участки структур, расположенных рядом друг с другом, соединены друг с другом. Эффективный показатель преломления в направлении глубины структур постепенно увеличивается в направлении основания и соответствует S-образной изогнутой линии. Структуры имеют единственную ступеньку на боковой поверхности структур. Технический результат - улучшение противоотражающих характеристик. 5 н. и 14 з.п. ф-лы, 60 ил., 1 табл.
Наверх