Способ изучения первичной рекристаллизации

Использование: для изучения первичной рекристаллизации. Сущность: заключается в том, что осуществляют нагартовку образца и повышение его температуры до температуры прохождения рекристаллизации, при этом к образцу прикладывают постоянную нагрузку, приводящую к упругой деформации, а при повышении температуры фиксируют изменение модуля упругости, находят на зависимости изменения модуля упругости в функции температуры зону повышения градиента модуля упругости, продолжают линию, предшествующую началу зоны смены градиентов модуля упругости, продолжают линию после завершения зоны смены градиентов модуля упругости до пересечения с линией, предшествующей зоне смены градиентов модуля упругости, и идентифицируют абсциссу этой точки с температурой начала рекристаллизации. Технический результат: обеспечение возможности нахождения температуры начала рекристаллизации. 1 з.п. ф-лы, 6 ил.

 

Предлагаемый способ относится к области физики, а точнее к методам определения физическими методами температуры начала рекристаллизации металлов и может быть применен в лабораториях металлургических предприятий и исследовательских учреждений.

Из уровня техники известен способ определения параметров рекристаллизации (патент RU 2293965. Способ определения начальной степени рекристаллизации / Л.П. Карпов. Заявитель Федеральное государственное унитарное предприятие "Комбинат "Электрохимприбор" МПК G01N 3/32. Заявл. 16.09.2005. Опубл. 20.02.2007). Способ направлен на определение начальной степени рекристаллизации и заключается в том, что при увеличении микроскопа 900-1000 обнаруживают округлые зерна и определяют потерю микротвердости волокон в местах скопления этих зерен. Применяя способ, можно зафиксировать место и время возникновения рекристаллизации в заготовке, но невозможно определить температуру начала рекристаллизации.

Известен также способ изучения скорости рекристаллизации (патент KR 20040090664. Apparatus and method for measuring re-crystallization rate / Hamada Naoya; Hong Sun Taek; Ju Ung Yong. Заявитель NIPPON STEEL CORP. МПК G01N 29/04; G01N 29/12; G01N 29/44. Заявл. 18.04.2003. Опубл. 26.10.2004). Авторы изобретения предложили применить акустический ультразвуковой метод, при этом за счет измерения частоты колебаний измеряется скорость прохождения рекристаллизации. Однако в методе не рассматривается возможность определения температуры начала рекристаллизации.

Известен метод изучения рекристаллизации, включающий нагартовку образца и повышение его температуры с проведением дифференциальной сканирующей калориметрии или измерением микротвердости (Benchabane G., Boumerzoug Z., Thibon I., Gloriant T. Recrystallization of pure copper investigated by calorimetry and microhardness. Materials characterization. 2008. V.59. P.1425-1428).

Известен также способ измерения температуры рекристаллизации для высокочистого золота (патент JP 2002257762. Measuring method for recrytallization temperature of high purity gold / Aoki Akiyo; Hiragori Shinichi; Tsugita Yasuhiro. Заявитель SUMITOMO METAL MINING CO. МПК G01N 25/20. Заявл. 05.03.2001. Опубл. 11.09.2002). Способ состоит в том, что заготовку подвергают относительному обжатию выше 90% и проводят термический анализ. Пик экзотермической температуры указывает на достижение температуры рекристаллизации. Упомянутые способы измерений требуют применения сложного оборудования для калориметрических исследований.

Известен также способ определения полноты прохождения рекристаллизации, описанный в стандарте ГОСТ 28515-97 (Медь. Метод испытания проб на удлинение спирали. Введ. 01.07.1998). Аналогичные стандарты приняты в других странах, например это стандарт США ASTM В 49 (Standard Specification for Copper Rod Drawing Stock for Electrical Purposes). Способ включает нагартовку проволоки, навивание из нее спирали, нагрев до фиксированной температуры 200°C, нагружение спирали нагрузкой, приводящей к пластической деформации спирали и измерение удлинения спирали. По величине удлинения спирали делают вывод о полноте прохождения процессов рекристаллизации. Недостатком способа является возможность только качественного определения прохождения или не прохождения рекристаллизации при заданной температуре испытаний 200°C. Саму температуру начала рекристаллизации определить не удается.

Широкий обзор методов исследования рекристаллизации представлен в книге Горелик С.С. Рекристаллизация металлов и сплавов, 2 изд. М.: Металлургия. 1978. 568 с. В этом источнике некоторые из известных методов подвергнуты критике вследствие некорректности получаемых результатов.

Наиболее близким по совокупности существенных признаков к заявляемому объекту является способ изучения первичной рекристаллизации (патент RU 2049990. Способ рентгеноструктурного исследования первичной рекристаллизации / О.К. Колеров, А.Н. Логвинов, В.И. Трегуб. Заявитель Самарский государственный аэрокосмический университет. МПК GO1N 23/20. Заявл. 21.01.1993. Опубл. 10.12.1995).

В соответствии с прототипом способ изучения первичной рекристаллизации включает нагартовку образца и повышение его температуры до температуры прохождения рекристаллизации. После достижения температурного интервала рекристаллизации образец рентгенографируют. Полученную в результате рентгенографии дифракционную картину интерпретируют в соответствии с выявленными закономерностями между режимами обработки и длиной волны рентгеновского излучения, с одной стороны, и характеристиками зеренной структуры с другой. В отличие от металлографического способ является неразрушающим, применим к мелкозернистым сплавам после модифицирования, более информативен, позволяет определять параметры первичной рекристаллизации с более высокой точностью и анализировать ее кинетику по толщине (0,1 100) мкм поверхностного слоя объекта.

Способ позволяет определить критическую степень деформации, приводящую при рекристаллизации к интенсивному росту зерна, ее определяют по минимуму зависимости числа точечных рефлексов на интерференционных линиях рентгенограммы от степени деформации.

Недостатком способа является то, что он направлен на установление самого факта прохождения рекристаллизации и установлению критической степени деформации, но он не позволяет определить температуру начала рекристаллизации. Кроме того для достижения результата здесь используется сложный и небезопасный рентгеновский метод исследования.

Технической задачей, поставленной перед настоящим техническим решением, является нахождение температуры начала рекристаллизации.

Предлагаемый способ изучения первичной рекристаллизации включает нагартовку образца и повышение его температуры до температуры прохождения рекристаллизации. Нагартовку образца производят для создания центров будущей рекристаллизации. Повышение температуры предусмотрено для достижения температурного интервала рекристаллизации.

Способ отличается тем, что к образцу прикладывают постоянную нагрузку, приводящую к упругой деформации, а при повышении температуры фиксируют изменение модуля упругости, находят на зависимости изменения модуля упругости в функции температуры зону повышения градиента модуля упругости, продолжают линию, предшествующую началу зоны смены градиентов модуля упругости, продолжают линию после завершения зоны смены градиентов модуля упругости до пересечения с линией, предшествующей зоне смены градиентов модуля упругости и идентифицируют абсциссу этой точки с температурой начала рекристаллизации.

На фиг.1 изображена схема нагружения образца постоянной растягивающей силой Р. На фиг.2 показана зависимость механических напряжений σ от степени деформации 6 с отображением углов наклона частей графиков, характеризующих упругое нагружение. На фиг.3 показана обобщенная зависимость модуля упругости от температуры испытаний. На фиг.4 приведены результаты испытаний медной проволоки.

На фиг.5 приведено фото микроструктуры медной проволоки до наступления момента начала рекристаллизации, а на фото фиг.6 - после начала рекристаллизации.

Способ осуществляется следующим образом. Проводят нагартовку заготовки одним из известных методов обработки давлением (прокаткой, волочением и др.). Далее в одном из видов механических испытаний, например растяжением (фиг.1), к образцу прикладывают постоянную нагрузку Р, приводящую к упругой деформации. При повышении температуры t фиксируют изменение модуля упругости. Этот этап можно выполнить построением диаграммы напряжение σ - степень деформации ε (фиг.2). Здесь показано, что при низкой температуре получают график 1, расположенный выше графика 2, полученного при более высокой температуре. Графики отличаются также углами наклона линейных участков α1 и α2. С помощью этих углов определяют модули упругости: Е1=tgα1 и E2=tgα2. Модули упругости можно определить также с помощью приемов, описанных в стандарте ГОСТ 1497-84 (ИСО 6892-84). Металлы. Методы испытаний на растяжение. Для нахождения модуля упругости здесь применяют отношение приращения напряжения к приращению деформации.

При повышении температуры модуль упругости снижается. Это снижение показано на фиг.3, где изображен график зависимости модуля упругости Е от температуры t. Из графика видно, что линия графика АВ является линейно убывающей на начальном отрезке. Точка смены градиентов свидетельствует о том, что при этой температуре начались процессы изменения текстуры образца, что одновременно приводит к резкому изменению модуля упругости. Модуль упругости меди в зависимости от ориентации текстурных ориентировок может изменяться от 78 ГПа для направления <100> до 159 ГПа для направления <111> (см. например, с.14 справочника Осинцев О.Е., Федоров В.Н. Медь и медные сплавы. Отечественные и зарубежные марки: Справочник. М.: Машиностроение, 2004. 336 с. В зарубежных источниках информации приводятся несколько иные, но близкие к этим величины. При деформации меди, например, волочением, преобладающей ориентировкой становится <111> с характерным для нее высоким модулем упругости, как это показано выше. При отжиге эта ориентировка частично исчезает, что сопровождается довольно резким снижением модуля упругости. Процент этого снижения зависит от уровня предварительно накопленной в процессе нагартовки деформации. Само снижение модуля упругости в этом случае будет говорить о прохождении процессов рекристаллизации, так как изменение текстуры связано с процессом зарождения новых зерен с иной кристаллографической ориентировкой.

На графике фиг.3 зависимости АВ изменения модуля упругости в функции температуры находят зону смены градиентов модуля упругости W и продолжают линию, предшествующую началу зоны смены градиентов, получая линию AM. Продолжают линию после завершения зоны W, получая линию BN. Пересечение этой линии с линией AM приводит к получению точки D. Определяют абсциссу этой точки, она равна температуре начала рекристаллизации tн.

Однако, следует отметить, что стандартный способ в лабораторной практике не очень удобен, т.к. нагревать следует образец большой длины, поскольку от базы измерений зависит точность определения модуля упругости. Поддержание точной и постоянной температуры образца на большой длине представляет собой трудную техническую задачу.

Предлагаемый способ может быть осуществлен за счет того, что приложение к заготовке нагрузки, приводящей к упругой деформации с одновременным постепенным повышением температуры, фиксацию зависимости модуля упругости в функции повышения температуры осуществляют методом динамического механического анализа (ДМА). В этом способе свойства материала измеряются в процессе его периодической деформации с возможным нагревом металла. Приборы, реализующие принцип ДМА, выделены в отдельную группу исследовательской техники выделены в отдельную группу исследовательской техники и получили широкое распространение в изучении реологии пластических и упругих материалов (см. например, стандарт ASTM D 4065-95. Standard practice for determining and reporting dynamic mechanical properties of plastics).

Пример 1. В соответствии с предлагаемым способом образец в виде катанки диаметром 8 мм из меди марки М00 нагартовывали многократным волочением до достижения диаметра 2,39 мм, при этом относительное обжатие составляет 91%.

Для определения модуля упругости металла использован метод динамического механического анализа, который был осуществлен на приборе DMA 242 С, выпускаемого немецкой компанией NETZSCH. Динамический механический анализ основан на измерении реакции образца при приложении к нему нагрузки. Образцы деформировали по схеме трехточечного изгиба. Расчет модуля упругости осуществлялся процессорным устройством прибора. В опыте отрезок проволоки помещали в установку DMA 242 С, нагружали постоянной нагрузкой, приводящей к упругой деформации и повышали температуру до температуры прохождения рекристаллизации.

При повышении температуры фиксировали изменение модуля упругости и получали зависимость модуля упругости в функции температуры (фиг.4, линия 1). На зависимости находили зону смены градиентов функции W1, продолжали линию, предшествующую началу зоны смены градиентов, продолжали линию после завершения зоны смены градиентов до пересечения с линией, предшествующей зоне смены градиентов и определяли абсциссу этой точки, она оказалась равна 242°C. Эту точку можно считать точкой начала рекристаллизации, поскольку, как видно из графика, процесс продолжается дальше, он завершится при более высоких температурах.

Пример 2. В соответствии с предлагаемым способом образец в виде катанки диаметром 8 мм из меди марки M1 нагартовывали многократным волочением до достижения диаметра 1,38 мм, при этом относительное обжатие составляет 97%. Действуя по схеме, изложенной в примере 1, получили зависимость модуля упругости в функции температуры (фиг.4, линия 2). После определения абсциссы характерной точки, выявили, что она равна 222°C. Понижение температуры начала рекристаллизации объясняется большей степенью деформации, приложенной к образцу на этапе нагартовки волочением.

Для подтверждения результатов испытаний изучена микроструктура проволоки до наступления и после наступления температуры начала рекристаллизации. Образцы продольных сечений проволоки подготовлены электрополировкой при температуре 3°C без дополнительного травления. Изображения микроструктур получены в растровом электронном микроскопе Auriga с помощью ионной пушки в ориентационном контрасте.

На фото фиг.5 при увеличении около ×7000 видна деформированная волокнистая структура проволоки диаметром 1,38 мм при скорости нагрева 20 град/мин до температуры 220 град с последующим резким охлаждением потоком холодного газообразного азота. На рисунке не видно ощутимых признаков рекристаллизации.

На фото фиг.6 при том же увеличении приведена деформированная волокнистая структура проволоки диаметром 1,38 мм при скорости нагрева 20 град/мин до температуры 225°C с последующим резким охлаждением потоком холодного газообразного азота. Наблюдается появление отдельных рекристаллизованных зерен размером более 1 мкм (помеченных белыми стрелками), что свидетельствует о начале рекристаллизации. Тем самым показано, что температура начала рекристаллизации действительно может быть равна 222°C, поскольку она лежит в переделах 220…225°C.

Следует отметить, что параметры процесса рекристаллизации зависят от скорости нагрева металла (Бодяко М.Н., Астапчик С.А., Ярошевич Г.Б. Термокинетика рекристаллизации. Минск: Наука и техника, 1968. 252 с. С.93). Полученные данные соответствуют довольно высокой скорости нагрева 20 град/мин, которая часто реализуется приставках совмещенного отжига волочильных установок. При меньших скоростях нагрева можно получить меньшие значения температуры начала рекристаллизации.

В способе по прототипу процесс рекристаллизации изучался на уровне определения критической степени деформации при рекристаллизации, он не направлен на нахождение температуры начала рекристаллизации, кроме того используемые в этом случае рентгеновские методы небезопасны по условиям труда и требуют применения сложного оборудования.

Технический результат предлагаемого решения заключается в нахождении температуры начала рекристаллизации.

1. Способ изучения первичной рекристаллизации, включающий нагартовку образца и повышение его температуры до температуры прохождения рекристаллизации, отличающийся тем, что к образцу прикладывают постоянную нагрузку, приводящую к упругой деформации, а при повышении температуры фиксируют изменение модуля упругости, находят на зависимости изменения модуля упругости в функции температуры зону повышения градиента модуля упругости, продолжают линию, предшествующую началу зоны смены градиентов модуля упругости, продолжают линию после завершения зоны смены градиентов модуля упругости до пересечения с линией, предшествующей зоне смены градиентов модуля упругости, и идентифицируют абсциссу этой точки с температурой начала рекристаллизации.

2. Способ изучения первичной рекристаллизации по п.1, отличающийся тем, что приложение к заготовке нагрузки, приводящей к упругой деформации с одновременным постепенным повышением температуры, фиксацию зависимости модуля упругости в функции повышения температуры осуществляют методом динамическо-механического анализа.



 

Похожие патенты:

Использование: для лазерной вибродефектоскопии крупногабаритных оболочек из полимерных многослойных клееных материалов. Сущность: заключается в том, что устройство лазерного вибропреобразователя содержит корпус с размещенным в нем оптоволокном с объективом лазерного излучения, соединенным с преобразователем, при этом преобразователь выполнен в виде подпружиненного бойка, взаимодействующего одним концом с оптоволокном, установленным в корпусе с возможностью качания, а другим с исследуемым объектом, при этом на подпружиненном бойке жестко закреплена упругая пластина, конец которой жестко связан с корпусом, а подпружиненный боек имеет паз под выступы ротора, установленного в корпусе, при этом оптоволокно оптически связано с отражающим зеркалом, которое также взаимодействует с чувствительным элементом, электрически связанным с вычислительной машиной, при этом сам корпус связан с динамометром посредством пружины сжатия и с устройством перемещения, взаимодействующие между собой с помощью направляющей, при этом в корпусе установлены шаровые опоры, перемещающиеся по исследуемому объекту, обеспечивающие зазор.

Изобретение относится к области анализа материалов, преимущественно смазочных масел, в частности для оценки влияния масел на поверхности деталей двигателей внутреннего сгорания в зонах высоких температур, и может быть использовано в химической и нефтехимической промышленности для оценки моющих свойств масел при их допуске к производству и применению в технике.

Изобретение относится к нанотехнологическому оборудованию и предназначено для идентификации материалов в насыпном виде и экспресс-контроля микромеханических, реологических и микро-электромеханических характеристик продукции, их стабильности на разных стадиях производства продукта и отклонений от эталонных образцов.

Изобретение относится к области определения реологических характеристик пищевых продуктов и применяется для сравнения условной когезии рубленых мясных кулинарных изделий (котлет, биточков, шницелей и др.).

Изобретение относится к области измерительно-испытательной техники и направлено на обеспечение возможности исследования воздействия интенсификаторов на напряжение сдвига материалов и грунтов по поверхности сдвига при изменении угла взаимодействия грунта и поверхности сдвига, что обеспечивается за счет того, что сдвиговый стенд включает обойму со съемным кольцом для размещения образца грунта, пригрузочное приспособление, приводной механизм и поверхность наклонного стола, размещенную под обоймой.

Изобретение относится к области механики деформируемого твердого тела, а именно к методам испытания и анализа физико-механических свойств материалов, преимущественно фрикционных.

Изобретение относится к области трибологии и может быть использовано для исследования процессов внешнего трения скольжения образцов. .

Изобретение относится к прибору для испытаний и способу измерения тенденции бумаги к скручиванию в лазерных принтерах. .

Изобретение относится к устройствам и системам для оценки состояния поверхности искусственных покрытий. .

Изобретение относится к устройствам и системам, предназначенным для оценки состояния поверхности искусственных покрытий. .

Изобретение относится к области методов контроля качества сталей и сплавов. Технический результат - повышение точности измерений. Способ механического испытания труб включает сплющивание трубного образца между двумя гладкими жесткими параллельными плоскостями с постоянной скоростью, определение степени пластичности и деформации образца сжатием до образования в нем первой трещины. При этом деформацию образца осуществляют с регистрацией закрепленным на образце датчиком акустической эмиссии сигналов акустической эмиссии. Момент образования трещины определяют по резкому увеличению сигнала акустической эмиссии, по которому определяют степень пластичности и запас пластичности образца, как относительное превышение пластичности образца заранее установленного предела. 2 ил.

Изобретение относится к испытательной технике и, в частности, к определению коэффициента сцепления транспортного средства с дорожным покрытием. Метод заключается в измерении параметров дорожного покрытия непосредственно на транспортном средстве с учетом его параметров. При этом одновременно измеряются три величины: нормальная нагрузка от колес на дорожное покрытие, суммарная сила на рычаге тяги рулевого управления, возникающей при движении колес под углом к направлению движения транспортного средства и угол схождения колес управляемых колес, с помощью которых рассчитывается коэффициент сцепления. Технический результат заключается в уменьшении трудоемкости процесса измерений, возможности учета характеристик дорожного покрытия и состояния шин конкретного автомобиля. 3 ил.

Изобретение относится к области исследований и анализа физических свойств изделий и материалов и может быть использовано преимущественно для определения физических свойств текстильных изделий путем приложения сжимающих нагрузок. Сущность: нагружающее воздействие на образец изделия производят нагрузкой, которая по форме, весу и динамике воздействия соответствует типичной нагрузке на изделие в процессе его эксплуатации на типичных временных интервалах воздействия, а в качестве показателя, значения которого оценивают по окончании воздействия, принимают относительную деформацию сжатия образца, которую определяют из соотношения. Устройство содержит испытательный стол, нагрузку, измерительную шкалу, указатель изменения положения нагрузки, первый рычаг, на одном конце которого закреплена нагрузка, редуктор-мультипликатор, закрепленный на испытательном столе и кинематически соединенный с указателем изменений положения нагрузки, ось, соединенную одним концом с редуктором, а другим - со вторым концом первого рычага, рамку, закрепленную на испытательном столе, первый и второй цилиндры, соединенные гидравлической линией через дроссельный клапан, и второй рычаг, одним концом шарнирно соединенный с испытательным столом, а в средней части шарнирно соединенный со вторым цилиндром, при этом первый цилиндр шарнирно соединен одним концом с перекладиной рамки, а вторым - с первым рычагом в его средней части. Технический результат: расширение области применения и повышение точности. 2 н.п. ф-лы, 1 ил.

Изобретение относится к испытательной технике, к методам определения механических свойств материалов. Сущность: испытывают одновременно два объекта испытаний. На каждый объект действует нагрузка одной и той же величины. Разные объекты имеют разную длину и площадь сечения, при этом площадь сечения объекта прямо пропорциональна его длине. Один объект представляет собой образец, площадь сечения которого So, длина Lo, а другой объект представляет собой два рядом расположенных образца, нагружаемых одновременно одинаковыми силами, каждый из этих двух образцов имеет площадь сечения So, длину 2×Lo. Оба объекта одноименными концами с помощью гибких, но жестких на растяжение элементов, перекинутых через ролики, вращающиеся без трения вокруг неподвижно закрепленных осей, связывают между собой. На ролике устанавливают стрелочный индикатор. Другие одноименные концы объектов с помощью гибких, но жестких на растяжение элементов крепят к подвижной жесткой легкой траверсе. Объекты крепят так, что при нагружении они и линия действия приложенной к этой траверсе нагрузки располагаются вдоль параллельных прямых. Посередине между точками крепления образцов к траверсе предусмотрена зона приложения нагрузки. О достижении предела линейности механических свойств материала судят по величине угла поворота стрелочного индикатора. Технический результат: облегчение процедуры поддержания пропорциональности нагрузок, действующих на два разных образца для каждого момента времени, отсчитываемого от начала процесса. 1 табл., 1 ил.

Изобретение относится к области инженерных изысканий и предназначено, в частности, для определения распределения реактивных нормальных напряжений грунтовых оснований по площади приложения нагрузки, необходимых для расчета внутренних усилий в теле фундаментов, и может быть использовано для определения деформационных характеристик грунтов. Устройство содержит нагрузочный штамп, блок приложения нагрузки, упорную систему и измерительную систему. Штамп выполнен в виде жесткой конструкции квадратной формы. Под штампом размещена упругая пластина с размерами штампа в плане, толщиной 0,05-0,1 размера сторон штампа и модулем упругости 30-50 МПа. На боковых сторонах упругой пластины нанесена координатная прямоугольная сетка. В измерительную систему введены регистратор приложенной нагрузки и регистратор осадки штампа. На штампе с боковых сторон по осям его симметрии с помощью кронштейнов жестко закреплены видеорегистраторы деформации упругой пластины с возможностью полного обзора боковых сторон упругой пластины. Технический результат: упрощение и удешевление определения распределения реактивного напряжения грунтового основания в любых произвольных точках по подошве штампа и повышение достоверности результатов при одном испытании. 2 ил.

Изобретение относится к области «Физики материального контактного взаимодействия» жесткого плоского тела с пористой материальной средой и предназначено для определения ее параметров деформируемости и прочности. Сущность: материальную среду нагружают жестким плоским перфорированным штампом ступенчато возрастающей нагрузкой до момента потери несущей способности среды и устойчивости на ней штампа. Во времени контролируют параметры давления pi и деформации Si среды при нагружении и строят график испытания, по которому определяют параметры прочности и деформируемости среды. Каждую ступень деформации среды поддерживают постоянной во времени до ее условной стабилизации. Перед заданием последующих ступеней деформации среды упругий динамометрический элемент фиксируют стопорным винтом нагрузочного устройства. Устройство состоит из корпуса с рабочей камерой, неподвижно установленного на дне камеры нижнего жесткого плоского перфорированного штампа, рабочего кольца с образцом материальной среды, установленного в верхней части рабочего кольца на образце среды верхнего жесткого плоского подвижного перфорированного штампа и нагрузочного устройства. Нагрузочное устройство состоит из жесткой рамки с верхней и нижней перекладинами и двух направляющих стоек, толкателя и упругого динамометрического элемента. Технический результат: повышение производительности испытаний среды на сжимаемость и прочность. 2 н.п. ф-лы, 2 ил.

Трибометр // 2559798
Изобретение относится к испытательным и обкаточным стендам. Трибометр состоит из предметного стола, ограничивающей рамки, заполняемой пробой насыпного груза, навески и тягового органа для предметного стола с прибором для определения его тягового усилия. Ограничивающая рамка с помощью опорных катков, закрепленных на боковых кронштейнах, опирается на продольные горизонтальные направляющие, закрепленные на стойках, нижние части которых закреплены на боковых кромках предметного стола. Нижние кромки ограничивающей рамки размещены с зазором над верхней поверхностью размещаемого на предметном столе слоя сыпучего груза. Технический результат - повышение точности измеряемых физико-механических показателей сыпучего груза, влияющих на выбор параметров проектируемых и выбираемых типов транспортных машин. 1 ил.

Использование: механические испытания материалов, в частности определение динамического коэффициента внешнего трения. Для определения динамического коэффициента внешнего трения используются два образца, нижний из которых закрепляют на платформе, способной поворачиваться относительно горизонтальной оси подвески в вертикальной плоскости. Плоскую рабочую поверхность платформы располагают параллельно оси подвески и перпендикулярно плоскости, проходящей через ось подвески и геометрический центр рабочей поверхности платформы. Верхний образец свободно устанавливают на поверхности нижнего, платформу с образцами отклоняют из нижнего положения на некоторый угол θ и отпускают для свободного движения по закону физического маятника. На пути платформы помещают упор, останавливающий ее вместе с нижним образцом в нижнем горизонтальном положении. После измерения пути S, по инерции пройденного верхним образцом на поверхности нижнего, определяют динамический коэффициент внешнего трения по формуле. Техническим результатом является возможность определения динамического коэффициента внешнего трения при ограниченных габаритах образцов одинаковой формы без измерения сил трения путем использования принципа равенства между кинетической энергией образца, движущегося с определенной начальной скоростью, и работой силы трения, совершаемой в процессе относительного перемещения образца до полной его остановки. 1 ил.

Изобретение относится к способам определения компонентного (морфологического) состава и свойств твердых коммунальных отходов (ТКО) с использованием оптико-механической сортировки и предназначено для достоверной оценки ТКО как сырья с целью последующей переработки. Способ оценки компонентного состава твердых коммунальных отходов (ТКО) включает отбор проб ТКО, отделение компонентов первой пробы оптико-механической сортировкой, замер площади и массы каждого компонента пробы. Согласно формуле изобретения массу и место отбора первой анализируемой пробы с неопределенным составом выбирают в зависимости от категорий компонентов, причем первую пробу предварительно сортируют на два типа, а именно не подлежащих и подлежащих оптико-механической сортировке. Не подлежащие сортировке компоненты взвешивают, а у оставшихся компонентов определяют площадь оптико-механической сортировкой и массу каждого компонента в отдельности, после чего вычисляют коэффициент К перевода единиц площади в единицы массы. Далее осуществляют обработку последующих проб ТКО с разных мест отбора в количестве не менее 30. Затем компоненты, не подлежащие оптико-механической сортировке, взвешивают, а для компонентов, подлежащих оптико-механической сортировке, с учетом вычисленных ранее коэффициентов К и величин площадей соответствующих компонентов указанных проб ТКО определяют массу каждого из компонентов и с учетом массы не подлежащих оптико-механической сортировке компонентов и массы остальных компонентов осуществляют расчет компонентного состава всех проб ТКО и оценку потенциала ТКО как сырья. Техническим результатом является получение высокой статистической достоверности и низкой погрешности при оценке компонентного состава твердых коммунальных отходов с широким перечнем компонентов, что позволяет достоверно оценивать их как сырье для последующей переработки и использования содержащихся в нем компонентов. 4 табл.

Изобретение относится к машиностроению, а именно к устройствам для определения состояния контакта опорного валика конвейерной ленты с конвейерной лентой во время ее перемещения. Представленное устройство содержит датчик давления (5), имеющийся на вращающейся поверхности (2а) измерительного валика (2), который вращается в контакте с внутренней периферийной поверхностью (16) конвейерной ленты (15), натянутой между шкивами, и определяет силу сопротивления (f), возникающую при перемещении конвейерной ленты (15) по измерительному валику (2); датчик углового положения (6), определяющий угловое положение на вращающейся поверхности (2а), датчик давления (5). Получаемые с датчиков данные передаются за пределы измерительного валика (2) последовательно беспроводным путем с помощью блока передачи (8), установленного на измерительном валике (2), и принимаются приемником (9). Технический результат заключается в возможности точного определения состояния контакта между конвейерной лентой и опорными валиками. 5 з.п. ф-лы, 5 ил.
Наверх