Состав для заключения гистологических препаратов


G01N1/28 - Исследование или анализ материалов путем определения их химических или физических свойств (разделение материалов вообще B01D,B01J,B03,B07; аппараты, полностью охватываемые каким-либо подклассом, см. в соответствующем подклассе, например B01L; измерение или испытание с помощью ферментов или микроорганизмов C12M,C12Q; исследование грунта основания на стройплощадке E02D 1/00;мониторинговые или диагностические устройства для оборудования для обработки выхлопных газов F01N 11/00; определение изменений влажности при компенсационных измерениях других переменных величин или для коррекции показаний приборов при изменении влажности, см. G01D или соответствующий подкласс, относящийся к измеряемой величине; испытание

Владельцы патента RU 2499988:

Государственное бюджетное образовательное учреждение высшего профессионального образования "Астраханская государственная медицинская академия" Министерства здравоохранения и социального развития Российской Федерации (ГБОУ ВПО АГМА Минздравсоцразвития России) (RU)

Изобретение относится к области медицины и биологии и может быть использовано при изготовлении гистологических препаратов в лабораторных условиях. Состав для заключения гистологических препаратов включает синтетическую смолу, растворитель и вспомогательный компонент. В качестве смолы берут пенополиуретан (ППУ), в качестве растворителя - ксилол и вспомогательного компонента - дибутилфталат при следующем соотношении ингредиентов, мас.%: пенополиуретан 15-20; ксилол 79-84; дибутилфталат 1,0. Использование состава обеспечивает снижение стоимости заливочной среды и повышение качества гистологического препарата при сохранении окраски тканей. 3 табл., 3 пр.

 

Изобретение относится к медицине и биологии и может быть использовано при изготовлении гистологических препаратов в лабораторных условиях.

Известна среда для заключения гистологических препаратов (Меркулов Г.А. Курс патогистологической техники. - М.: «Медицина», 1969. - с.132), где использован раствор полистирола в ксилоле из расчета 30 г на 100 г с добавлением пластификатора дибутилсебацината 6 г на 100 г.

Недостатками этого состава являются:

- длительность приготовления основного раствора;

- длительность его застывания;

- быстрое испарение и необходимость восстанавливать нужную консистенцию;

- растворимость в воде составляет 0,005% при 25°С, что может приводить к ухудшению качества препарата;

- наличие в нем 1,6% воды, что также может сказаться на качестве препарата, способствуя его обводнению;

Известна среда на основе полистирола в ксилоле, где на 25 г берется 68 г ксилола и 6 г дибутилфталата (www.biooptics.narod.ru; Барштейн Р.С., Кириллович В.И., Носовский Ю.Е. Пластификаторы для полимеров. - М., - 1982, с.200). Недостатками этой среды являются:

- большое количество исходных материалов;

- длительное время для приготовления рабочего раствора;

- высокая летучесть при таких концентрациях и необходимость в связи с этим частого добавления растворителя. При этом нарушается равновесие между смолой и пластификатором

Известен аналог - прототип:

среда для заключения гистологических срезов на основе раствора пенопласта в ксилоле с добавлением диметилфталата (патент №2117273 от 10.08.1998). Недостатками известного прототипа является то, что

- при нагревании происходит выделение формалина, в результате чего происходит обесцвечивание препарата;

- при массовом использовании без покровных стекол он выделяется в окружающий воздух;

- необходимость создания для хранения препаратов определенных условий;

- пленка легко отделяется от предметного стекла;

- довольно высокая стоимость от 2500 до 3628 руб за 1000 мл

- более высокая плотность пластификатора;

- не предусматривается использование покровного стекла, что снижает устойчивость препарата к внешним воздействиям, то есть страдает объективность морфологических изменений в срезе;

- далее необходимы особые условия хранения: без доступа прямых солнечных лучей;

- является нефротоксичным и нейротоксичным.

Изобретение направлено на обеспечение снижения стоимости заливочной среды и повышение качества гистологического препарата при сохранении окраски тканей.

Указанный технический результат достигается тем, что в качестве смолы берут пенополиуретан (ППУ), растворителя - ксилол и вспомогательного компонента дибутилфталат при следующих соотношениях ингредиентов, мас.%

Пенополиуретан 15-20
Ксилол 79-84
Дибутилфталат 1,0

В результате проведенных исследований определены оптимальные концентрации исходных ингредиентов (таблица 1), обеспечивающие качество препарата.

Сущность изобретения поясняется на следующих примерах, показывающих обеспечение снижения стоимости заливочной среды и повышение качества гистологического препарата при сохранении окраски тканей.

Пример 1. Для получения состава ППУ при необходимости измельчают и смешивают в соотношении мас.% ксилола 84, ППУ - 15, дибутилфталата 1,0. Полученную смесь перемешивают встряхиванием. Растворение происходит в течение 2-3 минут. Для заключения на предметное стекло с окрашенным срезом наносят каплю состава так, чтобы она полностью покрыла срез. Затем накрывают покровным стеклом. Полное высыхание препарата наступает через 10 минут. Препарат готов к микроскопированию.

Пример 2. Для получения состава ППУ при необходимости измельчают и смешивают в соотношении мас.% ксилола 81, ППУ - 18, дибутилфталата 1,0. Полученную смесь перемешивают встряхиванием. Растворение происходит в течение 3-4 минут. Для заключения на предметное стекло с окрашенным срезом наносят каплю состава так, чтобы она полностью покрыла срез. Затем накрывают покровным стеклом. Полное высыхание препарата наступает через 15 минут. Препарат готов к микрокопированию.

Пример 3. Для получения состава ППУ при необходимости измельчают и смешивают в соотношении мас.% ксилола 79, ППУ - 20, дибутилфталата 1,0. Полученную смесь перемешивают встряхиванием. Растворение происходит в течение 3-5 минут. Для заключения на предметное стекло с окрашенным срезом наносят каплю состава так, чтобы она полностью покрыла срез. Затем накрывают покровным стеклом. Полное высыхание препарата наступает через 16 минут. Препарат готов к микрокопированию.

Использование предложенных нами исходных компонентов существенно снижает стоимость среды. Преимущества предлагаемой среды отражены в таблице 2.

Таким образом, предлагаемая среда в 17,2- 30,21 раза дешевле первой известной среды; в 16,32 - 28,73 раза дешевле второй среды и в 16,53 -29,21 раза дешевле третьей (таблица 3). Предлагаемый состав апробирован при приготовлении гистологических препаратов на кафедрах анатомии, гистологии, патологической анатомии и патологической физиологии.

Таблица 1
Количество ППУ, г Количество ксилола, г Образование пузырьков воздуха, % Растворение, мин Застывание, мин Просветление Пластификатор
10,0 89,0 15 1 120 отсутствует 1,0
15,0 84,0 0,01 2-3 10 удовлетворительное 1,0
20,0 79 0,01 4-5 6 удовлетворительное 1,0
25,0 74,0 0,01 6-8 2 удовлетворительное 1,0
30,0 69,0 0,01 10-15 2 удовлетворительное 1,0
35,0 64,0 0,01 20-30 2 удовлетворительное 1,0
40,0 59,0 0,01 35-45 2 удовлетворительное 1,0
45,0 54,0 0,01 50-80 2 удовлетворительное 1,0
Показатели стоимости вспомогательного компонента среды
Таблица 2
N/N Название компонента вес Цена в рублях
1 полистирол кг 29-74
2 пенополиуретан кг -
3 дибутилсебацинат кг 153,4-280
4 диметилфталат кг 441
5 дибутилфталат кг 93-140

Сравнение известных сред и предлагаемой приведено в таблице 3.

Таблица 3
N/N Среда Стоимость в руб.
1 Полистирол + дибутилсебацинат (8,7-23,7)+(0,92-1,68)=9,62-25,38
2 Полистирол + диметилфталат (8,7-23,7)+0,44=9,14-24,14
3 Полистирол + дибутилфталат (8,7-23,7)+(0,56-0,84)=9,26-24,54
4 Пенополиуретан + дибутилфталат 0,56-0,84

Состав для заключения гистологических препаратов, содержащий синтетическую смолу, растворитель и вспомогательный компонент, отличающийся тем, что в качестве смолы берут пенополиуретан (ППУ), растворителя - ксилол и вспомогательного компонента - дибутилфталат при следующем соотношении ингредиентов, мас.%:

Пенополиуретан 15-20
Ксилол 79-84
Дибутилфталат 1,0



 

Похожие патенты:

Изобретение относится к сварке, в частности к способам создания напряженного состояния в металлических образцах преимущественно из углеродистых и низколегированных сталей, и может быть использовано для тарировки и проверки существующих методов и оборудования для определения напряженного состояния в металлических конструкциях.
Изобретение относится к получению и подготовке образцов для исследования и может быть использовано при гистологических исследованиях биологических образцов тканей, взятых у человека или животных при хирургических вмешательствах или при аутопсии.

Изобретение относится к области металловедения, а именно к способу контроля структурного состояния закаленных низкоуглеродистых сталей. Способ заключается в том, что предварительно готовят образец прямоугольной формы, выполняют косой срез на образце под углом 15-25° от нижнего основания к верхнему, принимая за основание длину образца.

Изобретение относится к области стендовых испытаний авиационных газотурбинных двигателей и предназначено для отбора и точной комплексной оценки загрязненности проб воздуха (подаваемого в систему кондиционирования кабины пилота воздушного судна), отбираемого из компрессора газотурбинного авиационного двигателя (ГТД) при его стендовых испытаниях, и дальнейшего газохроматографического анализа проб на содержание вредных примесей.

Пробоотборник относится к устройству для взятия проб в жидком и текучем состоянии, а именно к пробоотборникам для полуавтоматического отбора проб по всей высоте резервуара с нефтепродуктами.
Изобретение относится к области медицины, а именно к патоморфологической диагностике. Для прогнозирования пятилетней выживаемости пациенток с инвазивным раком молочной железы определяют индекс дисперсии тканевых структур, как разность между максимальным и минимальным значениями числа раковых структур и/или долей паренхиматозного или стромального компонента при микроскопии на малом увеличении (100x) деленную на количество полей зрения, в которых просчитывались эти значения.

Изобретение относится к нефтяной промышленности и может найти применение при отборе проб жидкости из трубопровода. Устройство включает пробозаборную трубку, смонтированную в трубопроводе перпендикулярно движению потока и имеющую входное отверстие щелевидной формы со стороны движения потока.

Изобретение относится к контрольно-измерительной технике, а именно к переработке сыпучих материалов, в том числе содержащих наноструктурированные компоненты, и может быть применено в химической, строительной, пищевой, фармацевтической, радиоэлектронной и других отраслях промышленности.

Изобретение относится к сельскохозяйственному производству, а именно к устройству для отбора проб силоса. Пробоотборник содержит зонд с заостренной режущей кромкой в нижней части, фланец с фаской в верхней, к которому соосно прикреплена штанга меньшего диаметра с мерной шкалой, и извлекатель пробы.

Изобретение относится к устройству для отбора проб уплотненных кормов. Устройство для отбора проб силоса содержит зонд с заостренной режущей кромкой в нижней части, фланец в верхней, к которому жестко прикреплена штанга с мерной шкалой, и извлекатель пробы.

Изобретение относится к медицине, ветеринарии и биологии. Проводят фиксацию образца, декальцинацию, промывание водой, дегидратацию в спиртовых растворах и заливку в парафин. Фиксацию образца проводят в течение 24-х часов в молекулярном фиксаторе FineFix на спиртовой основе, содержащем FineFix и 96° спирт в соотношении 1:2,5. Декальцинацию осуществляют в течение 2-5 суток в 5-8% забуференном растворе муравьиной кислоты при ежедневной смене декальцинирующего раствора и контроле полноты декальцинации. Соотношение образец: декальцинирующий раствор составляет 1:20. После завершения декальцинации проводят промывку образца водой и до стадии дегидратации повторно помещают образец в спиртовой раствор молекулярного фиксатора FineFix на 6-12 часов. Набор для приготовления препарата костной ткани содержит молекулярный фиксатор FineFix на спиртовой основе, концентрированный раствор декальцинатора, изготовленный из расчета 40 г лимоннокислого натрия, 100 мл 90%-ного раствора муравьиной кислоты, 300 мл дистиллированной воды и рабочие растворы для контроля полноты декальцинации, содержащие насыщенный раствор оксалата аммония и 25%-ный водный раствор аммиака. Изобретение позволяет получать высококачественные препараты, пригодные для последующего гистологического и иммуногистологического исследования при отсутствии использования высокотоксичных компонентов. 2 н.п. ф-лы, 2 ил.

Изобретение относится к космической технике, а именно к устройствам для забора проб грунта, например замерзших кусков льда и т.п., и может быть использовано при изучении планет, комет и других небесных тел. Грунтозаборное устройство содержит буровую установку с системой управления и пенетратором, закрепленную на космическом посадочном модуле. На пенетраторе закреплены термоизолированные контейнеры для забора образцов грунта. Буровая установка оснащена датчиком температуры наконечника пенетратора, соединенным с системой управления буровой установкой. Изобретение позволяет повысить качество полученных образцов грунта. 3 з.п. ф-лы, 6 ил.

Изобретение относится к области защиты окружающей среды и предназначено для выявления загрязнения приземного слоя атмосферы при сухом осаждении кислотных аэрозолей в зимний период. Способ включает осаждение сухих аэрозолей на депонирующий субстрат, выполненный из формованных тонковолокнистых пластин с микропористой структурой из гидрофильных материалов и расположенный внутри контейнера с крышкой, при этом перед осаждением искусственно создают изометрический слой из хладообразующего вещества, осуществляют локальное охлаждение субстрата внутри контейнера, для возникновения турбулентной конвенции с перетоками воздуха от относительно более нагретых участков к холодным, создают температурный градиент с турбулентной теплопередачей, возбуждают турбулентную диффузию аэрозольных частиц, осаждают аэрозольные частицы на поверхность субстрата из пограничного слоя за счет межмолекулярного вандерваальсового взаимодействия, при этом суждение о наличии кислотного загрязнения приземного слоя атмосферы осуществляют по соотношению металлов в водо- и кислоторастворимой фракциях в сухих аэрозолях. Также изобретение относится к устройству для выявления кислотного загрязнения приземного слоя атмосферы в зимний период, включающему контейнеры с крышками и депонирующим субстратом для сбора сухих аэрозолей, конструкцию из стоек 1 и поперечин 2, жестко скрепленных между собой, при этом контейнеры 4 с крышками неподвижно закреплены на несущих перекладинах 3, выполненных из металлических или пластиковых уголков или деревянных реек треугольного или квадратного сечения, при этом несущие перекладины 3 закрепляются с помощью хомутов на поперечины, которые прочно соединены со стойками, образуя жесткую конструкцию, кроме того, для размещения хладообразующего вещества контейнеры на несущих перекладинах установлены неподвижно на расстоянии, обеспечивающем образование планшетообразной поверхности без разрывов крышками контейнеров. Изобретение повышает качество и достоверность оценки состояния приземного слоя атмосферы на территориях городских образований, районов производственных предприятий и другой местности в зимний период. 2 н. и 1 з.п. ф-лы, 5 ил., 2 пр.

Изобретение относится к способу сушки геологических проб золотосодержащих руд. Способ включает установление нормативного значения массовой доли влаги в подсушенной пробе, нагревание и охлаждение нагретой пробы на воздухе. При этом нагревание пробы ведут при температуре от 30 до 135°С в микроволновой печи. Перед нагреванием пробы измеряют массовую долю влаги в пробе и нагревание ведут при продолжительности, рассчитанной по формуле: , где τ - продолжительность операции нагревания пробы, мин; К - коэффициент пропорциональности, зависящий от физико-химических свойств руды и типа печи, К=1,6·103÷1,0·104 , определяется экспериментально для каждого типа руды; m - масса геологической пробы, кг; W1 - массовая доля влаги в исходной пробе, %; W2 -нормативное значение массовой доли влаги в подсушенной пробе, %; W2<1,5%; P - мощность микроволновой печи, Вт. Техническим результатом изобретения является снижение расхода электроэнергии на сушку проб, повышение экспрессности процесса сушки и улучшение условий труда. 3 пр.

Изобретение относится к арматуростроению и предназначено для периодического отбора проб из трубопроводов, применяемых, например, при переработке продуктов питания, или в фармацевтики, или в медицине. Пробоотборный клапан для жидкости имеет тело (1, 20) клапана, которое расположено в корпусе (2, 21) клапана с возможностью перемещения между закрытым положением и открытым положением пробоотборного клапана, и имеет выпускное отверстие (12), оканчивающееся в поперечном отверстии (11), выполненном в теле (1, 20) клапана с возможностью поступления через него отбираемой пробы водной жидкости в выпускное отверстие (12). Выпускное отверстие (12) постепенно расширяется от поперечного отверстия (11) к свободному концу тела (1, 20) клапана. Нижняя кромка (45) выпускного отверстия (12) при нахождении тела (1, 20) клапана в его монтажном положении проходит с уклоном вниз к свободному концу (13). Изобретение направлено на повышение качества отбираемой пробы за счет устранения застойных зон клапана. 2 н. и 12 з.п. ф-лы, 5 ил.

Изобретение относится к космической технике, а именно к устройствам для забора проб грунта, например замерзших кусков льда и т.п., и может быть использовано при изучении планет, комет и других небесных тел. Ультразвуковое грунтозаборное устройство предназначено для сверления грунта на глубины до 2-х метров со скоростью до 20 мм/мин с целью забора образцов без изменения состава за один проход. Грунтозаборное устройство состоит из ультразвуковой колебательной системы с рабочим инструментом, ультразвукового генератора и системы управления. Ультразвуковой генератор и система управления закреплены на космическом посадочном модуле. На волноводе ультразвуковой колебательной системы установлен каркас, на котором закреплены термоизолированные контейнеры для забора образцов грунта с поворотным механизмом открытия/закрытия, термоаккумуляторы и пассивная система термостабилизации. Ультразвуковая колебательная система оснащена датчиком температуры грунтозаборных контейнеров, соединенным с системой управления грунтозаборного устройства. Выбор размеров каждого последующего элемента ультразвуковой колебательной системы осуществляется из условия обеспечения соответствия с резонансной частотой пьезоэлектрического преобразователя. Изобретение способно обеспечить забор образцов грунта без термического разрушения и испарения летучих компонентов. 6 ил.
Изобретение относится к области аналитической химии, а именно к способу пробоотбора и пробоподготовки к химическому анализу твердых материалов (металлов, минералов, синтетических материалов). Способ включает отбор навески путем разрушения поверхностного слоя материала с ее последующей пробоподготовкой к химическому анализу. Разрушение осуществляют микрорезанием с помощью абразива, нанесенного на гибкий носитель фиксированной площади, который нагружают заданной статической силой, действующей по нормали к поверхности, и смещают его на выбранное расстояние. Затем носитель с абразивом и находящейся на нем пробой материала обрабатывают селективным растворителем, химически индифферентным к абразиву, с частичным растворением гибкого носителя, фильтруют и подвергают фильтрат химическому анализу. Достигаемый при этом технический результат заключается в расширении функциональных возможностей способа за счет совмещения процессов пробоотбора (снятие слоя материала) и пробоподготовки (измельчения материала) навески, что в свою очередь обеспечивает повышение производительности. 1 пр., 1 табл.

Изобретение относится к устройству, обеспечивающему отбор представительных проб природного газа для лабораторного анализа из магистральных газопроводов, с газораспределительных станций и технологических установок. Переносное устройство для отбора проб природного газа включает в себя комплект вентилей, баллон, манометр, биметаллический термометр и теплоизолирующий кожух. Кожух имеет пробоотборную трубку, на которой монтируются подвижный хомут, независимый нижний соединитель с отводной трубкой и штатив. Подвижный штатив обеспечивает возможность установки баллонов различной емкости. Независимый нижний соединитель имеет отводную трубку, изогнутую таким образом, что ее выходной конец всегда может быть расположен по оси баллона. Штатив обеспечивает дополнительную фиксацию устройства на месте отбора пробы и фиксацию выходного конца отводной трубки по оси баллона для придания жесткости конструкции. Достигаемый при этом технический результат заключается в создании малогабаритного переносного устройства с возможностью использования баллонов различной емкости, что исключает необходимость оснащения каждой точки отбора проб дорогостоящим стационарным оборудованием. 3 ил., 1 табл.

Изобретение относится к горному делу и может быть использовано в области геофизики. Техническим результатом является повышение качества и надежности интерпретации данных каротажа. Способ включает проведение геофизических исследований скважины (ГИС) с использованием импульсного нейтрон-гамма спектрометрического каротажа, определение компонентного состава пород, включая пористость и коэффициент текущего нефтенасыщения (Кн). Предварительно подготавливают коллекцию образцов керна из коллекторов, вскрытых опорными скважинами, по результатам исследования которой определяют текущую водонасыщенность (Кв), коэффициенты относительной фазовой проницаемости по нефти и по воде ( ), экспоненциальные значения относительной водо- и нефтепроницаемости (nв nн), коэффициент глинистости (Кгл), коэффициент пористости (Кп), петрофизические параметры (a, b) связи коэффициента остаточной водонасыщенности и отношения объемной глинистости к пористости, коэффициент остаточной нефтенасыщенности (Кно), далее рассчитывают коэффициент остаточного водонасыщения Кво=a*(Кгл/Кп)+b, после чего вычисляют коэффициент обводненности притока (Коп) и по полученному коэффициенту обводненности проводят оценку ожидаемого состава притока. 3 ил.

Изобретение относится к сельскому хозяйству и мелиорации земель и может быть использовано при отборе вертикального монолита-образца почвогрунтов ненарушенного (природного) сложения с целью определения их водно-физических и фильтрационных свойств. Комплект устройств для отбора вертикального монолита почвогрунтов включает к-е количество тонкостенных металлических цилиндров-монолитоотборников с заостренным нижним торцом треугольной формы, равное , где i - номер диаметра цилиндра (n≥i≥1), n - число цилиндров разного диаметра, кi - число повторностей цилиндра i-го диаметра (кi≥3), и снабжен пригрузом. Пригруз выполнен в виде (m+1) количества металлических цилиндрических грузов одинакового диаметра с возможностью установки их друг на друга и на каждый цилиндр-монолитоотборник с образованием пригруза цилиндрической формы. При этом один из металлических цилиндрических грузов, непосредственно устанавливаемый на цилиндр-монолитоотборник, выполнен с выемкой цилиндрической формы в одном из его торцов, диаметр которой равен внешнему диаметру цилиндра-монолитоотборника, имеющего максимальный из n цилиндров-монолитоотборников диаметр, и осью симметрии, совпадающей с осью симметрии металлического цилиндрического груза. Кроме того, комплект снабжен (n-1) шайбой с внешним диаметром, равным диаметру выемки, и толщиной, равной высоте выемки в торце металлического цилиндрического груза, с возможностью установки каждой из них в выемку с последующей фиксацией в ней. Причем внутренние диаметры шайб неодинаковы и равны внешнему диаметру каждого из (n-1) цилиндров-монолитоотборников, составляя пару: шайба-цилиндр-монолитоотборник. Достигаемый при этом технический результат заключается в повышении точности определения свойств почвогрунтов по генетическим горизонтам почвенного профиля, а также в снижении времени на отбор монолита и трудоемкости работ при отборе качественного образца почвогрунтов. 2 з.п. ф-лы, 5 ил., 1 табл.
Наверх