Способ плазменно-каталитической переработки твердых бытовых отходов

Изобретение относится к способу переработки твердых бытовых отходов, включающему плазмохимический пиролиз гомогенизированной смеси, представляющей собой гомогенно диспергированную в сырье трехфазную систему, состоящую из высоко дисперсных частиц катализатора, метановодородной фракции, выделенной на стадии разделения продуктов пиролиза, и жидких продуктов пиролиза, закалку продуктов пиролиза, выделение технического углерода и твердых частиц отработанного катализатора фильтрованием и стадию разделения продуктов пиролиза с получением метановодородной фракции и жидких продуктов пиролиза и с рециклом части метановодородной фракции на стадию плазмохимического пиролиза. Использование предлагаемого способа позволяет упростить технологию процесса в части использования катализатора, интенсифицировать процесс за счет использования более активного катализатора, а также адаптировать процесс для его использования для переработки твердых бытовых отходов. 2 з.п. ф-лы, 1 пр.

 

Настоящее изобретение применимо в области охраны окружающей среды, а именно, в области переработки отходов.

В настоящее время в мире сложилось критическое положение с утилизацией твердых бытовых отходов. В существующей практике такие отходы предлагается перерабатывать на установках термического обезвреживания, где в результате пиролиза получают сухую золу - сырье для производства стройматериалов и асфальтобетонных смесей. Такое решение проблемы не является удовлетворительным, поскольку твердые остатки пиролиза содержат тяжелые металлы и, следовательно, не пригодны для промышленного использования и требуют захоронения. Кроме того, хлорорганические соединения, содержащиеся в твердых отходах, приводят к загрязнению окружающей среды диоксинами, фуранами и бифенилами, крайне опасными для здоровья человека и окружающей среды в целом.

Наиболее перспективной в настоящее время является технология переработки твердых бытовых отходов с использованием плазменных технологий переработки, использующих низкотемпературную плазму (2000-10000°C).

Плазмохимические способы обеспечивают более высокую степень переработки (конверсия сырья составляет 96-98% масс.), увеличивают глубину переработки в низкомолекулярные химические соединения, а также сокращают количество стадий и уменьшают разветвленность химических процессов.

Процессы плазмохимической переработки органического сырья можно классифицировать по следующим основным признакам:

1) плазмообразующий газ («рабочее тело» плазмотрона):

а) кислородсодержащий газ, в том числе и воздух;

б) водяные пары;

в) газообразные углеводороды;

г) водород или водородсодержащие газы;

д) инертные газы;

е) другие газы, в том числе и смеси указанных выше газов;

2) наличие или отсутствие катализатора:

а) без катализатора;

б) с использованием катализатора.

В соответствии с этой классификацией, ниже приведено описание основных способов плазменной переработки органического сырья.

Плазмохимическая переработка тяжелых нефтяных остатков

В способе [Патент РФ 2131906, МПК C10G 15/12, 27.01.1997] переработки тяжелых смол, содержащих эмульсионную воду и кокс, используют прием плазмохимического пиролиза с последующей закалкой продуктов и их разделением. Сырье предварительно гомогенизируют, продукты пиролиза после их закалки очищают от ацетилена путем каталитического гидрирования, конденсируют и направляют в основное производство, конденсат возвращают на гидрирование ацетилена, его избыток смешивают с сырьем, а метановодородную фракцию после разделения используют в качестве плазмообразующего газа и/или котельного топлива. Способ позволяет организовать переход к малоотходной замкнутой системе комплексной переработки сырья за счет утилизации экологически опасных отходов нефтехимической и химической промышленности, а также увеличить степень использования сырья и выход конечного продукта.

В способе [Патент РФ 2129584, МПК C10G 15/12, 19.07.1996] тяжелые нефтяные остатки подвергают плазмохимическому пиролизу в струе водородсодержащего газа с получением пирогаза, технического углерода и переводом сернистых соединений в сероводород. Продукты пиролиза очищают от технического углерода с последующим осаждением редких металлов известными способами, сероводород подвергают диссоциации в СВЧ-плазме с получением полимерной серы и водорода, возвращая последний на стадию пиролиза. Из очищенных газов синтезируют моторное топливо. Способ позволяет расширить сырьевую базу, повысить эффективность процесса переработки и увеличить степень использования сырья.

Известен способ гидрокрекинга тяжелых углеводородных фракций [Патент РФ 2319730, МПК C10G 15/12, 09.11.2006]. Предварительно подогретую до 60-370°C тяжелую углеводородную фракцию подвергают «бомбардировке» ионами водорода и ионами гидроксильной группы в реакторе без доступа кислорода, при этом ионы водорода и ионы гидроксильной группы подают в камеру в виде плазмы. Способ реализуется в устройстве для гидрокрекинга тяжелых углеводородных фракций, содержащем реактор, имеющий датчик уровня, датчик температуры, патрубок выхода не прореагировавшей части углеводородных фракций в парообразном состоянии. В верхней части реактора установлен плазмотрон соплом, а в нижней его части патрубок подачи тяжелых углеводородных фракций с форсункой, установленной с возможностью регулирования расстояния от сопла плазмотрона до ее верхней части. Способ и устройство для его реализации направлены на упрощение технологии гидрокрекинга тяжелого углеводородного сырья, увеличение производительности за счет возможности регулирования степени дробления углеводородных молекул временем «бомбардировки» их ионами, кинетической энергии ионов, начальной температурой углеводородных молекул, а также возможности работать устройству в двух технологических режимах: получения газа или жидких легких фракций.

Гидрокрекинг с использованием плазменных технологий описан в способе [Патент РФ 2343181, МПК C10G 15/12, 17.10.2007]. Предварительно подогретую до 60-350°C тяжелую углеводородную фракцию подвергают воздействию плазмы для расщепления в зоне высокой температуры углеводородных молекул на атомы без доступа кислорода, последующей «бомбардировке» ими других углеводородных цепочек, дроблению их и гидрированию в зоне реакции, приводящему к образованию легких углеводородных фракций. Плазма представляет собой ионизированный высокотемпературный газ.

В работе [Кашапов Н.Ф., Нефедов Е.С., Тимеркаев Б.А., Фахрутдинов И.М. Разложение тяжелых углеводородов электродуговой плазмой. 36-я Международная (Звенигородская) конференция по физике плазмы и УТС, 2009, с.1] речь идет о переработке высоковязких нефтяных остатков - мазута и гудрона. Подчеркивается, что в последние годы в качестве одного из вариантов углубления переработки тяжелых нефтей и мазута предлагается использование мощного деструктивного процесса пиролиза в плазменной струе инертного газа, водородсодержащего газа, азота, обладающего уникальными возможностями, как по избирательности химических реакций, так и по простоте реализации технологического процесса. Интенсивности протекания химических реакций зависят от многих факторов, главными их которых являются температуры газа и сырья, мольные соотношения между теплоносителем и сырьем, состояния возбужденностей молекул, скорости протекания реакций, процессы тепломассообмена газодинамики, электродинамики и др. Кинетическое описание плазмохимических технологических процессов позволяет проследить их развитие во времени с учетом температуры, давления, вида исходного сырья. Исследования проводили в плазменном генераторе с продольным обдувом дуги и с вихревой стабилизацией дуги. Нагретая до 80°C нефть подавалась в зону выхода плазмы из анода. Нагрев газа в электрической дуге происходил главным образом за счет энергии, выделяющейся в столбе дуги. Смешиваясь с плазмообразующим газом, реагирующая масса проходила через реакционную камеру и поступала в камеру закалки. После камеры закалки переработанный продукт попадал в камеру с большим объемом, где выравнивался по распределению состава и скорости и проходил через зону окончательного охлаждения. На выходе газообразный продукт переработки имел температуру 25-30°C. Конечный продукт имел в составе газовую и твердую фазы. Твердая фаза представляла собой мелкодисперсную сажу. Образование легких фракций углеводородов за счет теплового разбиения тяжелых фракций возможно при температурах ниже 1000 К. Поэтому в электродуговой плазме с температурой 3000-6000 К, в основном, образуются углеводороды с углеродной связью типа C2H2, C2H4, C4H4, а также молекулярный водород и атомарный углерод.

Плазмохимическая переработка твердого или смеси твердого и жидкого сырья

Известен способ получения ацетилена пиролизом измельченного твердого сырья, смешанного предварительно с водяным паром, в пульсирующей в течение 0,001-0,009 с струе плазмы [Патент РФ 2009112, МПК C10G 15/12, 06/05/1992]. В качестве сырья используют органические отходы.

Известен способ переработки и утилизации донных отложений нефтешламовых амбаров [Патент РФ 2201407, МПК C10G 15/12, 30.10.2001]. Способ включает плазмохимическую обработку донных отложений в присутствии водорода, предварительно нагретого до температуры 3000-4000°C, с получением непредельных углеводородов C2-C4. Перед плазмохимической обработкой донные отложения нефтешламовых амбаров разбавляют сырой нефтью в массовом соотношении 1:0,25 и подогревают до температуры 90-95°C. Техническим результатом является создание малогабаритной, высокопроизводительной, безынерционной, экологически чистой технологии переработки отходов донных отложений нефтешламовых амбаров с получением целевых продуктов.

Способ газификации твердых углеродсодержащих материалов [Патент РФ 2213766, МПК C10G 15/12, 17/06/2002] предусматривает получение синтез-газа из отходов пластмасс и включает подачу дисперсного сырья, плазмы водяного пара, их смешение, последующую плазмотермическую газификацию сырья и отвод получающихся продуктов. В способе двухфазный поток дисперсного сырья и водяной плазмы направляют на ванну расплава, образуемого за счет плавления не прореагировавшей части дисперсного сырья. Полученные продукты газификации отводят в противотоке к исходной двухфазной струе и перемешивают с последующим образованием закрученного потока. Способ реализуется в устройстве, содержащем плазмотермический реактор, двухструйный плазмотрон, узлы регулируемого ввода дисперсного сырья и водяного пара, узлы вывода синтез-газа и твердых частиц. Плазмотермический реактор состоит из связанных газоходом плазменно и циклонного реакторов. Способ позволяет повысить экономическую эффективность плазмотермического процесса получения синтез-газа высокого качества в компактном плазмотермическом реакторе за одну технологическую стадию.

Плазменно-каталитическая переработка углеводородного сырья

В способе очистки нефтяных фракций от сероорганических соединений [Патент РФ 2144558, МПК C10G 15/12, 13.05.1997], включающем высокотемпературный пиролиз в присутствии водорода и катализатора, процесс осуществляют в плазмохимическом реакторе, причем часть катализатора диспергируют в сырье механохимическим методом, а другую часть катализатора подают в закалочное устройство реактора в виде суспензии. Способ позволяет обеспечить глубокую очистку нефтяных фракций и уменьшить количество вредных отходов.

Известен способ утилизации нефтяных шламов [Патент РФ 2218378, МПК C10G 15/12, 09.12.2002] путем плазменной обработки нефтяных шламов в присутствии катализаторов. Плазменную обработку нефтяных шламов осуществляют в виде диспергированных горючих водотопливных композиций в условиях каталитически активной воздушной плазмы электрических разрядов при среднемассовой температуре 1500-6000 К за 10-5-10-3 с при содержании ультрадисперсных каталитически активных материалов 0,01-1,0 масс.%, полученных в процессе плазмокаталитической утилизации нефтяных шламов Плазмокаталитический реактор содержит плазменный генератор, реакционную камеру, форсунку и патрубки ввода сырья и вывода продуктов, причем плазменный генератор, реакционная камера и дисковая форсунка расположены горизонтально на одной осевой линии, плазменный генератор и дисковая форсунка присоединены к реакционной камере с противоположных сторон, дисковая форсунка содержит приводной вал, на котором установлены внешняя камера с дисками-эмульгаторами и внутренняя камера, содержащая втулку с отверстиями и диск-диспергатор, соединенные между собой корпусом с расположенным на нем уплотнительным кольцом, а реакционная камера содержит кварцевую трубу и водоохлаждаемый корпус с расположенным на нем патрубком вывода продуктов утилизации. К достоинствам установки и способа относятся: малые габариты, компактность и мобильность установки, высокая удельная производительность установки, низкие удельные затраты электроэнергии на утилизацию, получение дополнительной тепловой энергии от утилизации для технологических и бытовых потребностей, низкое содержание загрязняющих веществ в очищенных отходящих газах установки, отсутствие загрязняющих органических веществ в твердых продуктах утилизации, отсутствие сброса загрязненной воды.

Получение этилена в способе [Патент РФ 2315802, МПК C10G 15/12, 28.01.2004] предусматривает конверсию метана плазменно-каталитическим окислением. Способ включает активацию катализатора СВЧ излучением и формирование неравновесной «холодной» СВЧ плазмы. Одновременно осуществляют активацию катализатора СВЧ излучением и СВЧ плазмой и создают неравновесную «холодную» СВЧ плазму.

Совмещение плазмохимического и каталитического процессов пиролиза реализовано в способе получения ацетилена из природного газа [Худяков Г.Н. и др. Влияние активирующих добавок на плазмохимический процесс образования ацетилена из природного газа. / II Всесоюзный симпозиум по плазмохимии. - Тезисы докладов. - Рига: Зинатне, 1975. - с.243-246]. В этом способе подают из питателя в плазменный поток водорода активирующую добавку (порошок карбоната калия), перемешивают поток со струями природного газа и осуществляют реакцию пиролиза, а затем охлаждают продукты реакции. Данный способ позволяет несколько увеличить выход конечного продукта, но не дает возможность полно использовать активирующие добавки, т.к. после введения добавки смесь плазменного потока с природным газом недостаточно однородна. Таким образом снижется интенсивность процессов плазмохимического пиролиза, увеличиваются удельные затраты электроэнергии и увеличивается расход добавок.

Известен способ переработки нефти и нефтяных остатков [Патент РФ 2149885, МПК C10G 15/12, 22.04.1997]. В соответствии с этим способом осуществляют плазмохимический пиролиз нефти и нефтяных остатков в присутствии катализатора, закалку продуктов пиролиза и разделение продуктов пиролиза. Используют мелкодисперсный катализатор, который независимо от фазового состояния (твердого, жидкого или газообразного) предварительно гомогенно диспергируют с сырьем, а затем полученную смесь подвергают плазмохимическому пиролизу. Масса катализатора составляет, предпочтительно, 1-5% массы сырья. Использованный катализатор после разделения продуктов пиролиза регенерируют и возвращают на стадию пиролиза. Процесс состоит из стадии подготовки сырья и катализатора, при котором сырье смешивают с мелкодисперсным катализатором, гомогенизируют смесь и направляют на следующую стадию, где гомогенизированную смесь подвергают плазмохимическому пиролизу с получением продуктов пиролиза, которые направляют на стадию разделения. При разделении продуктов пиролиза катализатор регенерируют и возвращают на стадию подготовки сырья, а технический углерод собирают для дальнейшего использования. Пироконденсат разделяют на непредельные углеводороды C2-C4, бензиновую и метановодородную фракции, возвращая последнюю на стадию плазмохимического пиролиза.

Недостатком этого способа является сложность технологического процесса по катализаторному контуру, связанная с необходимостью обязательного выделения катализатора и повторного использования его в процессе.

Целью настоящего изобретения является упрощение технологии процесса в части использования катализатора, интенсификация процесса за счет использования более активного катализатора, а также адаптация процесса для его использования для переработки твердых бытовых отходов.

В соответствии с настоящим изобретением поставленная цель достигается способом переработки твердых бытовых отходов, включающим плазмохимический пиролиз гомогенизированной смеси, представляющей собой гомогенно диспергированную в сырье трехфазную систему, состоящую из высокодисперсных частиц катализатора, метановодородной фракции, выделенной на стадии разделения продуктов пиролиза, и жидких продуктов пиролиза, закалку продуктов пиролиза, выделение технического углерода и твердых частиц отработанного катализатора фильтрованием, и стадию разделения продуктов пиролиза с получением метановодородной фракции, жидких продуктов пиролиза и с рециклом части метановодородной фракции на стадию плазмохимического пиролиза.

Предпочтительно в качестве катализатора используют высокодисперсные частицы концентрата соединений металлов, полученного при плазмохимическом пиролизе твердых бытовых отходов в смешанной метановодородной плазме.

Предпочтительно используют высокодисперсные частицы катализатора, прошедшие обработку в среде низкотемпературной плазмы, образованной в межэлектродном пространстве при напряжении между электродами 1,5-5,5 кВ и частоте 0,25-0,8 МГц, в присутствии пузырьков метановодородной смеси, имеющих размер 0,1-0,5 мм и в присутствии твердых части исходного катализатора, имеющих размер 10-100 микрон.

Процесс проводят следующим образом. В емкость подают твердые бытовые отходы. Туда же подают трехфазную систему, представляющую собой высокодисперсный катализатор, метановодородную фракцию, выделенную на стадии разделения продуктов пиролиза или другой водородсодержащий газ, и жидкие продукты пиролиза.

Трехфазную систему получают в плазменном диспергаторе, представляющем собой замкнутый объем, в котором расположены горизонтальные электроды, к которым подводится электрический ток с напряжением 1,5-5,5 кВ и частотой 0,25-0,8 МГц. Туда же (в плазменный диспергатор) подают крупные частицы металла (0,1-0,5 мм), метановодородную смесь в виде пузырьков размером 10-100 микрон. Образование частиц высокодисперсного катализатора происходит в результате возникновения электрического разряда между горизонтальными электродами и крупными частицами металла. Перемешивание в плазменном диспергаторе происходит за счет циркуляции трехфазного потока в циркуляционном контуре плазменного диспергатора.

Из емкости сырье вместе с трехфазной системой направляют в гомогенизатор (высокооборотное перемешивающее устройство) с дополнительным перемешиванием с помощью циркуляционного насоса в циркуляционном контуре «емкость-гомогенизатор-емкость».

Из гомогенизатора с помощью дозатора гомогенизированная смесь поступает в плазменный реактор, имеющий по крайней мере один плазмотрон, рабочим газом которого является метановодородная смесь, полученная в ходе самого процесса плазмохимического пиролиза.

Твердые продукты пиролиза из плазменного реактора направляют на захоронение или на переработку для дальнейшего использования в качестве катализатора или в качестве компонента строительных материалов.

Газообразные продукты пиролиза из плазменного реактора направляют в закалочное устройство, где происходит резкое снижение температуры и прекращение большинства реакций, в основном, радикально-цепных. Из закалочного устройства продукты пиролиза направляют в фильтр (например, в рукавный фильтр), где отделяют технический углерод и другие твердые частицы, в том числе и частицы отработанного катализатора. В случае, когда процесс плазмохимического пиролиза совмещен с переработкой твердых отходов, выделенные на стадии фильтрования твердые продукты направляют в плазменный реактор, подмешивая их к твердым отходам.

После стадии фильтрования получают пироконденсат, который разделяют с получением жидких продуктов пиролиза, которые частично направляют в плазменный диспергатор для получения трехфазной системы, и метановодородной фракции, часть которой направляют в плазменный диспергатор для получения трехфазной системы. Полученную трехфазную систему смешивают с твердыми бытовыми отходами, полученную смесь после гомогенизации подвергают плазмохимическому пиролизу.

Преимуществом предлагаемого способа является использование более активного высокодисперсного катализатора и значительное упрощение технологии процесса, исключающее стадию выделения катализатора и повторное использование его в процессе. Высокая активность катализатора связана с получением его в токе низкотемпературной плазмы (электрический разряд между электродами), в результате которого происходит активация катализатора.

Пример осуществления способа плазменно-каталитической переработки твердых бытовых отходов

Процесс проводили следующим образом. В емкость подавали твердые бытовые отходы г.Москва со средним расходом 200 кг/ч. Туда же подавали трехфазную систему, представляющую собой гомогенизированную смесь высокодисперсного катализатора, метановодородной фракции, выделенной на стадии разделения углеводородных продуктов пиролиза, и жидких продуктов пиролиза. Средний расход трехфазной системы составил 47 кг/ч, при этом трехфазная система содержала, в среднем, 9 масс.% высокодисперсного катализатора, 24 масс.% метановодородной фракции и 67 масс.% бензиновой фракции.

Трехфазную систему получали в плазменном диспергаторе, представляющем собой замкнутый объем, в котором расположены горизонтальные электроды, к которым подводится электрический ток с напряжением 5,5 кВ и частотой 0,6 МГц. В плазменный диспергатор подавали крупные - 0,1-0,5 мм - частицы концентрата соединений металлов, полученного при плазмохимическом пиролизе твердых бытовых отходов в смешанной метановодородной плазме, метановодородную фракцию в виде пузырьков размером 10-100 микрон и жидкие продукты пиролиза. Средний расход концентрата соединений металлов составил 4,2 кг/ч, метановодородной фракции - 11,3 кг/ч, жидких продуктов пиролиза - 31,5 кг/ч. Перемешивание в плазменном диспергаторе обеспечивали за счет циркуляции трехфазного потока в циркуляционном контуре плазменного диспергатора. Концентрат соединений металлов, полученный при плазмохимическом пиролизе твердых бытовых отходов в смешанной метановодородной плазме, по данным рентгенофлуоресцентного анализа содержал железо, никель, кобальт, вольфрам, хром, марганец, а также оксиды и карбиды этих металлов, при этом содержание соединений железа в концентрате превышало содержание соединений других металлов.

Из емкости твердые бытовые отходы вместе с трехфазной системой направляли в гомогенизатор. Гомогенизированную смесь подавали в плазменный реактор. В реакторе смесь в течение 10-3 с обрабатывали метановодородной плазмой, полученной с использованием плазмотрона ЭДП-200 (НИЦ «Курчатовский институт») мощностью 200 кВт.

Газообразные продукты пиролиза из плазменного реактора охлаждали в закалочном устройстве, из закалочного устройства продукты пиролиза направляли в рукавный фильтр, где отделяли технический углерод и другие твердые частицы, в том числе и частицы отработанного катализатора. После пиролиза выделяли, в среднем, 37 кг/твердых продуктов пиролиза.

После стадии фильтрования пироконденсат направляли на стадию разделения, где из него выделяли жидкие продукты пиролиза и метановодородную фракцию. После пиролиза выделяли, в среднем, 71 кг/ч жидких продуктов пиролиза, 92 кг/ч метановодородной фракции, затем 12% полученной метановодородной фракции направляли в плазменный диспергатор для получения трехфазной системы, в плазменный диспергатор для получения трехфазной системы направляли также 44% полученных жидких продуктов пиролиза.

1. Способ переработки твердых бытовых отходов, включающий плазмохимический пиролиз гомогенизированной смеси, представляющей собой гомогенно диспергированную в сырье трехфазную систему, состоящую из высокодисперсных частиц катализатора, метановодородной фракции, выделенной на стадии разделения продуктов пиролиза, и жидких продуктов пиролиза, закалку продуктов пиролиза, выделение технического углерода и твердых частиц отработанного катализатора фильтрованием и стадию разделения продуктов пиролиза с получением метановодородной фракции и жидких продуктов пиролиза и с рециклом части метановодородной фракции на стадию плазмохимического пиролиза.

2. Способ по п.1, отличающийся тем, что в качестве катализатора используют высокодисперсные частицы концентрата соединений металлов, полученного при плазмохимическом пиролизе твердых бытовых отходов в смешанной метановодородной плазме.

3. Способ по п.1, отличающийся тем, что используют высокодисперсные частицы катализатора, прошедшие обработку в среде низкотемпературной плазмы, образованной в межэлектродном пространстве при напряжении между электродами 1,5-5,5 кВ и частоте 0,25-0,8 МГц, в присутствии пузырьков метановодородной смеси, имеющих размер 0,1-0,5 мм и в присутствии твердых части исходного катализатора, имеющих размер 10-100 мкм.



 

Похожие патенты:

Изобретение относится к утилизации строительных отходов. Установка утилизации бетона содержит грохот, электромагнит и систему водоочистки, а также три технологических цепочки.
Настоящее изобретение относится к составу композиционного строительного материала. Технический результат - повышение степени защиты окружающей среды, получение экологически безопасного строительного материала с повышенной прочностью и устойчивостью к ветровой и водяной эрозии, связывающего в своей структуре загрязняющие вещества, исключающего их миграцию в окружающую природную среду и укрепляющего откосы автодорог, песчаные обваловки технологических площадок, например, от размыва во время проливных дождей и паводков, укрепляющего строительные площадки, в том числе и с неоднородным, и неустойчивым составом грунта.

Изобретение относится к области переработки отходов, в частности золошлаковых отходов ТЭЦ. Золу от сжигания углей помещают в реакционную зону, добавляют углеродный сорбент в количестве 10-25 кг на тонну золы.

Предлагаемый способ относится к области утилизации концентрированных органических субстратов, таких как бесподстилочный навоз, помет, осадки и илы сооружений механо-биологической очистки хозяйственно-бытовых и близких к ним по составу производственных сточных вод.

Изобретение относится к области переработки концентрированных органических субстратов - бесподстилочного навоза, помета, осадков локальных очистных сооружений перерабатывающих производств, отходов механобиологической очистки городских сточных вод - в газообразный энергоноситель - биогаз и стабилизированные обеззараженные продукты - биошламы - эффлюент, которые могут быть использованы при приготовлении удобрений.

Изобретение относится к области экологии и охраны окружающей среды. Предложен способ подземного обезвреживания отходов с производством биогаза, согласно которому предварительно подготовленные отходы в виде суспензии pH=6…8, состоящей из твердых бытовых отходов, буровых отходов, бытовых и хозяйственно-фекальных сточных вод, инициирующей добавки, периодически закачивают в существующие, не менее одной, нагнетательные скважины газовых, газоконденсатных или нефтяных месторождений, по которым достигнут конечный коэффициент извлечения пластовых флюидов.

Изобретение относится к устройству для обработки отходов, включающих органические отходы и муниципальные твердые отходы, а также к способу обработки отходов. Устройство содержит удлиненную рабочую камеру с зоной обработки для проведения обработки отходов при повышенной температуре, которая имеет входное отверстие для введения отходов, выходное отверстие для удаления обработанных твердых частиц, первые средства для введения горячих газов в камеру, расположенные в радиально отдаленной области камеры, и экстракционные средства для извлечения газа из центральной области камеры, при этом рабочая камера имеет первую зону для извлечения воздуха и/или влаги из отходов и вторую зону для извлечения синтетического газа, расположенную ниже по ходу первой зоны.

Изобретение относится к методам термической деполимеризации природных и вторичных органических ресурсов, например твердых бытовых отходов (ТБО). Способ переработки органических и полимерных отходов включает загрузку сырья с предварительной сепарацией, измельчение с подсушкой, отличается тем, что подсушку осуществляют совместно с катализатором и низкокалорийным природным топливом, затем готовят пасту из измельченного материала и растворителя - дистиллята, получаемого при дистилляции жидких продуктов, при этом предусматривают дальнейшую ступенчатую деполимеризацию реакционной массы с температурой 200-400°C при нормальном атмосферном давлении, осуществляемую в каскаде из двух пар последовательно соединенных реакторов, в которых температура деполимеризации достигает в 1-й паре 200°C, и во 2-й паре - более 200°C и не превышает 310°C, объединяющихся друг с другом рециркулирующими потоками: газообразным, формирующем в реакционной системе восстановительную среду в виде синтез-газа (CO и H2), образующуюся путем паровой каталитической конверсии углеводородных газов, выходящих из реакторов деполимеризации, перемещающуюся посредством газового насоса через подогреватель восстановительных газов из реакционной системы, обеспечивают также вывод синтез-газа для получения моторных топлив - метанола, диметилового эфира или бензина; жидкую же углеводородную фазу отделяют от твердых непрореагировавших компонентов с выходом последних до 40% от общей исходной массы твердых бытовых отходов (ТБО), которые выводят из системы с помощью циркуляционных насосов и направляют для производства нефтяных брикетов и/или горючих капсул, причем жидкую реакционную углеводородную смесь, после отделения от нее твердого остатка, направляют на горячую сепарацию, охлаждение и дистилляцию, кроме того, меньшую часть дистиллята возвращают в мешалку для приготовления пасты на стадию приготовления пасты, а большую часть разделяют на целевые фракции: первую с температурой кипения до 200°C и вторую с температурой кипения выше 200°C, но не более 310°C.

Изобретение относится к проведению работ по уничтожению дымных ружейных порохов и может быть реализовано в качестве способа по уничтожению дымных ружейных порохов в картузах воспламенителей методом растворения в воде с добавлением поверхностно-активных веществ (ПАВ).

Изобретение относится к способу обезвреживания отработанных ртутьсодержащих люминесцентных ламп. Способ включает соединение внутреннего объема лампы и объема емкости с демеркуризатором с обеспечением контакта паров ртути с демеркуризатором и проведение процесса демеркуризации в объеме лампы.
Изобретение относится к способу получения неорганических гидравлических вяжущих веществ. Согласно предложенному способу материал техногенного или природного происхождения из группы, включающей твердые продукты, получаемые путем сгорания твердых топлив, металлургический шлак, продукты низовых пожаров, продукты сгорания отвалов при добыче ископаемых топлив, отходы производства стекла, отходы производства керамики, отходы строительных кирпичей и бетона, термически активируемые глины, низкокристаллические обломочные изверженные породы, осадочный латерит, боксит, опалолит, аллофанолит, диатомит, известняк, аргиллит и глины, подвергают физической обработке. Обработка заключается в действии, по меньшей мере, одного импульса силы для пропускания механической энергии к частицам обрабатываемого материала путем действия силы от 50 до 3·105 Н по отношению к 1 г обрабатываемого материала в течение от 1·10-6 до 1·10-2 и/или магнитной энергии переменного магнитного поля с частотой от 150 до 15·106 Гц и магнитной индукцией от 10-2 до 103 Тл. Данный способ обеспечивает получение высококачественных вяжущих из различных материалов как природного, так и техногенного происхождения. 6 з.п. ф-лы, 5 пр.

Изобретение относится к нефтегазовой промышленности. Способ комплексной утилизации нефтесодержащих отходов случайного состава с получением энергоносителей широкого ассортимента включает низкотемпературный пиролиз с источником обогрева, перед пиролизом нефтесодержащие отходы случайного состава сортируют при накоплении, механически смешивают в установленном соотношении и термически гомогенизируют с выпариванием влаги топочными газами при температуре 100-130°С, в процессе пиролиза пиролизный газ направляют в блок конденсации для отделения легких фракций углеводородов от тяжелых, при этом легкие фракции направляются на ректификационную колонну с получением бензина, керосина и дизельного топлива, тяжелые фракции с кубовым остатком из блока конденсации подаются в блок для предварительного активирования методом окислительного крекинга в диапазоне температур 250-350°С продувкой воздухом в соотношении 1:(300-500), после окислительного крекинга активированные тяжелые фракции направляют на каталитический крекинг для дополнительного получения бензина, керосина и дизельного топлива, а также мазута, битума и гудрона, после пиролиза твердый продукт пиролиза перемещают в генератор водяного газа, отходящие горючие газы из конденсационной колонны направляют в генератор водяного газа, при этом отходящие горючие газы обогащают перегретым паром и в среде твердого продукта пиролиза переводят в газообразный энергоноситель - водяной газ. Заявлена также установка для реализации способа. Технический результат - повышение энергоэффективности комплексной утилизации нефтесодержащих отходов (НСО) случайного состава с дополнительным получением энергоносителей широкого ассортимента, строительных материалов. 2 н.п. ф-лы,1 ил.,1 табл.

Изобретение относится к способу переработки отходов - нефтесодержащих шламов. Способ переработки твердых нефтяных шламов осуществляют путем раздельного отбора из накопительного амбара верхнего слоя нефтешлама и донного слоя нефтешлама, от донного слоя нефтешлама отделяют замазученный грунт, который отправляют на полигон для биоразложения или используют в качестве изоляционного материала на полигонах размещения бытовых и промышленных отходов, донный слой нефтешлама объединяют с верхним слоем нефтешлама или модифицируют путем разбавления фракцией светлых нефтепродуктов, подготовленный таким образом нефтешлам, направляют в теплообменник, перегреватель и под давлением в душ, при выходе из которого он распыляется, противотоком к нефтешламу снизу вверх движутся дымовые газы, при этом нагрев шлама осуществляют от температуры 120-140°С и со скоростью нагрева от 143±15 град/сек, далее нагрев осуществляют в соответствии с фиг.2, и на конечном этапе нагрева 340-350°С со скоростью нагрева 10±2 град/сек, при этом выделение нефтяных фракций осуществляют на конечном этапе нагрева, в результате выделения нефтяных фракций получают гудрон для дорожного битума, фракцию светлых нефтепродуктов, которую используют в качестве печного топлива или как добавку к сырью гидроочистки на нефтеперерабатывающих заводах. Технический результат - сокращение времени испарения воды, увеличение выхода светлых нефтепродуктов, полное полезное использование отхода. 3 табл., 2 ил., 1 пр.
Изобретение относится к области нефтегазодобывающей промышленности и рекультивации. Способ включает смешивание бурового шлама, негашеной извести, торфа, цемента и песка. Дополнительно осуществляют смешивание бурового шлама с углеродом техническим с последующим смешиванием с негашеной известью. После чего осуществляют последовательное смешивание с торфом, цементом и песком. Затем полученную смесь выдерживают в течение 2 или 3 суток при следующем соотношении компонентов, мас.%: буровой шлам - 40-60; углерод технический - 2-5; цемент - 10-15; песок - 10-15; торф - 15-20; негашеная известь - остальное. Способ позволяет повысить степень обезвреживания нефтесодержащих буровых шламов за счет нейтрализации токсичных компонентов буровых шламов и за счет использования нетоксичных компонентов, обеспечивает возможность переработки нефтесодержащих буровых шламов в строительный материал с повышенной прочностью, в экологически безопасный грунт, пригодный для компактного складирования или для использования в качестве мелиоранта для мульчирования рекультивируемого участка с улучшенными экологическими свойствами. 3 пр.

Изобретение относится к области лесного хозяйства и рекультивации. Способ включает покрытие склонов почвенным субстратом путем равномерного сдвигания его с горизонтальных поверхностей, покрытие горизонтальных участков почвенным субстратом путем разравнивания, посадку саженцев деревьев и кустарников, посев семян травянистых растений. В качестве почвенного субстрата применяют смесь материала с высоким содержанием питательных веществ в виде осадков сточных вод, перегноя, торфа, навоза и фосфогипса при соотношении компонентов смеси 2:1 по объему. Смесь перемешивают фрезерованием на горизонтальном полотне. Покрытие поверхности склонов полученной смесью толщиной 25-30 см проводят равномерным сдвиганием на склоны. Затем формируют сплошной покровный слой толщиной 15-20 см на горизонтальных поверхностях. Слой почвенного субстрата сверху покрывают мульчирующим слоем песка толщиной 1-3 см с помощью разбрасывателя. На заключительном этапе рекультивации по всей поверхности высаживают саженцы быстрорастущих деревьев и кустарников с развитой корневой системой и надземной частью высотой 0,5-1,0 м с последующим подсевом семян травянистых растений. Изобретение позволяет ускорить биологическую рекультивацию за счет создания оптимальных условий для роста древесно-кустарниковой растительности путем оптимизации состава применяемого искусственного почвенного субстрата. 1 з.п. ф-лы, 8 ил.

Изобретение относится к утилизации летучей золы электростанций. Летучую золу измельчают и удаляют из нее железо путем мокрой магнитной сепарации. Добавляют соляную кислоту в полученный фильтрационный осадок с получением продукта солянокислого выщелачивания, который пропускают через макропористую катионную смолу для глубокого удаления железа с получением очищенного раствора хлорида алюминия. Проводят концентрирование и кристаллизацию очищенного раствора хлорида алюминия с получением кристаллического хлорида алюминия, который затем прокаливают с получением металлургического глинозема. Изобретение обеспечивает повышение извлечения глинозема. 16 з.п. ф-лы, 2 ил., 2 табл.

Изобретение относится к нефтяной промышленности и может найти применение при переработке нефтешлама. Нефтешлам со шламонакопителя подают насосом под давлением до 1,0 МПа и расходом до 10 м3/ч в трубчатую печь, нагревают до температуры 110-120°C, подают в коалесцирующее устройство, заполненное коалесцирующим материалом в виде гранитного щебня с объемно-насыпным весом 1,36-1,40 т/м3 и размером частиц от 5 до 50 мм, обрабатывают в коалесцирующем устройстве паром по центру и периметру потока и водой на выходе, далее продукт обработки подают в горизонтальную емкость-отстойник, отстаивают в отстойнике и разделяют на нефтяную и водную фазу. Технический результат - повышение степени разделения высокоустойчивого шлама. 2 ил., 1 пр.

Изобретение относится к технике и технологии термического обезвреживания твердых бытовых отходов. Способ утилизации теплоты сгорания твердых бытовых отходов на мусоросжигательной установке заключается в том, что поток отходящих газов, образующихся в мусоросжигательной установке, оснащенной печью, системами дожигания и охлаждения отходящих газов, газоочистки и золошлакоудаления, поступает с температурой 1150°С-1250°С из системы дожигания поочередно в параллельно подключенные проточные двухканальные газо-воздушные теплообменные аппараты, образующие совместно с системой подачи сжатого воздуха, воздушной турбиной и генератором систему генерации электрической энергии. При этом переключение подачи потока отходящих газов в каждый последующий теплообменный аппарат проводят после нагрева предыдущего теплообменного аппарата до температуры 800°С-1000°С. Причем поток отходящих газов, охлажденный при прохождении в каждом теплообменном аппарате, подается после системы газоочистки в атмосферу. При этом после нагрева в каждый теплообменный аппарат поочередно подается сжатый воздух, который нагревается в каждом аппарате до температуры 600°С-800°С и поступает во входное устройство воздушной турбины, соединенной с генератором электрической энергии, при прохождении через которую сжатый воздух охлаждается и подается в печь мусоросжигательной установки. Изобретение позволяет снизить затраты на получение тепловой энергии, загрязнение окружающей среды и повысить эффективность производства энергии. 2 н. и 3 з.п. ф-лы, 1 ил.
Изобретение относится к области охраны окружающей среды и может быть использовано для утилизации отработанных и дефектных люминесцентных ламп. Способ демеркуризации отработанных люминесцентных ламп включает разрушение ламп и виброочистку лампового боя от люминофора. При этом разрушение ламп осуществляют до крупности частиц стекла не более 8 мм. После разрушения люминесцентных ламп цоколи ламп отделяют от стекла на вибрирующей решетке и удаляют в сборник, который направляют в демеркуризационно-отжиговую электрическую печь. Термическую обработку цоколей проводят при температуре до 100ºС и времени выдержки не менее 30 минут. Отделение люминофора от стекла осуществляют путем выдувания его в противоточно-движущейся системе «стеклобой-воздух» в условиях вибрации. Технический результат - повышение эффективности и энергоресурсосбережения переработки люминесцентных ламп, удешевление и упрощение технологии утилизации.

Изобретение относится к способу обезвреживания нефтешламов, может найти применение в технологии комплексной переработки нефтезагрязненных отходов и почвогрунтов, в частности, образующихся в результате деятельности предприятий магистральных нефтепроводов. Способ обезвреживания нефтешламов включает получение обезвреживающей композиции путем извлечения из нефтешлама тяжелой фракции, содержащей высокомолекулярные углеводороды, перемешивания указанной фракции с реагентом на основе оксидов щелочноземельных металлов, проведения экзотермической реакции гидратации с получением гранул, содержащих высокомолекулярные углеводороды, и с использованием указанных гранул для фильтрации водной фракции нефтешлама при последующем их обезвреживании. Гранулы обезвреживающей композиции получают с содержанием высокомолекулярных углеводородов в количестве не менее 15-25 мас.%, для фильтрации водной фракции нефтешлама указанные гранулы используют в смеси с керамзитом, затем загрязненные после фильтрации гранулы в смеси с керамзитом и оставшимися фракциями нефтешлама перемешивают с реагентом на основе оксидов щелочноземельных металлов, проводят реакцию гидратации и карбонизации с получением обезвреженного продукта. Технический результат - повышение производительности процесса фильтрации на 15-20%, обеспечивается повышенная несущая способность конечного продукта обезвреживания при использовании его в качестве строительного материала, коэффициент конечной емкости сорбента составляет 1,2-1,4. 7 з.п. ф-лы,1 табл.,1 пр.
Наверх