Способ изготовления силового полупроводникового прибора

Изобретение относится к области силовой электроники. Для изготовления силового полупроводникового прибора на первой основной стороне подложки (1) первого типа проводимости формируют первый оксидный слой (22). Затем на первой основной стороне сверху первого оксидного слоя (22) формируют структурированный слой (3, 3') электрода затвора, содержащий, по меньшей мере, одно отверстие (31). Первую легирующую примесь первого типа проводимости имплантируют в подложку (1) с первой основной стороны, используя в качестве маски структурированный слой (3, 3') электрода затвора, и обеспечивают диффундирование первой легирующей примеси в подложку (1). Затем вторую легирующую примесь второго типа проводимости имплантируют в подложку (1) с первой основной стороны и обеспечивают диффундирование второй легирующей примеси в подложку (1). После диффузии первой легирующей примеси в подложку (1), но до диффузии второй легирующей примеси в подложку (1), первый оксидный слой (22) частично удаляют и используют структурированный слой (3, 3') электрода затвора в качестве маски для имплантации второй легирующей примеси. Изобретение обеспечивает создание способа изготовления силового полупроводникового прибора с низкими потерями энергии во включенном состоянии и большой областью устойчивой работы, причем более легкого для реализации по сравнению с известными способами. 12 з.п. ф-лы, 10 ил.

 

Область техники, к которой относится изобретение

Изобретение относится к области силовой электроники, а более конкретно к способу изготовления силового полупроводникового прибора, согласно ограничительной части независимого пункта формулы изобретения.

Уровень техники

Существующие биполярные транзисторы с изолированным затвором (IGBT) содержат слаболегированный (n-) слой дрейфа и расположенный на коллекторной стороне n буферный слой с более высокой концентрацией примесей, после которого размещен коллекторный слой. На эмиттерной стороне слоя дрейфа, которая расположена напротив коллекторной стороны, размещен р слой базы. Свойства биполярного транзистора с изолированным затвором были улучшены за счет имплантации улучшенного легированного n слоя между р слоем базы и (n-) слоем дрейфа, при этом указанный улучшенный слой разделяет р слой базы и (n-) слой дрейфа за счет чего расширилась область устойчивой работы (SOA) и снизились потери энергии во включенном состоянии. Концентрация носителей вблизи активной ячейки увеличилась, за счет такого улучшенного слоя. В случае полевого МОП-транзистора (металл-оксид-полупроводник) (MOSFET), наличие такого улучшенного слоя ведет к снижению действия полевого транзистора с управляющим р-n переходом (JFET), и также к снижению потерь во включенном состоянии.

Если для биполярного транзистора с изолированным затвором с улучшенным n слоем, как описано выше, р слой базы имеет большую глубину у краев ячейки, по сравнению с центральной областью ячейки, то такая форма pn-перехода переносит пиковое значение поля от периферии ячейки в область непосредственно под контактом электрода эмиттера. Такое положение пикового значения поля значительно расширяет область устойчивой работы при выключении электрического тока как для биполярного транзистора с изолированным затвором, так и для полевого МОП-транзистора, из-за того что дырки, генерируемые полем, могут перемещаться непосредственно к области контакта электрода эмиттера, при этом отсутствует критическая область вблизи областей источников n+, которая могла бы отпирать паразитный тиристор и транзистор для биполярного транзистора с изолированным затвором и полевого МОП-транзистора соответственно.

В документе ЕР 0837508 описан способ изготовления биполярного транзистора с изолированным затвором (IGBT), содержащего такой модулированный профиль р слоя базы. Методом эпитаксии на (р+) подложке формируют сначала n буферный слой, а затем (n-) слой. После чего на (n-) слое по нужному шаблону формируют толстый оксидный слой затвора. Далее сверху (n-) слоя в областях, где отсутствует толстый оксидный слой затвора, формируют тонкий оксидный слой затвора, за которым в качестве электрода затвора следует слой поликристаллического кремния, расположенный на оксидных слоях затвора. Далее в тонком оксидном слое затвора и слое поликристаллического кремния формируют отверстие. Фосфор имплантируют через отверстие в (n-) слое, после чего фосфор диффундирует в (n-) слой, при этом в качестве маски используют отверстие в слое поликристаллического кремния, в результате чего образуется первый n слой. После чего отверстие увеличивают, и фосфор снова имплантируют, и он диффундирует, образуя второй n слой. Глубина первого n слоя больше глубины второго n слоя. Далее, через ту же маску слоя поликристаллического кремния имплантируют бор и, в результате диффузии, происходит формирование р слоя, глубина которого меньше глубины второго n слоя. Таким образом, второй n слой и р слой могут быть выполнены с использованием одной и той же маски, тогда как для изготовления первого n слоя требуется другая маска.

В документе ЕР 0837508 также рассмотрен альтернативный вариант изготовления - первый n слой формируют после второго n слоя, при этом второй n слой изготавливают с помощью маски и имплантации/диффузии, как описано выше. После выполнения второго n слоя, на электроде затвора создают изолирующую пленку и структурируют ее с помощью фоторезиста. Первый n-слой может также быть выполнен до формирования изолирующей пленки. Для выполнения первого n слоя, ионы фосфора с высокой энергией непосредственно имплантируют через отверстие, которое ограничено фоторезистом и которое, следовательно, по размеру меньше отверстия, используемого в качестве маски для второго n слоя. Ионы имплантируют непосредственно на глубину между вторым n слоем и (n-) слоем. Имплантация ионов фосфора с высокой энергией - это сложный процесс для глубин, превышающих 1 мкм, что требуется для IGBT ячейки, и процесс требует точного выравнивания маски для размещения фосфора в середине ячейки.

Документ JP 03-205832 относится к полевым МОП-транзисторам, содержащим высоколегированную n область между легированными n областями истока, но ниже легированной р области базы.

В документе US 2004/0065934 описан полевой МОП-транзистор, в котором р область базы имеет р легирование и окружена другой р областью с большим содержанием легирующей примеси.

Раскрытие изобретения

Целью изобретения является создание способа изготовления силового полупроводникового прибора с низкими потерями энергии во включенном состоянии и большой областью устойчивой работы, причем более легкого для реализации по сравнению с известными способами и не требующего осуществления ряда тонких этапов изготовления.

Эта цель достигается в способе изготовления силового полупроводникового прибора, который соответствует пункту 1 формулы изобретения.

Соответствующий изобретению способ изготовления силового полупроводникового прибора включает в себя этапы, на которых:

- формируют первый оксидный слой на первой основной стороне подложки первого типа проводимости,

- формируют структурированный слой электрода затвора с, по меньшей мере, одним отверстием на первой основной стороне, сверху первого оксидного слоя,

- имплантируют первую легирующую примесь первого типа проводимости в подложку с первой основной стороны, используя структурированный слой электрода затвора в качестве маски,

- обеспечивают диффундирование первой легирующей примеси в подложку,

- имплантируют вторую легирующую примесь второго типа проводимости в подложку с первой основной стороны и

- обеспечивают диффундирование второй легирующей примеси в подложку;

- после диффузии первой легирующей примеси в подложку и до имплантации второй легирующей примеси в подложку, первый оксидный слой частично удаляют, в результате чего получают оксидный слой затвора;

- структурированный слой электрода затвора используют в качестве маски для имплантации второй легирующей примеси.

Достоинство соответствующего изобретению способа изготовления силового полупроводникового прибора, в частности биполярного транзистора с изолированным затвором или полевого МОП-транзистора, заключается в том, что для изготовления слоя базы требуется всего одна маска, которую изготавливают имплантацией и диффузией первой легирующей примеси первого типа проводимости, а улучшенный слой изготавливают имплантацией и диффузией второй легирующей примеси второго типа проводимости. Эти слои выравниваются автоматически благодаря использованию в качестве маски структурированного слоя электрода затвора.

Было обнаружено, что благодаря удалению первого оксидного слоя над отверстиями структурированного слоя электрода затвора после диффузии первой легирующей примеси и до имплантации второй легирующей примеси получается слой базы второго типа проводимости с меньшей глубиной в центральной области, расположенной под областью контакта электрода эмиттера, и с большей глубиной в периферийной области базы второго типа проводимости.

Такое изменение конфигурации слоя базы позволяет полупроводниковому прибору работать с низкими потерями энергии во включенном состоянии и более широкой областью устойчивой работы. Предпочтительно использовать этот способ для изготовления биполярных транзисторов с изолированным затвором и полевых МОП-транзисторов.

Краткое описание чертежей

Объект изобретения поясняется более подробно в следующем тексте со ссылками на прилагаемые чертежи, на которых:

фиг.1 - вид, показывающий силовой полупроводниковый прибор с изолированным затвором, соответствующий изобретению; и

фиг.2-10 - виды, показывающие различные этапы способа изготовления полупроводникового прибора, соответствующего изобретению.

Ссылочные позиции, используемые на чертежах, и их смысловое содержание приведены в списке ссылочных позиций. В общем, для одинаковых или одинаково работающих частей использованы одинаковые ссылочные позиции. Описанные варианты осуществления изобретения приведены в качестве примеров и не ограничивают изобретения.

Варианты осуществления изобретения

На фиг.1 показан силовой полупроводниковый прибор, соответствующий изобретению. IGBT показан со слаболегированным (n-) слоем 12 дрейфа. Слой 12 дрейфа содержит первую основную сторону и вторую основную сторону, противоположную первой стороне. Вторая основная сторона - это коллекторная сторона 121, на которой расположен легированный буферный слой 9 n-типа, причем буферный слой 9 содержит большую концентрацию легирующих примесей, чем слой 12 дрейфа. На буферном слое 9, со стороны, противоположной слою 12 дрейфа, размещен легированный слой коллектора 10 р-типа, на верхней стороне которого расположен электрод 11 коллектора.

На первой основной стороне, которая является эмиттерной стороной 122, расположена легированная область 5 базы р-типа, которая внедрена в легированный улучшенный слой 4 n-типа. В улучшенном слое 4 концентрация легирующих примесей выше по сравнению со слоем 12 дрейфа и улучшенный слой 4 разделяет область 5 базы и слой 12 дрейфа. На эмиттерной стороне 122 расположен оксидный слой 2 затвора, который обычно формируют из двуокиси кремния SiO2. Оксидный слой 2 затвора содержит отверстие, которое оставляет часть поверхности области 5 базы, незакрытой оксидным слоем 2 затвора. Сверху оксидного слоя 2 затвора расположен слой 3 электрода затвора, обычно выполненный из поликристаллического кремния. Слой 3 электрода затвора содержит отверстие 31 в том же самом месте и, предпочтительно, того же размера, что и оксидный слой 2. Слой 3 электрода затвора и оксидный слой 2 затвора закрыты изоляционным слоем 7. Электрод 8 эмиттера расположен сверху изоляционного слоя и в отверстии 31 оксидного слоя 2 затвора и сверху слоя 3 электрода затвора, закрытого изоляционным слоем 7. В пределах легированной р-типа области 5 базы расположены высоколегированные (n+) области 6 истока, которые контактируют с электродом 8 эмиттера в области отверстия 31 и доходят по поверхности эмиттерной стороны 122 до области, находящейся под слоем 3 электрода затвора.

Как правило, слой 12 дрейфа, область 5 базы, улучшенная область 4 и области 6 истока сформированы на одной общей плоской поверхности.

Область 5 базы в центральной части имеет глубину 53, которая меньше максимальной глубины 54 области 5 базы, находящейся вне ее центральной части, то есть на периферии области 5 базы.

Соответствующий изобретению способ изготовления силового полупроводникового прибора показан на фиг.2-10. Способ включает в себя следующие этапы изготовления. Как показано на фиг.2, способ начинается со слаболегированной (n-) подложки 1, которая содержит коллекторную сторону 121 (не показана) и эмиттерную сторону 122, противоположную коллекторной 121 стороне. Как показано на фиг.3, на эмиттерной стороне 122 формируют первый оксидный слой 22, который полностью покрывает подложку 1. Как показано на фиг.4, сверху первого оксидного слоя 22 формируют электропроводящий слой 32. Электропроводящий слой 32 полностью покрывает первый оксидный слой 22. Согласно фиг.5, в электропроводящем слое 32 методом травления формируют окно 31, в виде сквозного отверстия, в результате чего получают структурированный слой 3 электрода затвора, при этом часть оксидного слоя 22 остается незакрытой.

Первую легирующую примесь с проводимостью n-типа имплантируют в подложку 1 (показано стрелками 42 на фиг.6) с использованием в качестве маски структурированного слоя 3 электрода затвора с его отверстием 31, в результате чего получают первую легированную имплантированную n-типа область 41. Концентрация легирующих примесей в первой имплантированной области 41 выше концентрации легирующих примесей в слое 12 дрейфа. Далее происходит диффузия имплантированных легирующих примесей в подложку 1 (показано стрелками 43 на фиг.7), в результате чего получают улучшенную область 4. В качестве первой легирующей примеси предпочтительно использовать ионы фосфора и/или мышьяка, при этом предпочтительнее использовать ионы фосфора. Первую легирующую примесь предпочтительно имплантировать с энергией 40-150 кэВ и/или с дозой 1·1012-1·1014/см2. Первую легирующую примесь вводят в подложку 1 на глубину от 1 мкм до 10 мкм, в частности на глубину от 1 мкм до 8 мкм, и в некоторых случаях от 1 мкм до 6 мкм.

После формирования улучшенного слоя 4, первый оксидный слой 22 частично удаляют из тех областей, где находится отверстие 31 структурированного слоя 3 электрода затвора, что обычно реализуют методом травления (показано пунктирной линией 21 на фиг.8). Затем вторую легирующую примесь с проводимостью р-типа имплантируют в область 5 базы (показано стрелками 55 на фиг.9) с использованием в качестве маски структурированного слоя 3 электрода затвора с отверстием 31, в результате чего получают вторую имплантированную область 51. Затем, вторая имплантированная легирующая примесь диффундирует в область 5 базы (показано стрелками 52 на фиг.10). В качестве второй легирующей примеси предпочтительно использовать ионы бора, алюминия, галлия и/или индия, предпочтительнее - ионы бора. Вторую легирующую примесь предпочтительно имплантировать с энергией от 20 до 120 кэВ и/или с дозой 5·1013-3·1014/см2. Вторая легирующая примесь проникает на максимальную глубину 54, составляющую от 0,5 мкм до 9 мкм, в частности от 0,5 мкм до 7 мкм и в некоторых случаях от 0,5 мкм до 5 мкм.

Благодаря такому процессу изготовления вторая легирующая примесь проникает в подложку в центральной области на глубину 53 (см. фиг.1), которая меньше максимальной глубины 54 той части области базы 5, которая находится на периферии, то есть вне центральной области. Как показано на фиг.10, вторая легирующая примесь проникает в подложку 1 не только перпендикулярно поверхности, но и распространяется в стороны, таким образом, уменьшается концентрация второй легирующей примеси в центральной части. При использовании в качестве легирующей примеси бора, имплантированного с низкой энергией, достигается глубина 53 в центральной области 5 базы, равная 1,6 мкм, при этом максимальная глубина 54 вне центральной области составляет 2,4 мкм. Энергия, используемая для имплантации бора, составляет обычно от 40 до 120 кэВ, в некоторых случаях от 70 кэВ до 90 кэВ, в некоторых - около 80 кэВ.

Конечно, также можно изготавливать структурированный слой 3 электрода затвора, по меньшей мере, с двумя отверстиями 31, создавая, таким образом, по меньшей мере, две области 5 базы, каждая из которых окружена улучшенным слоем 4.

Высоколегированные (n+) области 6 истока и слои на коллекторной стороне 121, а именно легированный n-типа буферный слой 9, легированный р-типа коллекторный слой 10 и электрод 11 коллектора могут быть сформированы на любом подходящем этапе и любым подходящим способом.

Возможно использовать изобретение для изготовления полупроводниковых приборов с противоположным типом проводимости для всех слоев, то есть со слаболегированной (р-) подложкой и т.д.

Изобретение разработано для планарных полупроводников, но способ может быть применен и для полупроводников, выполненных по технологии «утопленного» канала. Кроме того, изобретение может также быть использовано для изготовления других типов полупроводниковых приборов, например полевых МОП-транзисторов.

Список ссылочных позиций

1 подложка

2 оксидный слой затвора

21 область

22 первый оксидный слой

3 слой электрода затвора

32 электропроводящий слой

31 отверстие

4 улучшенный слой

41 первая имплантированная область

41' имплантация первой легирующей примеси

42 диффузия первой легирующей примеси 5 область базы

51 вторая имплантированная область

51' имплантация второй легирующей примеси

52 диффузия второй легирующей примеси

53 диффузионная глубина второй легирующей примеси в центральной области

54 максимальная глубина диффузии второй легирующей примеси

6 область истока

7 изоляционный слой

8 электрод эмиттера

9 буферный слой

10 коллекторный слой

11 электрод коллектора

12 слой дрейфа

121 коллекторная сторона

122 эмиттерная сторона

1. Способ изготовления силового полупроводникового прибора, включающий следующие этапы:
формирование первого оксидного слоя (22) на первой основной стороне подложки (1) первого типа проводимости,
формирование слоя (3, 3') электрода затвора, по меньшей мере, с одним отверстием (31) на первой основной стороне сверху первого оксидного слоя (22),
имплантирование первой легирующей примеси первого типа проводимости в подложку (1) с первой основной стороны, используя слой (3, 3') электрода затвора в качестве маски,
диффундирование первой легирующей примеси в подложку (1),
имплантирование второй легирующей примеси второго типа проводимости в подложку (1) с первой основной стороны и
диффундирование второй легирующей примеси в подложку (1), отличающийся тем, что после диффузии первой легирующей примеси в подложку (1), но перед имплантацией второй легирующей примеси в подложку (1) первый оксидный слой (22) частично удаляют и используют слой (3, 3') электрода затвора в качестве маски для имплантации второй легирующей примеси.

2. Способ по п.1, отличающийся тем, что первый оксидный слой (22) удаляют в тех областях, где расположено указанное, по меньшей мере, одно отверстие (31) слоя (3, 3') электрода затвора, в результате чего формируется оксидный слой (2) затвора.

3. Способ по п.1, отличающийся тем, что в качестве первой легирующей примеси используют ионы фосфора и/или ионы мышьяка.

4. Способ по п.2, отличающийся тем, что в качестве первой легирующей примеси используют ионы фосфора и/или ионы мышьяка.

5. Способ по п.1, отличающийся тем, что первую легирующую примесь имплантируют с энергией от 40 до 150 кэВ и/или с дозой 1·1012-1·1014/см2.

6. Способ по п.1, отличающийся тем, что первую легирующую примесь имплантируют с энергией от 40 до 150 кэВ и/или с дозой 1·1012-1·1014/см2.

7. Способ по п.1, отличающийся тем, что первая легирующая примесь диффундирует в подложку (1) на глубину, равную по меньшей мере 1 мкм и максимально до 10 мкм, в частности максимально до 8 мкм и предпочтительно максимально до 6 мкм.

8. Способ по п.3, отличающийся тем, что первая легирующая примесь диффундирует в подложку (1) на глубину, равную по меньшей мере 1 мкм и максимально до 10 мкм, в частности максимально до 8 мкм и предпочтительно максимально до 6 мкм.

9. Способ по п.6, отличающийся тем, что первая легирующая примесь диффундирует в подложку (1) на глубину, равную по меньшей мере 1 мкм и максимально до 10 мкм, в частности максимально до 8 мкм и предпочтительно максимально до 6 мкм.

10. Способ по п.1, отличающийся тем, что в качестве второй легирующей примеси используют ионы бора, алюминия, галлия и/или индия.

11. Способ по п.3, отличающийся тем, что в качестве второй легирующей примеси используют ионы бора, алюминия, галлия и/или индия.

12. Способ по п.10, отличающийся тем, что вторую легирующую примесь имплантируют с энергией 20-120 кэВ и/или с дозой 5·1013-3·1014/см2.

13. Способ по любому из пп.1-12, отличающийся тем, что вторая легирующая примесь диффундирует в подложку (1) на максимальную глубину (54), составляющую от 0,5 мкм до 9 мкм, в частности от 0,5 мкм до 7 мкм и предпочтительно от 0,5 мкм до 5 мкм.



 

Похожие патенты:

Изобретение относится к полупроводниковым устройствам. Полупроводниковое устройство содержит тонкопленочный транзистор, содержащий шину затвора, первую изолирующую пленку, оксидно-полупроводниковый слой в форме островка, вторую изолирующую пленку, шину истока, электрод стока и пассивирующую пленку, а также контактную площадку, содержащую первый соединительный элемент, изготовленный из той же проводящей пленки, что и шина затвора, второй соединительный элемент, изготовленный из той же проводящей пленки, что и шина истока и электрод стока, и третий соединительный элемент, сформированный на втором соединительном элементе.

Изобретение относится к электронной полупроводниковой технике и обеспечивает создание способа изготовления мощных кремниевых СВЧ LDMOS транзисторов с уменьшенным шагом транзисторной ячейки, улучшенными частотными и энергетическими параметрами и повышенным процентом выхода годных структур.

Использование: в электронной технике, при производстве интегральных схем различного назначения. Технический результат изобретения - технологический процесс, позволяющий создавать МДП-нанотранзисторы без использования литографии высокого разрешения с максимальным подавлением короткоканальных эффектов.

Изобретение относится к способам изготовления подложек со структурой тонкопленочных транзисторов для применения в панелях отображений. .

Изобретение относится к электронной полупроводниковой технике. .

Изобретение относится к тонкопленочному транзистору, который содержит конденсатор, включенный между затвором и истоком, а также к сдвиговому регистру, к схеме управления шиной сигналов развертки, дисплейному устройству и способу подстройки тонкопленочного транзистора.

Изобретение относится к полупроводниковым устройствам. .
Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления тонкопленочных полупроводниковых приборов с пониженными токами утечек.

Изобретение относится к электронной полупроводниковой технике и направлено на улучшение электрических параметров СВЧ мощных кремниевых генераторных LDMOS транзисторов, повышение их стойкости к воздействию ионизирующих излучений и повышение процента выхода годных изделий.

Изобретение относится к электронной полупроводниковой технике и направлено на создание базового процесса изготовления мощных кремниевых СВЧ LDMOS структур и транзисторов на более доступном и менее дорогостоящем технологическом оборудовании, способных работать в диапазоне частот до 3,0-3,6 ГГц при повышенных напряжениях питания по стоку. В способе изготовления транзисторной СВЧ LDMOS структуры нанесенный на подзатворный диэлектрик поликремний покрывают тугоплавким металлом, формируют полицид тугоплавкого металла, наносят на лицевую сторону подложки защитный слой фоторезиста, вскрывают окна в защитном слое фоторезиста, полициде тугоплавкого металла, поликремнии и подзатворном диэлектрике над истоковыми p+-перемычками и прилегающими к ним участками высокоомного p--слоя подложки и формируют таким образом вначале только истоковые боковые грани полицидных электродов затвора транзисторных ячеек, затем через вскрытые окна внедряют в подложку ионы бора, удаляют фоторезист с лицевой поверхности подложки и последующей диффузионной разгонкой внедренной в подложку примеси создают р-карманы элементарных ячеек, удаляют полицид тугоплавкого металла и поликремний с лицевой поверхности подложки в промежутке между р-карманами транзисторных ячеек и формируют стоковые боковые грани полицидных затворных зубцов и полицидные электроды затвора элементарных ячеек в целом, потом в высокоомном эпитаксиальном р--слое подложки у истоковых и в промежутке между стоковыми боковыми гранями полицидных электродов затвора создают высоколегированные истоковые n+-области и соответственно высоколегированные и многоступенчатые слаболегированные n-области стока элементарных ячеек, после этого в межслойном диэлектрике формируют металлические экранирующие электроды транзисторных ячеек, а полицидные затворные зубцы ячеек точечно шунтируют общими металлическими шинами затвора, сформированными на верхней поверхности многоуровневого межслойного диэлектрика над истоковыми p+-перемычками элементарных ячеек. 5 ил.
Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления тонкопленочных транзисторов. В способе изготовления тонкопленочного транзистора на подложку из монокристаллического кремния с термически выращенным слоем окиси кремния последовательно плазмохимическим осаждением из газовой фазы при температуре подложки 300оС осаждают слой нелегированного α-Si n--типа толщиной 300 нм и слой легированного фосфором микрокристаллического кремния n+-типа толщиной 20 нм, между стоком и истоком формируют термически слой оксида кремния толщиной 200 нм, углубленный в слой аморфного кремния, затем наносят 500 нм слой SiO2 методом химического осаждения из газовой фазы при 250°C, затем образцы отжигают в атмосфере водорода при 350°C в течение 30 минут. Техническим результатом изобретения является снижение токов утечек, обеспечение технологичности, улучшение параметров, повышение надежности и увеличение процента выхода годных приборов. 1 табл.
Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления полевого транзистора с пониженным сопротивлением затвора. В способе изготовления полупроводникового прибора электрод затвора формируют путем последовательного нанесения поверх слоя затворного окисла многослойной структуры, состоящей из слоя поликремния, слоя нитрида кремния, сквозь который могут туннелировать электроны, слоя молибдена и второго слоя нитрида кремния. Технический результат: снижение сопротивления электрода затвора, обеспечение технологичности, улучшение параметров, повышение надежности и увеличение процента выхода годных приборов. 1 табл.
Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления тонкопленочных транзисторов с пониженной плотностью дефектов. В способе изготовления тонкопленочного транзистора в качестве подложки используют сильнолегированные монокристаллические пластины кремния n+-типа проводимости, в качестве изолятора затвора используют слой слой диоксида кремния толщиной 110 нм, выращенный термическим окислением в сухом кислороде при 1000°C, после чего формируют пленку аморфного кремния толщиной 430 нм в ВЧ тлеющем разряде в силане при температуре подложки 250°C и имплантируют ионы фтора с энергией 25 кэВ и дозой 1014-5·1015 см-2. После имплантации образцы отжигают в атмосфере азота при температуре 200-220°С в течение 60 минут, наносят пассивирующий слой оксида кремния толщиной 150 нм в плазме газовой смеси SiH4 и N2O, а для создания тонкого n+ аморфного кремниевого слоя проводят имплантацию ионов фосфора энергией 30 кэВ и дозой 1016 см-2. Техническим результатом изобретения является снижение плотности дефектов, обеспечение технологичности, улучшение параметров приборов, повышение качества и увеличение процента выхода годных. 1 табл.

Изобретение относится к микроэлектронике, а именно к области силовых полупроводниковых приборов, в частности к силовым БТИЗ и ДМОП транзисторам. В способе изготовления полупроводникового прибора на полупроводниковой подложке первого типа проводимости создают подзатворный диэлектрик, затворный электрод и межслойную изоляцию над затворным электродом, далее в окнах затворного электрода создают методами ионной имплантации и термической диффузии канальную и истоковую области второго и первого типа проводимости соответственно, вскрывают контакты металлического истока с истоковыми и канальными диффузионными областями, располагающимися в середине окон затворного электрода в слое кремния, на глубине, превышающей глубину истоковых областей, и контакты металлического электрода затвора через межслойный диэлектрик к поликремниевому электроду затвора с использованием единой фоторезистивной маски в едином технологическом плазмохимическом процессе травления окисла кремния и кремния путем подбора скорости травления окисла над затвором и скорости травления кремния. Отношение вертикальной скорости травления окисла кремния к горизонтальной скорости травления составляет не менее 3. Изобретение обеспечивает повышение степени интеграции за счет уменьшения подтравливания бокового окисла в контактах. 1 з.п. ф-лы, 1 ил.

Изобретение относится к электронной технике. В способе изготовления мощных кремниевых СВЧ LDMOS транзисторов нанесенный на подзатворный диэлектрик поликремний покрывают тугоплавким металлом, высокотемпературным отжигом формируют полицид тугоплавкого металла на поверхности поликремния, методом фотолитографии создают из полицида тугоплавкого металла и расположенного под ним слоя поликремния полицидные затворные зубцы элементарных ячеек с прилегающими к ним со стороны истока ответвленными контактными площадками и используют их в качестве защитной маски при внедрении в подложку ионов бора, фосфора и мышьяка при формировании соответственно p-карманов, многоступенчатых слаболегированных n--областей стока и высоколегированных n+-областей стока и истока элементарных ячеек, а точечное шунтирование полицидных затворных зубцов ячеек металлическими шинами осуществляют через примыкающие к затворным зубцам полицидные ответвленные контактные площадки, причем в высокоомном эпитаксиальном p--слое подложки под ответвленными контактными площадками поликремниевых затворных зубцов формируют дополнительные локальные высоколегированные n+-области с более высокой степенью легирования по сравнению с p-карманами элементарных ячеек. Изобретение обеспечивает создание современной базовой нанотехнологии изготовления мощных кремниевых СВЧ LDMOS транзисторов с диапазоном рабочих частот до 3,0-3,6 ГГц на более доступном и менее дорогостоящем технологическом оборудовании. 7 ил.

Изобретение относится к полевым транзисторам, имеющим различные пороговые напряжения за счет модификации диэлектрической многослойной затворной структуры. Полупроводниковая структура содержит первый полевой транзистор, имеющий первую многослойную затворную структуру, которая включает в себя первый диэлектрик затвора, имеющий высокое значение диэлектрической постоянной, превышающее 4,0, участок металлического затвора, по меньшей мере один металлический участок и первый проводящий участок материала затвора, и второй полевой транзистор, имеющий вторую многослойную затворную структуру, которая включает в себя второй диэлектрик затвора, имеющий высокое значение диэлектрической постоянной, превышающее 4,0, по меньшей мере один диэлектрический металлооксидный участок и второй проводящий участок материала затвора, причем первый полевой транзистор и второй полевой транзистор имеют различные пороговые напряжения. Изобретение обеспечивает получение оптимальных рабочих характеристик приборов при оптимальном уровне потребления энергии. 2 н. и 10 з.п. ф-лы, 12 ил.

Изобретение относится к металлооксидным тонким пленкам, используемым при изготовлении полевого транзистора. Жидкость для нанесения покрытия с образованием металлооксидной тонкой пленки включает неорганическое соединение индия, по меньшей мере одно из неорганического соединения магния и неорганического соединения цинка, простой гликолевый эфир и диол, причем диол выбран из по меньшей мере одного из диэтиленгликоля, 1,2-пропандиола и 1,3-бутандиола. Изобретение обеспечивает получение металлооксидного тонкопленочного покрытия с необходимым удельным сопротивлением простейшим способом, большой площади, необходимой формы и с большой точностью. 5 н. и 7 з.п. ф-лы, 10 ил., 4 табл.

Использование: в технологии производства полупроводниковых приборов. Технический результат изобретения - снижение токов утечек, обеспечивающее технологичность, улучшение параметров, повышение надежности и увеличение процента выхода годных приборов. Сущность - полупроводниковый прибор создают путем формирования подзатворного диэлектрика из слоя оксинитрида кремния толщиной 50-100 нм при температуре 350°С, скорости потока SiH4 1-3 см3/с, давлении 133 Па, мощности ВЧ-разряда 70 Вт, соотношении N2O/(N2O+NH3)=0,4 с последующим отжигом при температуре 380-400°С в течение 30 мин в атмосфере азота. 1 табл.

Изобретение относиться к области технологии производства полупроводниковых приборов, в частности к технологии изготовления полевых транзисторов, с пониженными токами утечки. В способе изготовления полупроводникового прибора под подзатворным диэлектриком создают тонкий 8-10 нм слой Si3N4 ионной имплантацией азота с энергией 2,1 кэВ, дозой 8*1017 см-2 в подложку в течение двух минут, с последующим отжигом при температуре 300-400°C в течение 15-30 с. Изобретение позволяет повысить процент выхода годных приборов, улучшить их качество и надежность. 1 табл.
Наверх