Способ разделения смеси газов

Изобретение относится к технике переработки попутного или природного газа, а именно к процессу низкотемпературной сепарации компонент газа. Способ разделения смеси газов включает охлаждение смеси, расширение продуктов, получаемых из смеси, прокачивание по крайней мере части продуктов через ректификационную колонну, расширение смеси в закрученном потоке в сопле с разделением потока на поток, обогащенный компонентами тяжелее метана, и поток, обедненный этими компонентами, нагрев обедненного потока за счет охлаждения продуктов, получаемых из смеси. При этом нагретый обедненный газовый поток сжимают в компрессоре, охлаждают в аппарате воздушного охлаждения, часть полученного газового продукта используют в качестве выходного продукта, другую часть дополнительно охлаждают, расширяют, продукты расширения направляют в колонну и/или смешивают с газофазными продуктами, поступающими из колонны в сопло. Изобретение позволяет увеличить степень очистки выходного газа. 4 з.п. ф-лы, 2 ил., 1 табл.

 

Предлагаемое изобретение относится к технике переработки попутного или природного газа, а именно к процессу низкотемпературной сепарации компонент газа.

Известен способ разделения смеси газов (патент ЕР 2326403 АО), включающий охлаждение смеси газов и расширение смеси во вращающемся потоке с разделением смеси на продукт, обогащенный целевыми компонентами, и продукт, обедненный этими компонентами, прокачку части продуктов, полученных из смеси газов, через колонну, включение обедненного продукта в состав выходного газа.

Однако такой способ не позволяет достичь высокой степени очистки от целевых компонент, т.к. температура точки росы обедненного потока остается достаточно высокой из-за того, что затруднительно получить низкие температуры в теплообменниках, расположенных перед входом в сопло, из-за конденсации компонент в теплообменниках.

Наиболее близким к предлагаемому изобретению является способ разделения по патенту RU 2272973 С1, включающий охлаждение смеси газов, расширение смеси в закрученном потоке в сопле с разделением смеси на продукт, обогащенный тяжелыми компонентами, и продукт, обедненный этими компонентами, направлении по крайней мере части обогащенного продукта в ректификационную колонну, направление по крайней мере части газофазных продуктов, полученных в ректификационной колонне, в смесь до ее расширения, нагрев обедненного продукта за счет охлаждения смеси газов.

Однако такой способ также не позволяет получать высокую степень очистки из-за невозможности получить низкие температуры в теплообменниках.

Целью предлагаемого изобретения является увеличение степени очистки выходного газа.

Поставленная цель достигается тем, что в известном способе разделения смеси газов, включающем охлаждение смеси, расширение продуктов, получаемых из смеси, прокачивание по крайней мере части продуктов через ректификационную колонну, расширение смеси в закрученном потоке в сопле с разделением потока на поток, обогащенный компонентами тяжелее метана, и поток обедненными этими компонентами, нагрев обедненного потока за счет охлаждения продуктов, получаемых из смеси, согласно изобретению нагретый газовый поток сжимают в компрессоре, охлаждают в аппарате воздушного охлаждения, часть полученного газового продукта используют в качестве выходного продукта, другую часть дополнительно охлаждают, расширяют, продукты расширения направляют в колонну и/или смешивают с газофазными продуктами, поступающими из колонны в сопло.

Работа предлагаемого изобретения иллюстрируется на примерах устройств, схемы которых приведены на Фиг.1, 2.

На Фиг.1 приняты следующие обозначения: 1 - сырьевой газ или смесь газов; 2 - хладагент; 3-18 продукты, получаемые из смеси; 19-20 - теплообменники; 21-22 - сепараторы, 23 - сопловой сепаратор; 24 - ректификационная колонна; 25-26 - компрессоры; 27-28 - аппараты воздушного охлаждения; 29 - насос; 30-34 - клапаны, 35 - смеситель, 36 - эжектор.

Смесь 1 поступает в смеситель 35, в котором смешивается с газофазным продуктом 17, полученным в сепараторе 22. При этом газ 17 предварительно нагревается в теплообменнике 19, сжимается в компрессоре 25 и охлаждается в аппарате 27 воздушного охлаждения. Смесь 3 охлаждается в теплообменнике 19, полученная двухфазная смесь в сепараторе 21 разделяется на газовый 5 и жидкий 4 продукты, которые расширяются в клапанах 30, 31 и направляются в колонну 24. Расширение газа 5 может быть проведено в турбине детандера или в сопле. Вместо многопоточного теплообменника 19 могут быть использованы несколько теплообменников.

Газофазный продукт 7 из колонны подается в сопловой сепаратор 23, в котором расширяется во вращающемся потоке в сопле и разделяется на обогащенный компонентами тяжелее метана поток 8 и поток 9, обедненный этими компонентами. Обогащенный поток 8 подается в сепаратор 22, в котором разделяются жидкий 14 и газофазный 17 продукты, жидкость 14 с помощью насоса 29 направляется в колонну 24. Обедненный поток 9 направляют в нагреваемые каналы рекуперативного теплообменника 20, и далее дополнительно нагревают в теплообменнике 19, сжимают в компрессоре 26, охлаждают в аппарате 28 воздушного охлаждения, часть полученного газа 10 используют в качестве выходного продукта 11. Другую часть 12 дополнительно охлаждают в теплообменнике 20, расширяют в клапане 34 и направляют в колонну 24.

Часть 6 жидкого продукта используют в качестве хладоносителя в теплообменнике 19. Другую часть 18 жидкого продукта также направляют в качестве хладоносителя в теплообменник 19 и используют в качестве выходного продукта.

При необходимости в теплообменнике 19 может быть использован дополнительный хладагент 2.

Согласно п.2 формулы изобретения газофазный продукт 17 из сепаратора 22, являющийся частью обогащенного потока 16, используют в теплообменнике 19 для охлаждения смеси газов, сжимают компрессором 25, охлаждают в аппарате воздушного охлаждения 27 и направляют в смеситель 35.

Согласно п.3 формулы изобретения вместо дроссельного клапана 34 для расширения дополнительно охлажденной части газа может быть использован турбодетандер и/или сопло.

В случае использования сопла с получением в нем обедненного и обогащенного продуктов эти продукты могут быть направлены в колонну на тарелки разных уровней, что будет способствовать более эффективной работе колонны.

Согласно п.4 формулы изобретения в обогащенный поток 8 могут быть добавлена смесь и/иди продукты, полученные из смеси, имеющие температуру выше температуры точки росы обогащенного потока. Это позволит избежать появления твердой фазы (например, сухого льда) в трубопроводах, а также в сепараторе 22.

Согласно п.5 формулы изобретения дополнительно охлажденную часть газа после расширения направляют в эжектор 36 (Фиг.2), в котором используют в качестве эжектирующего или эжектируемого газа при смешении с продуктами 7, полученными из смеси газов, затем полученную смесь направляют в сопловой сепаратор 23.

Эжектор 36 может быть использован либо для снижения давления в ректификационной колонне, либо для снижения затрат энергии на сжатие.

Вместо смесителя 35 может быть также использован эжектор, что позволит более рационально использовать энергию при сжатии газов.

В таблице 1 приводятся данные по расчету параметров потоков в установке, приведенной в качестве примера на Фиг.1.

В таблице приняты обозначения: № - номер потока, T - температура потока, P - давление потока, приводятся также значения мольной доли компонент в соответствующих строках.

Как следует из приведенного примера, такая установка может быть использована для удаления значительной доли углекислоты из смеси 1, в которой начальное содержание ее достигает ~70%.

Расчеты выполнены для случая, когда разделение потока 7 происходит после расширения потока в сопле соплового сепаратора до давления 1 МПа с последующим восстановлением давления в диффузоре до 2.5 МПа

Таблица 1
1 3 7 9 11 15 16 18
Массовая доля газа 1,00 1,00 1,00 1,00 1,00 0,12 0,2 0,00
Температура ºС 30,00 27,54 -60,35 -50,88 30,00 -61,89 -64,32 5,00
Давление МПа 6,00 6,00 4,50 2,50 8,0 2,50 2,50 4,50
Расход кг/ч 164139,47 181614,60 47164,07 28629,35 12628,61 70000,00 88534,72 141599,13
Мольный состав
CO2 0,698789 0,611298 0,135609 0,038539 0,038531 0,612829 0,549182 0,854932
CH4 0,199654 0,30102 0,850679 0,951227 0,951235 0,308918 0,387177 0,036058
C2H6 0,029948 0,027288 0,010989 0,009477 0,009476 0,027095 0,02385 0,03448
C3H8 0,029948 0,025493 0,002218 0,000724 0,000723 0,023974 0,019249 0,034534
i-C4H10 0,009983 0,008391 0,000258 0,000026 0,000026 0,007364 0,005661 0,010792
n-C4H10 0,009983 0,008369 0,000158 0,000007 0,000007 0,00707 0,005367 0,010397
i-C5H12 0,009983 0,00835 0,000055 0,000001 0,000001 0,006208 0,004642 0,009153
n-C5H12 0,009983 0,008346 0,000034 0 0 0,00587 0,004374 0,008661
С6+ и H2O 0,001729 0,001445 0,000001 0 0 0,000672 0,000498 0,000992

1. Способ разделения смеси газов, включающий охлаждение смеси, прокачивание части получаемых из смеси продуктов через ректификационную колонну, расширение, по крайней мере, части продуктов в закрученном потоке в сопле с разделением потока на поток, обогащенный компонентами тяжелее метана и поток, обедненный этими компонентами, нагрев обедненного потока за счет охлаждения продуктов, получаемых из смеси, отличающийся тем, что нагретый обедненный поток сжимают в компрессоре, охлаждают в аппарате воздушного охлаждения, часть полученного газа используют в качестве выходного продукта, другую часть дополнительно охлаждают, расширяют, продукты расширения направляют в колонну и/или смешивают с газофазными продуктами, поступающими из колонны в сопло.

2. Способ по п.1, отличающийся тем, что обогащенный поток или его часть используют в качестве хладагента для охлаждения смеси или продуктов, получаемых из смеси, сжимают, охлаждают с помощью аппарата воздушного охлаждения и направляют в смесь.

3. Способ по п.1 или п.2, отличающийся тем, что расширение дополнительно охлажденной части газа проводят в турбодетандере или в дроссельном клапане, и/или сопле.

4. Способ по п.1, отличающийся тем, что в обогащенный поток добавляют смесь и/или продукты, получаемые из смеси, имеющие температуру выше температуры точки росы обогащенного потока.

5. Способ по п.1, отличающийся тем, что дополнительно охлажденную часть газа используют в эжекторе в качестве эжектирующего или эжектируемого газа при смешении с продуктами, получаемыми из смеси газов.



 

Похожие патенты:

Изобретение относится к мембранной технике и может быть использовано для разделения и концентрирования газа, а также в нефтехимической, газовой и других отраслях промышленности.

Изобретение относится к области энергетики и может быть использовано для выработки электроэнергии, полученной при утилизации топлив в факелах путем сжигания жидких, газообразных отходов лесной и сельскохозяйственной промышленности, биогаза, продуктов переработки бытовых отходов, продуктов подземной или промышленной газификации твердых топлив, отходов нефтедобычи и нефтепереработки.

Изобретение относится к аппаратурному оформлению тепломассообменных процессов в системе газ (пар) - жидкость, а именно к устройству пленочных тепломассобменных аппаратов, и может быть использовано в различных установках нефтеперерабатывающей промышленности, в частности, для переработки тяжелых нефтяных остатков, например мазута, а также химической и других отраслях промышленности.

Изобретение относится к выпарному устройству центробежного типа для концентрирования жидких растворов и может быть использовано в отделочном производстве текстильной промышленности в процессах концентрирования отработанных жидких материальных растворов.
Изобретение относится к технологии очистки газовых потоков. Описывается способ уменьшения сероокиси углерода, сероуглерода, соединений карбонилов металлов, сероводорода и циановодорода, аммиака и соединений мышьяка и хлора в сырьевом газе.

Изобретение может быть использовано в промышленной аспирации и для очистки атмосферного воздуха от выхлопных газов автомобилей в зоне автомобильного регулируемого перекрестка.
Изобретение может быть использовано для получения хлора, в частности, из хлорида кальция. Для этого после предварительного прокаливания для удаления гидратированной воды хлорид кальция спекается с алюмосиликатом или смесью оксидов алюминия и кремния в мольном соотношении СаО:Al2O3:SiO2=1:1:2 при нормальном давлении в интервале температур от 1100 до 1300°С в атмосфере воздуха или кислорода.

Группа изобретений относится к химической, газовой и нефтяной отраслям промышленности и может быть использована для выделения из природного газа гелиевого концентрата, азота, метана и жидких углеводородов (С2+).

Изобретение относится области применения акустической техники в процессах и аппаратах химической технологии. Выпарной аппарат содержит герметичную емкость с патрубками для входа и выхода жидкостных и газовых потоков, в которой размещены пластины из электрострикционного композита, последовательно соединенные между собой электрическими контактами.

Изобретение относится к способам проведения тепловой обработки (выпаривания) и концентрирования текучих продуктов с использованием различного оборудования. Задачей, решаемой предлагаемым изобретением, является разработка способа тепловой обработки с выпариванием высоковязких и пенящихся продуктов, позволяющего получать продукты высокого качества, и разработка компактного и высокопроизводительного устройства для реализации этого способа.

Изобретение может быть использовано в химической промышленности. Способ десорбции в слое адсорбента включает пропускание потока десорбента через слой адсорбента, расположенный в зоне удаления, для удаления по меньшей мере одного нитрильного соединения и кислородсодержащего соединения. Поток десорбента после десорбции промывают и объединяют с сырьевым потоком для зоны алкилирования после зоны селективного гидрирования. Изобретение позволяет получить достаточное количество регенерирующего агента для десорбции с минимизацией дополнительных затрат. 9 з.п. ф-лы, 2 ил.

Изобретение относится к способу и устройству для отделения очищенного ценного газа из газовой смеси. Способ и устройство содержат, главным образом, углекислый газ, по меньшей мере, один ценный газ, а также, по меньшей мере, одно вредное вещество, причем проводится конденсация углекислого газа, и жидкий углекислый газ вместе со скопившимися в нем вредными веществами выделяется из ценного газа. В результате чего посредством адсорбции выполняется выделение вредного вещества из жидкого углекислого газа, и часть очищенного жидкого углекислого газа подается в ценный газ для абсорбции вредного вещества, которое еще содержится в ценном газе. Изобретение позволяет значительно снизить концентрацию углекислого газа и содержание вредных веществ в ценном газе. 2 н. и 15 з.п. ф-лы, 1 ил.

Изобретение относится к химической технологии и может быть использовано в системах улавливания углеводородов из парогазовых смесей, выбрасываемых в атмосферу при сливе, хранении и подготовке коксохимического сырья в производстве технического углерода. Предлагаемые способ и установка улавливания углеводородов включают теплообменник-кристаллизатор, внутри которого расположены трубы в форме змеевика, на теплообменник-кристаллизатор установлена нижним основанием кассета с углеродным сорбентом с устройством для регенерации сорбента, теплообменник-кристаллизатор соединен с теплообменником-конденсатором для охлаждения и конденсации продуктов регенерации, который через гидрозатвор, погружной насос, накопительную емкость и центробежный насос соединен с реактором для получения технического углерода. Причем устройство для регенерации сорбента соединено через плотный клапан со стационарно установленным вентилятором для удаления очищенного воздуха в атмосферу, а через патрубок - с источниками водяного пара и подогретого воздуха. Изобретение позволяет повысить эффективность улавливания углеводородов, снизить содержания золы в целевом продукте и сократить общие затраты на его производство. 2 н. п. ф-лы, 1 ил., 1 табл.

Изобретение относится к технологии утилизации попутного нефтяного газа и может быть использовано на установках сепарации и подготовки нефти, на промысловых объектах подготовки и переработки нефтяного газа и на компрессорных станциях. Установка включает трубопровод подачи сырья, блок сепарации, состоящий из не менее чем двух ступеней сепарации, каждая из которых имеет вход для сырья и отводы попутного нефтяного газа и углеводородной смеси с водой, и имеющий отвод водонефтяной эмульсии, не менее чем две ступени компримирования газа с отводами газа и углеводородного компрессата, при этом отводы попутного нефтяного газа ступеней сепарации соединены с соответствующими по давлению ступенями компримирования, а отвод газа каждой ступени компримирования соединен с отводом попутного нефтяного газа предыдущей ступени сепарации, блок мембранного разделения газа с отводами подготовленного газа и пермеата, соединенный с отводом газа первой ступени компримирования, и блок стабилизации углеводородов с отводами газа стабилизации и жидких углеводородов, соединенный с отводом углеводородного компрессата со ступеней компримирования. Изобретение обеспечивает полную утилизацию попутного нефтяного газа, оптимизацию технологической схемы установки и снижение капитальных и эксплуатационных затрат. 3 н. и 24 з.п. ф-лы, 3 ил.

Изобретение относится к способу непрерывного термического разделении смесей материалов, в частности растворов, суспензий и эмульсий, в котором непрерывную обработку смесей материалов разделяют на основное испарение и дегазацию, причем основное испарение и дегазацию осуществляют в отдельных смесительных машинах. Основное испарение осуществляют в испарителе-смесительной машине, а дегазацию осуществляют в дегазационной смесительной машине, причем обе смесительные машины включают рабочую и газовую камеры непрерывного действия. Способ заключается в том, что полимерный раствор, сгущенный в испарителе-смесительной машине, непрерывно выводят через выход и подают в дегазационную смесительную машину. В ходе дегазации в дегазационной смесительной машине температуру полимерного раствора поддерживают ниже температуры, которая может вызывать разрушение полимерного раствора. При этом температуру регулируют добавлением легко испаряющихся или газообразных добавок, которые не растворяются в полимерном растворе, в одном или нескольких местах дегазационной смесительной машины. Достигаемый технический результат заключается в повышении эффективности дегазации растворов полимеров. 23 з.п. ф-лы, 1 ил.

Изобретение относится к способу получения твердого материала, содержащего ZnO и связующее, включающему следующие этапы: предварительное смешение порошков, содержащих по меньшей мере один порошок ZnO, по меньшей мере одно связующее (этап а), размешивание полученной пасты (этап b), экструзия (этап с) пасты, полученной на этапе b, сушка экструдатов, прокаливание (этап d) в потоке газа, содержащего кислород. Изобретение позволяет повысить физико-механические свойства твердого материала 3 н. и 6 з.п. ф-лы, 1 ил., 8 табл.

Изобретение относится к способу получения пиролизной жидкости и установке для ее получения. Способ получения пиролизной жидкости заключается в том, что пиролизная жидкость образуется путем пиролиза из сырьевого материала на биооснове с образованием газообразного продукта пиролиза при пиролизе в реакторе пиролиза, затем конденсируют продукт с получением пиролизной жидкости в конденсаторе, подают циркулирующий газ в реактор пиролиза, при этом циркулирующий газ транспортируют посредством компрессора с жидкостным кольцом в реактор пиролиза, очищают перед подачей его в реактор пиролиза и пиролизную жидкость используют в качестве жидкого слоя в компрессоре с жидкостным кольцом. Установка для получения пиролизной жидкости включает по меньшей мере реактор (1) пиролиза, в котором образуется газообразный продукт (2) пиролиза путем пиролиза сырьевого материала на биооснове, средства (3) подачи сырьевого материала на биооснове для подачи сырьевого материала на биооснове в реактор пиролиза, конденсатор (4), в котором газообразный продукт (2) пиролиза конденсируют с получением пиролизной жидкости (5), средства подачи газа для подачи циркулирующего газа (7) в реактор пиролиза, средства циркуляции циркулирующего газа (7) для обеспечения циркуляции циркулирующего газа из конденсатора в реактор пиролиза, при этом установка включает компрессор (6) с жидкостным кольцом для транспортировки циркулирующего газа (7) в реактор пиролиза из конденсатора (4) и очистки циркулирующего газа, установка включает средства циркуляции компрессорной жидкости для транспортировки пиролизной жидкости (5а), используемой в качестве жидкого слоя в компрессоре с жидкостным кольцом из конденсатора (4) в компрессор (6) с жидкостным кольцом и из компрессора (6) с жидкостным кольцом обратно в конденсатор (4). Технический результат - пиролизная жидкость из сырьевого материала на биооснове хорошо работает в качестве жидкого слоя компрессора с жидкостным кольцом, при этом повышается качество циркулирующего газа. 2 н. и 7 з.п. ф-лы, 1 ил., 1 пр.

Изобретение относится к области очистки и стерилизации воздуха, а именно к устройствам для очистки воздуха от газов, паров органических соединений, угарного газа и оксидов азота, и может быть использовано в газоочистной системе промышленных предприятий. Модульная установка очистки воздуха содержит нагревательные элементы, теплообменное, нагревательное и каталитическое устройства, связанные между собой, причем выход каталитического устройства соединен с теплообменным, сорбционное устройство, фильтрационное устройство, систему вентиляции и систему автоматического управления, связанную с нагревательными элементами, размещенными в нагревательном устройстве, и системой вентиляции, при этом каждое устройство и система выполнены в виде отдельного модуля. Изобретение обеспечивает создание компактной конструкции, обладающей повышенной эффективностью очистки, стерилизации и фильтрации воздуха, а также повышенными эксплуатационными характеристиками. 4 з.п. ф-лы, 4 ил.

Изобретение относится к концентраторам жидкости, а точнее к компактным передвижным недорогим концентраторам сточных вод, которые легко можно подключать к источникам отбросного тепла и использовать их для концентрирования жидкости. Компактный передвижной концентратор жидкости содержит газовпускной патрубок, газовыпускное отверстие и проточный канал, соединяющий газовпускной патрубок и газовыпускное отверстие, причем проточный канал содержит суженный участок, который увеличивает скорость протекания газа по проточному каналу. Впускной патрубок жидкости впрыскивают жидкость в поток газа перед суженным участком таким образом, чтобы газожидкостная смесь полностью перемешивалась в проточном канале, вызывая частичное испарение жидкости. Туманоуловитель или газопромывной аппарат за суженным участком удаляет из потока газа унесенные им капельки жидкости и возвращает собранную жидкость во впускной патрубок жидкости по рециркуляционному контуру. Свежую жидкость, поступившую на концентрирование, также подают в рециркуляционный контур со скоростью, достаточно большой, чтобы компенсировать испарившееся в проточном канале количество жидкости. Техническим результатом изобретения является обеспечение надежного концентратора, обладающего большим сроком службы, который в непрерывном режиме концентрирует сточные воды, сильно отличающиеся друг от друга по своим параметрам. 2 н. и 18 з.п. ф-лы, 16 ил.
Изобретение относится к способу получения горючего газа для газовых двигателей из образующегося при добыче нефти попутного газа, который содержит метан, этан, пропан, углеводороды с более чем тремя атомами углерода и по обстоятельствам пропен, причем получаются газообразная фракция и жидкостная фракция путем частичной конденсации попутного газа, причем процесс конденсации проводится при таких соотношениях давления и температуры, что жидкостная фаза по существу не содержит метана, этана, пропана и по обстоятельствам пропена и что газообразная фаза по существу свободна от н-бутана и изобутана. Технический результат - расширение арсенала средств способа. 7 з.п. ф-лы, 2 табл.
Наверх