Статор одновинтового насоса

Изобретение относится к области машиностроения и может быть использовано при разработке и изготовлении статора одновинтовых насосов. Статор одновинтового насоса содержит металлический остов 1 и запрессованную в него эластичную обкладку 2 с винтовым каналом 3. Внутренняя поверхность 4 остова 1 у торца со стороны нагнетательной камеры одновинтового насоса выполнена меньшего диаметра, с образованием уступа 5 в зоне сопряжения с внутренней поверхностью 6 большего диаметра, на которой выполнена заполненная эластомером эластичной обкладки винтовая канавка 7. Изобретение направлено на обеспечение повышенной работоспособности статора в составе одновинтового насоса и улучшение качества изготовления. 3 з.п. ф-лы, 2 ил.

 

Изобретение относится к области машиностроения и может быть использовано при разработке и изготовлении статора одновинтовых насосов.

В настоящее время широко применяются одновинтовые насосы различного назначения, работающие в тяжелых условиях эксплуатации и в агрессивных средах.

Высокая работоспособность одновинтовых насосов во многом определяется надежной работой статора.

С увеличением давления в одновинтовом насосе возрастает реактивный момент, передаваемый статором, и появляются большие силы трения между ротором и статором, что приводит к возникновению значительных по величине инерционных сил, действующих на обкладку статора в зоне ее сцепления с остовом.

Качественное изготовление статора является одной из основных проблем в создании одновинтовых насосов.

В настоящее время при изготовлении статора одновинтового насоса производят запрессовку эластомера в полость между остовом и установленным по его оси технологическим знаком, формирующим обкладку с винтовым каналом, вулканизацию эластомера обкладки под действием температуры и давления и выдавливание знака из обкладки.

При выдавливании технологического знака из обкладки после запрессовки эластомера придают знаку вращательно-поступательное движение под действием осевой силы, при этом усилия, действующие на обкладку статора, могут быть значительными.

Известны конструкции статора одновинтового насоса, содержащие металлический остов и запрессованную в него эластичную обкладку с винтовым каналом (см., например, Д.Ф. Балденко и др. Одновинтовые насосы. - М.: ООО «ИРЦ Газпром», 2005, стр.107-110).

Практическое применение известной конструкции статора показало, что она обладает недостаточно высокой прочностью сцепления эластомера обкладки с внутренней поверхностью остова, при этом возможно наличие скрытых участков отслоений и нарушений целостности эластомера по границе «обкладка-остов», образующихся при изготовлении статора.

Эти недостатки могут приводить в процессе эксплуатации к смещению обкладки относительно остова и к последующему разрушению статора и выходу одновинтового насоса из строя.

Известна также конструкция статора одновинтового насоса, содержащая металлический остов и эластичную обкладку с винтовым каналом (см. RU 2402693), являющаяся наиболее близким аналогом предлагаемого технического решения.

Остов статора состоит из полого корпуса и установленной в нем с зазором гильзы с запрессованной в нее эластичной обкладкой.

В известной конструкции обеспечивается достаточно прочное скрепление гильзы с полым корпусом, однако наличие промежуточной гильзы усложняет конструкцию статора.

В этой конструкции не исключается возможность нарушения целостности эластомера по границе «обкладка-гильза» со смещением обкладки относительно гильзы остова и частичным разрушением обкладки статора в процессе эксплуатации, так как при работе одновинтового насоса на торец обкладки статора со стороны области высокого давления (со стороны нагнетательной камеры одновинтового насоса) действуют значительные по величине силы давления, а прочность скрепления обкладки с гильзой статора (без внесения дополнительных конструктивных изменений) может оказаться недостаточной.

Кроме того, при изготовлении статора известной конструкции в процессе извлечения технологического знака из обкладки прочность сцепления вулканизованного эластомера обкладки с внутренней поверхностью остова статора может также оказаться недостаточно высокой, что приведет к механическим повреждениям эластичной обкладки и наличию участков отслоений обкладки от металла гильзы остова, при этом существенно снижается качество изготовленного статора.

Таким образом, недостаточно высокая прочность сцепления обкладки известной конструкции статора с внутренней поверхностью остова (гильзы остова), в конечном итоге, приводит к снижению работоспособности статора, к ухудшению качества изготовления статора, к ухудшению эксплуатационных характеристик одновинтового насоса и снижению его долговечности, делает невозможным длительное использование насоса с известным статором для перекачивания агрессивных сред.

Технической задачей данного изобретения является повышение работоспособности статора одновинтового насоса и улучшение качества изготовления за счет увеличения прочности скрепления эластичной обкладки с металлическим остовом.

Технический результат достигается тем, что в статоре одновинтового насоса, содержащем металлический остов и запрессованную в него эластичную обкладку с винтовым каналом, внутренняя поверхность остова у торца со стороны нагнетательной камеры одновинтового насоса выполнена меньшего диаметра, с образованием уступа в зоне сопряжения с внутренней поверхностью большего диаметра, на которой выполнена заполненная эластомером эластичной обкладки винтовая канавка.

Винтовая канавка на внутренней поверхности остова выполнена П-образного профиля.

Винтовая канавка на внутренней поверхности остова выполнена с тем же направлением витков, что и канал эластичной обкладки.

Канал эластичной обкладки выполнен в виде двухзаходной винтовой поверхности с правым направлением вращения.

Выполнение внутренней поверхности остова у торца, со стороны нагнетательной камеры одновинтового насоса, меньшего диаметра, чем остальная поверхность, с образованием в зоне сопряжения с внутренней поверхностью большего диаметра уступа, позволяет уменьшить усилие, действующее на торец обкладки статора со стороны области высокого давления при работе одновинтового насоса, так как при наличии уступа уменьшается площадь торца обкладки, на которую действуют силы давления, что, соответственно, повышает работоспособность статора.

Кроме того, наличие уступа на поверхности остова дополнительно препятствует возможности перемещения обкладки относительно остова под действием осевого усилия в сторону уступа и тем самым уменьшает напряжения сдвига по границе «остов-обкладка» в процессе извлечения технологического знака из запрессованного эластомера обкладки при изготовлении статора.

Выполнение на внутренней поверхности остова статора винтовой канавки позволяет повысить прочность скрепления обкладки с остовом за счет увеличения поверхности их сцепления после заполнения канавки остова эластомером обкладки.

Наилучшим, с точки зрения обеспечения требуемой прочности сцепления эластомера обкладки с остовом и простоты изготовления самой канавки, является выполнение канавки П-образного профиля.

Расположение канавки по винтовой линии с направлением витков, совпадающим с направлением витков канала эластомера, и, соответственно, совпадающим с направлением винтовой поверхности ротора, обеспечивает передачу сил, действующих на обкладку статора при вращении ротора, в направлении по винтовой линии канавки, что позволяет уменьшить отрывные напряжения эластомера обкладки в зоне канавки остова.

Заполнение при изготовлении статора канавки остова эластомером, образующим совместно с эластомером обкладки единый массив, позволяет получить монолитную структуру статора, содержащего обкладку, прочно скрепленную с остовом.

Выполнение канала эластомера статора в виде двухзаходного винта с правым направлением вращения является наиболее предпочтительным в изготавливаемых на предприятии одновинтовых насосах.

Совокупность существенных признаков предлагаемого технического решения является новой и позволяет повысить работоспособность статора, улучшить эксплуатационные характеристики одновинтового насоса и повысить его долговечность.

На фиг.1. приведено продольное сечение статора одновинтового насоса.

На фиг.2. приведено продольное сечение остова статора.

Статор одновинтового насоса состоит из металлического остова 1 и эластичной обкладки 2.

Эластичная обкладка 2 образована из запрессованного в остов 1 эластомера и содержит винтовой канал 3.

Внутренняя поверхность 4 остова 1 у торца со стороны нагнетательной камеры одновинтового насоса выполнена меньшего диаметра, с образованием уступа 5 в зоне сопряжения с внутренней поверхностью 6 большего диаметра.

На внутренней поверхности 4 остова 1 выполнена расположенная по винтовой линии канавка 7, П-образного профиля, заполненная эластомером, образующим совместно с эластомером обкладки 2 единый массив.

Направление витков канавки 7 остова 1 совпадает с направлением витков канала 3 обкладки 2.

Канал 3 обкладки 2 статора выполнен в виде двухзаходной винтовой поверхности с правым направлением вращения.

При изготовлении остова 1 (см. фиг.2) статора на внутренней поверхности 6 обоймы 8 выполняют расположенную по винтовой линии канавку 7.

Изготовляют втулку 9 меньшего внутреннего диаметра, чем внутренний диаметр обоймы 8, и приваривают втулку 9 к торцу обоймы 8 с образованием в зоне стыка уступа 5.

Производят подготовку внутренних поверхностей остова 1 дробеструйной обработкой и наносят клей.

Затем помещают остов 1 в пресс-форму и устанавливают по оси остова 1 технологический металлический знак, с наружной винтовой поверхностью, соответствующий конфигурации проточного тракта обкладки 2 статора.

После чего запрессовывают эластомер в полость между остовом 1 и технологическим знаком, при этом эластомер заполняет канавку 7 и охватывает уступ 5, образуя единый массив эластичной обкладки 2.

После извлечения остова 1 из пресс-формы выкручивают технологический знак из винтового канала 3 эластичной обкладки 2 и определяют геометрические параметры готового статора.

Установку статора в одновинтовой насос производят торцом с уступом со стороны нагнетательной камеры.

Разработанная конструкция статора проста и технологична в изготовлении, применяется в разработанных на предприятии обладающих высокой надежностью работы одновинтовых насосах, используемых для перекачки агрессивных сред и работающих в тяжелых условиях эксплуатации.

Предлагаемое изобретение позволяет обеспечить повышенную работоспособность статора в составе одновинтового насоса и улучшить качество изготовления, что подтверждено практическим применением в течение длительного времени эксплуатации.

1. Статор одновинтового насоса, содержащий металлический остов и запрессованную в него эластичную обкладку с винтовым каналом, отличающийся тем, что внутренняя поверхность остова у торца со стороны нагнетательной камеры одновинтового насоса выполнена меньшего диаметра, с образованием уступа в зоне сопряжения с внутренней поверхностью большего диаметра, на которой выполнена заполненная эластомером эластичной обкладки винтовая канавка.

2. Статор одновинтового насоса по п.1, отличающийся тем, что винтовая канавка на внутренней поверхности остова выполнена П-образного профиля.

3. Статор одновинтового насоса по п.1, отличающийся тем, что винтовая канавка на внутренней поверхности остова выполнена с тем же направлением витков, что и канал эластичной обкладки.

4. Статор одновинтового насоса по п.1, отличающийся тем, что канал эластичной обкладки выполнен в виде двухзаходной винтовой поверхности с правым направлением вращения.



 

Похожие патенты:

Изобретение относится к способу управления комбинированным устройством и комбинированному устройству, в котором может быть применен данный способ. Способ управления устройством 1, которое содержит, по меньшей мере, компрессорную установку 2 и/или устройство для сушки с одной стороны и систему 3 регенерации тепла с другой стороны.

Изобретение относится к области машиностроения, а именно к гидравлическим тормозам с регулируемым сопротивлением вращению на транспорте и в составе тренажеров. Гидродинамический тормоз содержит корпус, два диаметрально противоположно расположенных подпружиненных вытеснителя, крышку и закрепленный на центральном приводном валу кулачок.

Изобретение относится к области электротранспорта и может найти применение при конструировании электромобилей. Электромобиль содержит кузов, ходовую часть с элементами подвески, аккумуляторные батареи, механизмы управления, электродвигатель постоянного тока, гидромотор.

Изобретение относится к гидромашинам объемного вытеснения с вращающимися рабочими органами и может найти применение в насосах и двигателях. Роторная гидромашина содержит корпус 1, неподвижное круглое эпициклическое колесо 2 с внутренними зубьями, круглое солнечное колесо 3 с наружными зубьями, два плавающих сателлита 4, взаимодействующих с эпициклическим и солнечным колесами, эксцентрик, ось вращения которого смещена относительно оси эпициклического колеса 2 на расстояние, равное эксцентриситету эксцентрика, неподвижные торцовые крышки 5 и систему каналов 7 и 8 соответственно подвода и отвода рабочей среды.

Изобретение относится к отрасли машиностроения, в частности к объемным гидромашинам регулируемой производительности. Регулируемый шестеренный насос наружного зацепления с осевым перемещением одной из насосных шестерен 5 содержит пару торцевых бандажей 6 и 7 с внутренними зубьями, размещенными во впадинах насосных шестерен 4 и 5, и бесконтактные уплотнители 13 и 14.

Изобретение может быть использовано в компрессорах, насосах и двигателях внутреннего сгорания. Роторная машина содержит цилиндрический корпус 1, внутри которого установлены две лопасти, делящие полость корпуса на четыре замкнутых объема, и эксцентрично их оси вращения - механизм синхронизации в виде вала 9 с монолитной крестовиной.

Изобретение относится к двухступенчатому ротационному компрессору с двумя компрессионными агрегатами. Двухступенчатый компрессор 100, который является двухступенчатым ротационным компрессором с внутренним высоким давлением, включает в себя крышку 19 ступени низкого давления, которая закрывает выпускное отверстие 16 ступени низкого давления и образует внутри выпускное пространство 20 ступени низкого давления.

Изобретение относится к области машиностроения. Шестеренная гидромашина содержит шестерни, зубья 2 которых выполнены из тонкостенных пластин и расположены в камере, образованной корпусом и боковыми дисками.

Изобретение относится к элементам винтовых насосов и может использоваться в составе винтовых насосов для добычи нефти, воды и других жидкостей из скважин. Подшипниковая опора винтового насоса включает вал 2 привода винтового насоса, герметичную камеру 1 и осевой подшипник 3.

Изобретение относится к области машиностроения, а именно к многоступенчатым объемным насосам пластинчатого типа, которые могут быть использованы для подъема жидкости из нефтяных скважин.

Изобретение относится к гидравлическим машинам, используемым в области авиадвигателестроения, в частности к насосам с вращающимися во взаимном зацеплении элементами. Шестеренчатый насос содержит корпус 1 со съемными торцевыми крышками 2, ось 3 с осевым отверстием, приводной вал 4, по меньшей мере, одну контактирующую пару зубчатых шестерен. Внутренняя шестерня 5 установлена на оси 3 и имеет выполненные между зубьев радиальные отверстия 6. Внешняя шестерня 7 выполнена кольцевой и охватывающей внутреннюю шестерню 5, контактируя с ней по внутренней торцевой поверхности. Средства соединения с магистралями подвода и отвода среды выполнены на крышке 2 со стороны, противоположной приводному валу 4, и соединяют внутреннее пространство корпуса 1 с магистралью подвода, а отверстие оси - с магистралью отвода нагнетаемой среды. Транзитное отверстие 19 в стенке оси 3 выполнено под углом от радиуса, образующего аксоидную поверхность в точке касания шестерен 5 и 7. Изобретение направлено на уменьшение размеров и веса насоса, снижение износа шестерен, уменьшение вибрации, повышение надежности осевой фиксации и плавности его работы. 4 ил.

Изобретение относится к погружным электронасосам. Погружной электронасос 200 содержит первый и второй корпусные элементы, шестеренный насос, статор 222 электродвигателя и множество постоянных магнитов. Первый корпусной элемент содержит первую выемку, имеющую плоскую первую поверхность 246, окруженную первой стенкой 248. Второй корпусной элемент прикреплен к первому корпусному элементу и содержит вторую выемку, имеющую плоскую вторую поверхность 256, окруженную второй стенкой 258, которая смещена от поверхности 246 и идет параллельно ей. Шестеренный насос имеет внутренний ротор 266 и внешний ротор 242. Статор 222 расположен в гнезде, образованном во втором корпусном элементе. Магниты установлены с возможностью вращения вместе с ротором 242 поблизости от статора 222. Каждый ротор 242 и 266 имеет противоположные стороны, расположенные рядом с поверхностями 246 и 256. Ротор 242 расположен между первой и второй выемками и выровнен на оси вращения при помощи стенок 248 и 258. Вал 268 входит в зацепление с каждым из первого и второго корпусных элементов, ограничивающих ось вращения ротора 266, смещенную от оси вращения ротора 242. Изобретение направлено на создание усовершенствованного полностью погружного объединенного электронасоса. 11 з.п. ф-лы, 12 ил.

Изобретение относится к энергетическому, химическому, нефтегазовому машиностроению и промышленности, в частности, к роторным пластинчатым насосам, и может быть использовано для напорного перемещения жидкостей. Роторное аксиальное устройство, используемое в качестве насоса, содержит корпус с выполненной в нем цилиндрической полостью, вращающимися в нем двумя цилиндрическими роторами с внешними контактными поверхностями, закрепленными на одном валу, один центральный диск, одну шиберную перегородку, всасывающие и выпускные каналы, выполненные в валу, впускные и выпускные отверстия. Диск расположен между роторами. Перегородка установлена с возможностью перемещения между внешними контактными поверхностями роторов. Впускные и выпускные отверстия выполнены на противоположных плоских поверхностях центрального диска по обе стороны шиберной перегородки. Расстояние между внешними контактными поверхностями роторов равно длине шиберной перегородки при всех углах одновременного поворота роторов относительно оси роторного аксиального устройства. Изобретение направлено на создание конструкции с отсутствием нарушения процессов раздельного всасывания и выдавливания рабочего тела при всех положениях роторов. 7 ил.

Изобретение относится к машиностроению, а именно к гидравлическим передачам, включающим гидронасосы и гидродвигатели объемного вытеснения. Гидравлическая трансмиссия содержит гидронасос, в двухсекционном корпусе которого находятся приводной вал с двумя расположенными через 180° зубьями и связанный с ним через шестеренную передачу ведомый вал с двумя шиберами. Один из зубьев и соответствующий шибер находятся в передней секции корпуса, а другой из зубьев и соответствующий шибер - в задней секции. Нагнетательная полость передней секции соединена каналом с всасывающей полостью задней секции. Достигается повышение КПД устройства. 4 ил.

Изобретение относится к насосам объемного вытеснения с импульсной подачей рабочей жидкости. Насос содержит корпус с первым и вторым в стенке отверстиями входа-выхода рабочей жидкости и кольцевой канал внутри расположенного в корпусе ротора. Кольцевой канал имеет постоянное сечение, окна в стенке и поршни всасывания-вытеснения рабочей жидкости. Поршни связаны с ведущим валом через карданный вал асинхронной передачи циклически неравномерного вращения поршней. Ротор соединен с ведущим валом, причем кольцевой канал соосен с осью вращения ротора и разделен на два полуканала радиальными перегородками. Каждый полуканал разделен поршнем на до поршневую и за поршневую полости по ходу поршня. Каждый поршень соединен с расположенным по оси ротора валом неравномерного вращения, связанным через карданный вал асинхронной передачи и ротор с ведущим валом. До поршневая полость имеет в стенке ротора у перегородки до поршневое окно, а за поршневая полость имеет в стенке ротора у перегородки за поршневое окно. Стенка ротора с этими окнами прилегает по подвижной посадке к стенке корпуса, имеющей окна в первый и во второй коллектор. Первый коллектор сообщен с первым, а второй коллектор сообщен со вторым в стенке корпуса отверстием. Изобретение направлено на обеспечение подачи возвратно-колебательных импульсов рабочей жидкости во внешний трубопровод. 2 н.п. ф-лы, 56 ил.

Изобретение относится к транспортной технике и может быть использовано в нефтегазодобывающей промышленности, в приводах запорной арматуры, в лебедках буровых установок, в колесных и/или бортовых редукторах тракторов, экскаваторов, роботах для пожаротушения. Соосный редуктор состоит из корпуса, приводного эксцентрикового вала (5), плоскоконической передачи, выходного вала. Колесо (2) плоскоконической передачи является двухвенцовым. Шестерня (1), соосная эксцентриковому валу, соединена с корпусом и сопряжена с венцом (2) двухвенцового колеса со стороны приводного эксцентрикового вала. Зубчатая муфта, обеспечивающая соосность приводного эксцентрикового вала (5) и выходного вала, соединена с выходным валом и сопряжена с венцом (3) двухвенцового колеса со стороны выходного вала. Начальные поверхности (плоскости) зубчатых венцов (2, 3) двухвенцового колеса расположены вдоль его оси на расстоянии, обеспечивающем совпадение вершины начального конуса зубчатой муфты с точкой пересечения оси эксцентрикового вала и оси соосного редуктора. Модуль и число зубьев зубчатой муфты принимаются равными, большими или меньшими модуля и числа зубьев колеса плоскоконической передачи. Изобретение обеспечивает высокую нагрузочную способность, долговечность и позволяет значительно снизить требуемую мощность двигателя без уменьшения крутящего момента на выходном валу редуктора. 3 ил.

Изобретение относится к роторному насосу вытеснения для перекачивания эмульсий с твердыми веществами, в частности жидких взрывчатых веществ. Корпус (24) роторного насоса содержит переднюю торцевую пластину (56) и заднюю торцевую пластину. Корпус насоса охватывает статор (40, 48), ротор (42), скребок (44) и направляющую (46) скребка, вал (8), проходящий через, по меньшей мере, заднюю торцевую пластину. Статор включает в себя в целом дугообразный, составляющий половину окружности первый элемент (40) статора и в целом дугообразный, составляющий половину окружности второй элемент (48) статора. Статор, корпус насоса и скребок вместе с направляющей скребка ограничивают входную камеру и выходную камеру. По меньшей мере, часть торцевых поверхностей первого и второго элементов статора, находящихся в выходной камере, является наклонной, образуя тупоугольный переход к внутренним поверхностям передней торцевой пластины и задней торцевой пластины. Изобретение направлено на создание роторного насоса с малыми размерами, способного перекачивать эмульсии с твердыми веществами, в частности жидкие взрывчатые вещества, эффективным и безопасным способом. 2 н. и 19 з.п. ф-лы, 5 ил.

Изобретение относится к шестеренчатому насосу. Шестеренчатый насос содержит несколько входящих в зубчатое зацепление для подачи среды зубчатых колес, которые удерживаются в корпусе насоса с возможностью вращения. Одно из зубчатых колес приводится в движение насосным валом, который через муфтовый конец выполнен с возможностью соединения с приводом. На окружности насосного вала расположено тормозное кольцо, которое по меньшей мере одной тормозной поверхностью воздействует на фрикционную поверхность насосного вала или на фрикционную поверхность корпуса насоса. Изобретение направлено на получение равномерных подач при значительно изменяющихся рабочих давлениях и при переменных величинах нагрузки во время одного оборота насосного вала. 9 з.п. ф-лы, 5 ил.

(57) Изобретение относится к машиностроению и может быть использовано при создании роторно-лопастных двигателей, насосов, компрессоров, гидроприводов. Роторно-лопастная машина содержит корпус (1), крышки (2, 3). В корпусе (1) и крышке (2) установлены роторы (4, 5), попарно закрепленные на валах (6, 7), на свободных концах которых установлены водила (8, 9). В крышках (2, 3) соосно с роторами (4, 5) установлен выходной вал (15) с зубчатым колесом (16). В корпусе (1) и крышке (3) соосно с роторами (4, 5), установлено водило (17). На водиле (17) установлены коленчатые валы (19) с зубчатыми колесами (20), входящими в зацепление с зубчатым колесом (21). Кривошипы коленчатых валов связаны попарно с имеющими пазы водилами (8, 9) непосредственно или тягами (22, 23). Изобретение направлено на снижение нагрузки в зубчатых зацеплениях. 4 з.п. ф-лы, 5 ил.

Изобретение относится к области машиностроения, в частности к роторным насосам. Роторный насос содержит цилиндрический корпус 1, ограниченный верхним и нижним основаниями с впускными и выпускными отверстиями 5 и 7, установленный на валу ротор 2 и шиберы 8 и 9, разделяющие пространство между ротором 2 и корпусом 1 на камеры 12 и 13, изменяющие свой объем во время вращения ротора 2. Шиберы 8 и 9 выполнены упругими из двух сопряженных дуг, один конец шибера 8 и 9 жестко прикреплен к ротору 2, а другой - снабжен износостойкой насадкой 11 и прижат за счет упругих сил к внутренней поверхности корпуса 1 с возможностью перемещения в радиальном направлении. Изобретение направлено на повышение надежности насоса. 2 з.п. ф-лы, 3 ил.
Наверх