Устройство для управления газотурбинным двигателем

Изобретение относится к области авиационного двигателестроения и может быть использовано в электронных системах (САУ) автоматического управления газотурбинными двигателями (ГТД). Сущность изобретения заключается в том, что дополнительно вокруг электронного регулятора двигателя установлены с зазором два стальных кожуха с вентиляционными пазами, на каждый кожух нанесен слой огнезащитной пасты, а электрические разъемы на датчиках и электропреобразователе и кабели между электронным регулятором двигателя и датчиками и электропреобразователем выполнены в огнестойком исполнении. Технический результат изобретения заключается в повышении качества защиты основных элементов САУ от открытого пламени, за счет чего даже при возникновении пожара в мотогондоле самолета обеспечивается работа двигателя на режиме с располагаемой тягой, обеспечивающей нормальный взлет самолета. Это повышает надежность работы двигателя, как элемента СУ самолета, и безопасность самого самолета. 2 ил.

 

Изобретение относится к области авиационного двигателестроения и может быть использовано в электронных системах (САУ) автоматического управления газотурбинными двигателями (ГТД).

Известно устройство для управления ГТД, содержащее последовательно соединенные топливный насос, дозирующую иглу с датчиком перепада давлений и перепускным клапаном, полость задания перепада давлений которого соединена с выходами тахометрических регуляторов переходных и статических режимов, Добрынин А.Н. «Проектирование гидромеханических систем автоматического регулирования авиационных двигателей», М., ЦИАМ, 1980 г., с 117.

Недостатком известного устройства является его низкая эффективность на переходных режимах работы двигателя.

Наиболее близким к данному изобретению по технической сущности является устройство для управления ГТД, содержащее электронный регулятор двигателя, подключенный к датчикам параметров воздуха на входе в двигатель и параметров двигателя, и исполнительную часть, включающую в себя последовательно соединенные топливный насос, дозатор топлива и распределительный клапан. электрогидропреобразователь, вход которого подключен к выходу электронного регулятора, а выход - к дозатору топлива, «Руководство по эксплуатации двигателя ТВ3-117 ВМА-СБМ1», ЗМКБ «Прогресс» им, А.Ивченко, Запорожье, 1998 г., с.52-55.

Недостатком этого устройства является следующее.

Для двигателей нового поколения, например, двигателя ПД-14 разработки ОАО «Авиадвигатель», г.Пермь, входящего в состав силовой установки (СУ) самолета МС-21 разработки ОАО «Иркут», г.Москва, предъявляется следующее требование: двигатель в процессе взлета самолета должен обеспечить взлетную тягу даже в случае пожара в мотогондоле.

При использовании в САУ ПД-14 известного устройства выполнить это требование невозможно в силу того, что электронный регулятор двигателя и исполнительная часть САУ не имеют специальной защиты, позволяющей работать в условиях повышенной температуры окружающей среды при возникновении в мотогондоле самолета пожара.

Это снижает надежность работы СУ и безопасность самолета.

Целью изобретения является повышение надежности работы СУ и безопасности самолета.

Поставленная цель достигается тем, что в устройстве для управления ГТД содержащем электронный регулятор двигателя, подключенный к датчикам параметров воздуха на входе в двигатель и параметров двигателя, и исполнительную часть, включающую в себя последовательно соединенные топливный насос, дозатор топлива и распределительный клапан, электрогидропреобразователь, вход которого подключен к выходу электронного регулятора двигателя, а выход - к дозатору топлива, дополнительно вокруг электронного регулятора двигателя установлены с зазором два стальных кожуха с вентиляционными пазами, на каждый кожух нанесен слой огнезащитной пасты, а электрические разъемы на датчиках и электропреобразователе и кабели между электронным регулятором двигателя и датчиками и электропреобразователем выполнены в специальном огнестойком исполнении.

На фигуре 1 представлена схема устройства, реализующая заявляемый способ, на фигуре 2 - схема электронного регулятора с защитными кожухами.

Устройство содержит электронный регулятор 1 двигателя (РЭД), подключенный к датчикам 2 параметров воздуха на входе в двигатель и параметров двигателя, и исполнительную часть 3, включающую в себя последовательно соединенные топливный насос 4 (ТН), дозатор 5 топлива (ДГ) и распределительный клапан 6 (РК), электрогидропреобразователь 7 (ЭГП), вход которого подключен к выходу РЭД 1, а выход - к ДТ 5, дополнительно вокруг РЭД'.. установлены (см. фигуру 2) с зазором два стальных кожуха 8 и 9 с вентиляционными пазами 10 (на фигуре 2 показаны по одному пазу на каждом кожухе, общее их количество определяется в зависимости от геометрических и весовых параметров РЭД), на каждый кожух 8 и 9 нанесен слой 11 огнезащитной пасты, а электрические разъемы 12 на датчиках 2 и ЭГП 7 и кабели 13 между РЭД 1 и датчиками 2 и ЭГП 7 выполнены в специальном огнестойком исполнении.

РЭД 1 представляет собой бортовую цифровую вычислительную машину (БЦВМ), содержащую постоянное запоминающее устройство (ПЗУ), на котором записано программное обеспечение (ПО), реализующее алгоритмы управления двигателем. Дополнительно БЦВМ оснащена устройствами ввода/вывода (УВВ) физических сигналов (из БД и в ЭГП), оперативное запоминающее устройство (ОЗУ), необходимое для обработки процессором БЦВМ поступающей из УВВ информации, репрограммируемое запоминающее устройство (РПЗУ), необходимое для хранения информации, относящейся к индивидуальным характеристикам двигателя (эксплуатационные регулировки, наработки, остаток ресурса). БЦВМ, ПЗУ, ПО, УВВ, ОЗУ, процессор, РПЗУ на фигурах 1 и 2 не показаны.

Устройство работает следующим образом.

В РЭД 1 с помощью датчиков 2 измеряют положение РУД частоты вращения компрессора и свободной турбины (СТ), давление и температуру воздуха на входе в двигатель, температуру газов за турбиной газогенератора.

По хранящимся в ПЗУ РЭД 1 наперед заданным зависимостям:

- формируют заданное значение частоты вращения турбокомпрессора как функцию от положения РУД, давления и температуры воздуха на входе в двигатель (пример такой зависимости приведен, например, в книге Бесекерский В.А., Попов Е.П. «Теория автоматического регулирования», М., «Наука», 1975 г., с.34-35),

- задают предельные для данного двигателя значения температуры газов за турбиной газогенератора и частоты вращения СТ (для двигателя ПД-14 эти значения составляют 1370К по температуре газов и 8000 об./мин. по частоте вращения СТ).

Далее в РЭД 1 сравнивают заданное значение частоты вращения турбокомпрессора и измеренное с помощью датчиков 2, сравнивают предельное для данного двигателя значение температуры газов за турбиной газогенератора и измеренное с помощью датчиков 2, сравнивают предельное для данного двигателя значение частоты вращения СТ и измеренное с помощью датчиков 2.

Полученные рассогласования селектируют в РЭД 1 по минимуму с сигналом «автомата приемистости» (на фигуре не показан), работающего, например, по программе

G т = f ( α Р У Д , Т В Х * , Р В Х * , Р к , n к ) ( 1 )

где Gт - предельно допустимый расход топлива для данного режима работы двигателя,

αРУД - положение РУД

Т В Х * - температура воздуха на входе в двигатель,

Р В Х * - давление воздуха на входе в двигатель,

Рк - давление воздуха за компрессором двигателя,

nк - частота вращения компрессора двигателя.

Отселектированную величину подают в ПИ-регулятор (на фигуре не показан), где формируют управляющее воздействие на дозатор 5 расхода топлива, подаваемое с помощью УВВ РЭД 1 через ЭГП 7 на дозатор 5. Дозированное топливо через РК 6 подается в коллектора КС двигателя.

Дополнительно для обеспечения требования по огнестойкости агрегата РЭД 1 (функционирование в течении наперед заданного времени во время пожара, для ПД-14 это время равно 5 мин.) реализуется следующая конструкция (см. фигуру 2, все числовые данные приведены для агрегата РЭД-14 разработки ОАО «СТАР», г.Пермь, предназначенного для управления двигателем ПД-14):

- на расстоянии 10 мм от поверхности агрегата РЭД 1 устанавливается первый кожух 8 из нержавеющей стали;

- на расстоянии 15 мм от поверхности кожуха 8 устанавливается второй кожух 9 из нержавеющей стали;

- на кожухи 8 и 9 нанесен слой 11 огнезащитной пасты например, марки В30-9х ТУ1-595-28-908-2007 (далее по тексту - паста).

- в кожухах 8 и 9 выполнены пазы 10 таким образом, чтобы исключить прямое попадание пламени на агрегат РЭД 1. Данные пазы 10 необходимы для обеспечения циркуляции воздуха в целях исключения перегрева агрегата РЭД 1 во время штатной эксплуатации.

При возникновении пожара пламя будет нагревать пасту 11 на кожухе 9 и через пазы 10 кожуха 9 пасту 11 на кожухе 8. Под действием тепла паста 11 вспенивается, в результате чего она увеличивает свой объем (паста марки В30-9х ТУ1-595-28-908-2007 - в 7 раз), из-за чего резко возрастает ее тепловое сопротивление, тем самым препятствуя воздействию высокой температуры на агрегат РЭД 1.

Оценочный расчет (см. техническую справку №1221-2011 «Оценка устойчивости конструкции агрегата РЭД-14 с двумя огнеупорными кожухами», ОАО «СТАР», 2011 г.) показал, что при воздействии на предлагаемую конструкцию открытого пламени в течение 5 минут температура кожуха 8 к концу пятой минуты, достигнет температуры 240°С, а температура агрегата РЭД 1 увеличится за это время не более, чем на 30°С. При таком нагреве РЭД 1 обеспечивается его нормальная работоспособность.

При этом огнестойкие разъемы 12 (например, марки 983 OSE08-0386 - импортный, или СНЦ 147-3/08 В011 - отечественный) и кабели 13 (например, марки cat.5E UTP) обеспечивают нормальную передачу информации от датчиков 2 к РЭД 1 и управляющих воздействий от РЭД 1 к ЭГП 7. Необходимости в огнестойких разъемах для РЭД 1 нет, при такой защите от пламени работоспособны разъемы в обычном исполнении, что позволяет сэкономить на комплектующих РЭД 1.

Т.о. обеспечивается нормальная работа САУ ГТД при возникновении пожара в мотогондоле самолета в течение требуемого времени.

Это обеспечивает повышение надежности работы СУ и безопасности самолета.

Устройство для управления ГТД, содержащее электронный регулятор двигателя, подключенный к датчикам параметров воздуха на входе в двигатель и параметров двигателя, и исполнительную часть, включающую в себя последовательно соединенные топливный насос, дозатор топлива и распределительный клапан, электрогидропреобразователь, вход которого подключен к выходу электронного регулятора двигателя, а выход - к дозатору топлива, отличающееся тем, что дополнительно вокруг электронного регулятора двигателя установлены с зазором два стальных кожуха с вентиляционными пазами, на каждый кожух нанесен слой огнезащитной пасты, а электрические разъемы на датчиках и электропреобразователе и кабели между электронным регулятором двигателя и датчиками и электропреобразователем выполнены в огнестойком исполнении.



 

Похожие патенты:

Устройство гашения крутильных колебаний содержит датчик крутящего момента, гаситель крутильных колебаний, соединенный с указанным датчиком крутящего момента, контроллер частотно-регулируемого привода, соединенный с указанным гасителем крутильных колебаний, и преобразователь частотно-регулируемого привода, соединенный с указанным контроллером и выполненный с возможностью управления электрической мощностью, подаваемой к электродвигателю, на основе сигналов частотно-регулируемого привода, которые генерируются контроллером и преобразуются сигналом, корректирующим крутящий момент и предназначенным для гашения крутильных колебаний на собственной частоте цепи сжатия.

Изобретение относится к области реактивной техники, в частности к области диагнострирования и эксплуатации реактивных двигателей на жидких углеводородных горючих.

Изобретение относится к энергетике. Способ управления расходом топлива при запуске газотурбинной установки включает управление подачей топлива к указанной установке путем управления давлением подаваемого топлива и модулирования подачи топлива к установке, если температура выхлопных газов установки приближается к заданной температуре выхлопных газов, чтобы понизить температуру выхлопных газов установки до уровня ниже заданной температуры выхлопных газов.

Изобретение относится к области управления сложными объектами техники, работающими в широком диапазоне режимов и нагрузок, контроль которых в процессе работы двигателя осуществляется по нескольким параметрам, и может быть использовано для управления авиационными газотурбинными двигателями (ГТД).

Изобретение относится к области авиационного двигателестроения и может быть использовано в системах автоматического управления газотурбинными двигателями (ГТД).

Изобретение относится к области авиационного двигателестроения и может быть использовано в системах автоматического управления газотурбинными двигателями (ГТД).

Объектом настоящего изобретения является способ определения углового положения первого ротора турбореактивного двигателя, согласно которому генерируют, по меньшей мере, одну вибрацию во время вращения первого ротора, при этом каждую вибрацию генерируют при прохождении первого ротора через одно и то же контрольное угловое положение; обнаруживают генерируемые вибрации; в данный момент получают угловое положение второго ротора турбореактивного двигателя относительно углового положения, которое он занимал в контрольный момент, представляющий обнаружение одной из вибраций, при этом упомянутый второй ротор связан во вращении с первым ротором и имеет скорость вращения, отличную от скорости вращения первого ротора; и на основании углового положения второго ротора определяют угловое положение первого ротора в этот данный момент.

Изобретение относится к области газотурбинного двигателестроения и может быть использовано в локальных системах управления (ЛСУ) газотурбинными силовыми установками (ГТУ) судов различного назначения.

Изобретение относится к области авиационного двигателестроения и может быть использовано в электронных системах (САУ) автоматического управления газотурбинными двигателями (ГТД).

Изобретение относится к области позиционного управления газовой турбиной. Технический результат изобретения - обеспечение позиционного управления газовой турбиной с получением необходимой динамики и точности позиционирования. Газ подают на лопатки турбины до достижения точки позиционирования, при этом по сигналу датчика обратной связи при подходе к точке позиционирования система управления переводит непрерывный режим подачи газа на лопатки турбины в режим импульсной подачи газа с одновременным обеспечением торможения вала турбины в промежутках между приводными импульсами, а при достижении точки позиционирования по сигналу датчика обратной связи вал турбины полностью затормаживается. 4 ил.

Изобретение относится к энергетике. В способе эксплуатации комбинированной электростанции, включающей в себя газовую турбину и паровую турбину, соответственно посредством подключенного электрогенератора вырабатывают переменное напряжение соответствующей частоты и отдают его сети переменного напряжения, причем отходящий газ газовой турбины используется для вырабатывания пара для паровой турбины. На первом этапе внутренние потребители снабжаются в автономном режиме посредством газовой турбины, причем ее режимная точка выбирается так, что достигается минимальная температура пара для паровой турбины, на втором этапе в автономном режиме паровая турбина синхронизируется и запускается до рабочей точки, при которой может достигаться максимальное возрастание нагрузки, причем результирующее изменение нагрузки паровой турбины компенсируется газовой турбиной, на третьем этапе подключаются нагрузки потребителей, на четвертом этапе возрастание запрошенной нагрузки полностью или частично, а также длительно или временно обеспечивается паровой турбиной, на пятом этапе нагрузка паровой турбины постепенно снижается для возрастания ее способности к повышению нагрузки. Этапы с третьего по пятый повторяются до тех пор, пока не будет достигнута основная нагрузка комбинированной электростанции. Изобретение позволяет обеспечить надежное и гибкое восстановление сети при аварийном запуске. 9 з.п. ф-лы, 5 ил.

Изобретение относится к области теплоэнергетики и может быть использовано для осуществления перевода маневренной энергетической газотурбинной установки (ГТУ), в том числе в составе парогазовой установки (ПГУ), на предельно допустимую минимальную мощность при снижении электрической нагрузки энергосети. Способ уменьшения мощности энергетической ГТУ для перевода ее в режим минимальной электрической нагрузки заключается в том, что сначала уменьшают подачу топлива и сжатого в компрессоре воздуха в камеру сгорания до допустимого нижнего предела регулировочного диапазона, определяемого предельно допустимым коэффициентом избытка воздуха. Мощность ГТУ после достижения нижней границы регулировочного диапазона дополнительно уменьшают путем регулируемого перепуска части сжатого в компрессоре воздуха на его вход, контролируя степень перепуска по минимально допустимой температуре выхлопных газов ГТУ и допустимым выбросам в атмосферу оксидов азота. Техническим результатом изобретения является возможность снижения расхода подаваемого в камеру сгорания воздуха до больших пределов, по сравнению с использованием для этих целей регулирующего воздушного направляющего аппарата. Кроме того, при таком способе уменьшения мощности ГТУ расширяются регулировочные возможности в установлении требуемого соотношения топливо-воздух. 1 ил.

Изобретение относится к энергетике. Способ управления рабочей точкой газовой турбины, включающий определение коэффициента давления турбины, вычисление эталонной пороговой кривой перехода из режима горения в первичной зоне в режим горения в первичной и вторичной зонах как функции от коэффициента давления турбины, определение в первый момент времени, когда температура выхлопного газа, соответствующая рабочей точке, выше температуры выхлопного газа на эталонной пороговой кривой перехода из режима горения в первичной зоне в режим горения в первичной и вторичной зонах для одного и того же коэффициента давления турбины, и изменение, через заранее заданный интервал времени после первого момента времени, параметра распределения топлива с первого значения на второе значение, если температура выхлопного газа, соответствующая рабочей точке, остается выше температуры выхлопного газа на эталонной пороговой кривой перехода из режима горения в первичной зоне в режим горения в первичной и вторичной зонах. Также представлен контроллер для управления рабочей точкой газовой турбины согласно способу. Изобретение позволяет обеспечить более точное управление газовой турбиной. 2 н. и 8 з.п. ф-лы, 1 табл., 15 ил.

Изобретение относится к энергетике. Способ управления рабочей точкой газовой турбины, содержащей компрессор, камеру сгорания и турбину. Способ включает вычисление эталонной кривой температуры выхлопного газа турбины как функции от коэффициента давления турбины, управление параметром распределения топлива. Также представлен контроллер для управления рабочей точкой газовой турбины. Изобретение позволяет обеспечить более точное управление температурой горения, более точное управление параметрами горения, более точное управление выбросом выхлопного газа. 2 н. и 11 з.п. ф-лы, 21 ил., 1 табл.

Изобретение относится к энергетике. Способ управления рабочей точкой газовой турбины, содержащей компрессор, камеру сгорания и турбину, включающий шаг определения давления выхлопного газа на выходе турбины, шаг измерения давления на выходе компрессора, шаг определения коэффициента давления турбины на основе давления выхлопного газа и давления на выходе компрессора, шаг вычисления эталонной пороговой кривой перехода из режима горения в первичной зоне в режим горения в первичной и вторичной зонах как функции от коэффициента давления турбины, при этом пороговая кривая перехода из режима горения в первичной зоне в режим горения в первичной и вторичной зонах содержит точки, в которых работа газовой турбины изменяется между режимом горения в первичной зоне в режим горения в первичной и вторичной зонах, и шаг управления газовой турбиной для перехода между режимом горения в первичной зоне и режимом горения в первичной и вторичной зонах. Также представлена газовая турбина, содержащая контроллер для управления рабочей точкой газовой турбины согласно способу. Изобретение позволяет обеспечить более точное управление газовой турбиной. 2 н. и 8 з.п. ф-лы, 13 ил.

Способ в соответствии с изобретением позволяет производить коррекцию текущего измерения давления газового потока, выдаваемого в ходе полета датчиком, установленным в двигателе. Способ включает в себя: оценку (Е50) погрешности смещения нуля, влияющей на датчик, на основании разности между: калибровочным измерением давления газового потока, выдаваемым датчиком, установленным в двигателе, и измерением атмосферного давления, выдаваемым датчиком летательного аппарата, обладающим точностью измерения, превышающей точность датчика, установленного в двигателе; эти измерения производят, когда на датчик, установленный в двигателе, и на датчик летательного аппарата действует одинаковое окружающее атмосферное давление; и вычитание погрешности смещения нуля из текущего измерения. Технический результат изобретения - повышение точности измерения газового потока, циркулирующего в двигателе летательного аппарата. 5 н. и 1 з.п. ф-лы, 3 ил.

Газотурбинный двигатель содержит по меньшей мере одну охлаждаемую ступень турбины с сопловым аппаратом с полостями над ним и под ним, системы охлаждения ротора и статора турбины, корпус турбины и систему регулирования радиального зазора. Корпус турбины выполнен состоящим из внешнего корпуса и внутренней оболочки с по меньшей мере одной кольцевой вставкой, установленной между ними. Системы охлаждения ротора и статора каждой ступени турбины выполнены независимыми, содержащими магистрали отбора охлаждающего воздуха и регуляторы расхода, но все магистрали отбора охлаждающего воздуха соединены с полостью за компрессором. Газотурбинный двигатель может содержать бортовой компьютер и датчики измерения радиального зазора над каждым рабочим колесом всех охлаждаемых ступеней турбины, соединенные электрическими связями с бортовым компьютером. Каждая кольцевая вставка может быть выполнена пустотелой. Внутренняя полость каждой кольцевой вставки может быть заполнена теплоаккумулирующим веществом. Достигается эффективное регулирование радиальных зазоров в турбине на всех режимах, повышение тяги двигателя на взлетном и форсажном режиме, повышение КПД и надежности турбины. 3 з.п. ф-лы, 6 ил.

Изобретение относится к энергетике. Способ для защиты газотурбинного двигателя, содержащего компрессор, камеру сгорания и турбину, от высокодинамических параметров, в частности, при пульсациях пламени в камере сгорания, при котором измеряют пульсации камеры сгорания, делят спектр частот измеренного сигнала пульсаций на заданные отрезки полосы пропускания, рассчитывают среднеквадратичное значение сигнала для каждой полосы, определяют взвешенные расчетные среднеквадратичные значения частоты или частотного диапазона, используя заданные весовые коэффициенты, накапливают взвешенные среднеквадратичные значения частоты или частотного диапазона для получения значения критерия предела пульсации, и сравнивают это значение с одним реперным значением, и обеспечивают работу газотурбинного двигателя в соответствии с результатом упомянутого сравнения. Также представлен газотурбинный двигатель для осуществления способа согласно изобретению. Изобретение позволяет обеспечить связь между пульсациями двигателя и сроком службы конструкции. 2 н. и 3 з.п. ф-лы, 1 ил.

Способ предназначен для контроля уровня масла, содержащегося в баке двигателя летательного аппарата, и согласно изобретению содержит этапы, на которых: - для, по меньшей мере, двух заранее определенных фаз работы двигателя, в течение, по меньшей мере, одного полета летательного аппарата: получают множество измерений уровня масла в баке, причем каждое измерение связано с температурой масла и с оборотами двигателя; и выбирают измерения, представляющие изменения уровня масла и связанные с температурами масла, которые близки к опорной температуре, и с оборотами двигателя, которые близки к опорным оборотам; - объединяют (F40) измерения, выбранные по фазам работы в течение упомянутого, по меньшей мере, одного полета летательного аппарата; и - сравнивают (F60) объединенные измерения с опорными данными для идентификации (F70) аномального расхода масла двигателя. Технический результат изобретения - повышение достоверности оценки расхода масла двигателем. 2 н. и 11 з.п. ф-лы, 4 ил.
Наверх