Способ оптической дистанционной диагностики изолирующей конструкции

Изобретение относится к электрическим измерениям и предназначено для выявления дефектной изолирующей конструкции, например гирлянды изоляторов высоковольтной линии электропередачи, при осуществлении диагностики с подвижных носителей автоматизированными системами контроля. Способ включает подключение к участку изолирующей конструкции электрического светового излучателя, яркость свечения которого зависит от падения напряжения на его контактах, регистрацию светового излучения, определение дефекта по интенсивности свечения излучателя, дополнительно параллельно световому излучателю подключают разрядник, а сам излучатель устанавливают в месте, доступном для наблюдения, при этом один из контактов излучателя заземляют, а второй контакт закрепляют на изолирующем участке конструкции. Технический результат заключается в повышении надежности и эффективности дистанционной оптической диагностики изолирующих конструкций при осуществлении мониторинга с движущихся транспортных средств, а также упрощение алгоритмов автоматизации их контроля. 3 ил.

 

Изобретение относится к электрическим измерениям и предназначено для выявления дефектной изолирующей конструкции, например гирлянды изоляторов высоковольтной линии электропередачи, при осуществлении диагностики с подвижных носителей автоматизированными системами контроля.

Известен способ оптической дистанционной диагностики изолирующей конструкции, находящейся под напряжением, основанный на регистрации светового излучения электрических разрядов, возникающих на поверхности дефектной изоляции, где основной физической величиной, характеризующей наличие дефектов, является интенсивность свечения разрядов [Арбузов Р.С. Современные методы диагностики воздушных линий электропередачи. / Р.С.Арбузов, А.Г.Овсянников. - Новосибирск: Наука, 2009, с.71-80; авторское свидетельство №883807, Кл. G01R 31/08, 1981].

Применение данного способа имеет ограниченную эффективность при проведении диагностики с подвижных носителей, например с вертолетов, поскольку локализованное свечение электрических разрядов зачастую экранируется самой изолирующей конструкцией или конструкцией опоры.

Наиболее близким к изобретению является способ диагностики загрязненной гирлянды изоляторов, находящейся под напряжением, основанный на регистрации оптического излучения светодиодного излучателя, установленного на ближнем к опоре изоляторе и оптически связанного с регистрирующим устройством посредством световолоконного провода. В данном способе излучатель подключен параллельно изолятору к его металлическим частям. При загрязнении поверхности изоляторов увеличивается ток утечки в гирлянде, что приводит к повышению интенсивности регистрируемого излучения светодиода [IEEE Transactions on Power Delivery, Vol.24, No.4, 2009, p.2257-2260].

Основным недостатком данного способа является возможность выхода из строя излучателя при перенапряжениях на линии. При перекрытии гирлянды изоляторов, например грозовым импульсом, ток короткого замыкания с большой вероятностью будет течь через излучатель, поскольку его сопротивление меньше соединенных параллельно сопротивления изолятора и воздуха. Кроме того, излучатель шунтирует один из изоляторов. Если зашунтированный излучателем изолятор гирлянды окажется дефектным, т.е. с низким сопротивлением или пробитым, то информация о состоянии гирлянды будет недостоверной.

Техническим результатом при реализации способа является повышение надежности и эффективности дистанционной оптической диагностики изолирующих конструкций при осуществлении мониторинга с движущихся транспортных средств, а также упрощение алгоритмов автоматизации их контроля.

Присущее оптическим средствам диагностики изолирующих конструкций высокое пространственное разрешение и чувствительность позволяют использовать их в подвижных системах контроля. Например, при облете высоковольтной линии электропередачи оптико-электронные приборы позволяют обнаруживать электрические разряды на изоляторах, вызванные повреждением изоляции, со значительных расстояний. Однако не все имеющиеся дефекты могут быть обнаружены в ходе такого обследования в силу загораживания видимости участков изоляторов с разрядами деталями конструкции как самих изоляторов, так и опор.

Установка оптических излучателей, сигнализирующих о наличии дефекта, на изолирующие конструкции в заранее определенных и доступных для наблюдения местах позволит повысить эффективность дистанционной диагностики в условиях перемещения регистрирующего устройства. Кроме того, поскольку положение излучателя на изолирующей конструкции известно, то упрощаются алгоритмы автоматического выявления дефектов.

Для достижения названного технического результата в предлагаемом способе, включающем подключение к участку изолирующей конструкции электрического светового излучателя, яркость свечения которого зависит от падения напряжения на его контактах, регистрацию светового излучения, определение дефекта по интенсивности свечения излучателя, в отличие от наиболее близкого аналога дополнительно параллельно световому излучателю подключают разрядник, а сам излучатель устанавливают в месте, доступном для наблюдения, при этом один из контактов излучателя заземляют, а второй контакт закрепляют на изолирующем участке конструкции.

Принцип, заложенный в изобретении, поясняется следующим. Распределение потенциалов вдоль изолирующей конструкции изменяется при нарушении целостности отдельных ее частей. Разность потенциалов на поврежденном участке уменьшается, что вызывает увеличение напряжения на неповрежденной части конструкции. Дефектное состояние изолирующей конструкции может быть обнаружено по интенсивности светового излучения электрического светового излучателя, установленного на участке изолирующей части конструкции или опоре, яркость свечения которого зависит от падения напряжения на его контактах. Один из контактов излучателя заземляется через заземленную часть изолирующей конструкции или опоры. Второй контакт излучателя закрепляют на изолирующей части конструкции, например на ближней к опоре юбке. При этом нет необходимости в соединении второго контакта излучателя с металлическими частями изолирующей конструкции. На любом участке изолирующей части конструкции имеется потенциал, отличный от нулевого. При выборе места закрепления второго контакта излучателя необходимо исходить от типа излучателя и минимизации его шунтирующего действия на изолирующую конструкцию.

Для обеспечения надежности работы излучателя при постоянной установке к нему параллельно подключают разрядник. При возникновении импульсных перенапряжений разрядник шунтирует излучатель, предохраняя его от выхода из строя.

Предлагаемый способ поясняется фиг.1-3. На фиг.1 изображена одна из возможных схем, по которой может быть изготовлен световой излучатель для работы на изолирующей конструкции переменного тока. Фиг.2 поясняет один из способов крепления контактов излучателя к изолирующей конструкции в виде полимерного изолятора. На фиг.3 приведено изображение двух полимерных изоляторов, на которых установлены световые излучатели согласно предлагаемому способу, полученное высокочувствительной видеокамерой в ходе экспериментальной проверки реализуемости предлагаемого решения.

Изобретение осуществляется следующим образом. Например, электрический световой излучатель на основе светодиода, собранный по схеме, изображенной на фиг.1, устанавливают на одной из юбок изолирующей конструкции переменного тока. Один из контактов излучателя (1) соединяют с металлической заземленной частью конструкции, а второй (2) на юбке, ближней к заземляющей опоре, как показано на фиг.2. При появлении на изолирующей конструкции дефектных участков изменится напряжение между контактами излучателя, что приведет к изменению яркости его свечения. Изменение яркости свечения излучателя может быть зарегистрировано расположенным на удалении оптико-электронным регистратором, например видеокамерой.

Примером, показывающим возможность достижения заявленного технического результата и осуществления изобретения, является результат лабораторного эксперимента, изображенный на фиг.3. На снимке (фиг.3), полученном высокочувствительной видеокамерой, изображены два полимерных изолятора ЛК 70/35, подключенные к напряжению переменного тока 35 кВ, один из которых (правый) имеет дефект в виде продольного проводящего канала, шунтирующего часть конструкции. На верхних юбках обеих изоляторов, ближних к заземленному концу, установлены световые излучатели. Как видно на снимке, светится только излучатель, установленный на дефектном изоляторе (в области верхнего оконцевателя). На дефектном изоляторе в центре сбоку наблюдается также свечение частичных разрядов под юбками, которое трудно обнаружить при съемке под другим ракурсом.

Способ оптической дистанционной диагностики изолирующей конструкции, находящейся под напряжением, включающий подключение к участку изолирующей конструкции электрического светового излучателя, яркость свечения которого зависит от падения напряжения на его контактах, регистрацию светового излучения, определение дефекта по интенсивности свечения излучателя, отличающийся тем, что дополнительно параллельно световому излучателю подключают разрядник, а сам излучатель устанавливают в месте, доступном для наблюдения, при этом один из контактов излучателя заземляют, а второй контакт закрепляют на изолирующем участке конструкции.



 

Похожие патенты:

Изобретение относится к области релейной защиты и автоматики. Сущность: фиксируют с заданной частотой дискретизации отсчеты напряжения нулевой последовательности на общих шинах и отсчеты токов нулевой последовательности в каждом фидере распределительной сети.

Изобретение относится к области электротехники и может быть использовано в системе обнаружения повреждения для обнаружения повреждений линии на электродной линии в системе HVDC.

Изобретение относится к радиотехнике и предназначено для дистанционного определения места повреждения (ОМП) высоковольтных линий электропередачи (ЛЭП) с разветвленной древовидной структурой.

Изобретение относится к электроизмерительной технике и может быть использовано в кабельной промышленности для контроля и ремонта эмалевой изоляции проводов. Способ заключается в протягивании провода через датчик точечных повреждений и датчик скорости.

Изобретение относится к электроэнергетическим системам и может быть использовано для определения расстояния до места однофазного замыкания на землю линии электропередачи в сети переменного тока с изолированной нейтралью.

Изобретение относится к контрольно-измерительной технике. Сущность: устройство (12) обнаружения неисправности вдоль кабеля (10) связи, соединяющего кодирующий блок (3) и маяк (5) наземного оборудования установки контроля железнодорожного транспортного средства, содержит: средства (14, 16, 34, 42) измерения полного сопротивления, выполненные с возможностью измерения на заранее определенной частоте (F6) фазы и модуля полного сопротивления кабеля (10) во время передачи электрического сигнала связи, генерируемого кодирующим блоком, в направлении маяка; и средства определения состояния кабеля, выполненные с возможностью сравнения измеренных фазы и модуля с контрольными значениями фазы и модуля полного сопротивления кабеля таким образом, чтобы определить одно из следующих состояний кабеля: состояние нормальной работы, состояние короткого замыкания и состояние разрыва цепи.

Изобретение относится к электроэнергетике и может быть использовано для определения места короткого замыкания на линиях электропередачи по несинхронизированным замерам с двух концов линии мгновенных значений токов и напряжений.

Изобретение относится к электроизмерительной технике и может быть использовано в кабельной промышленности для контроля и ремонта эмалевой изоляции проводов. Сущность: провод протягивают через датчик дефектов и датчик скорости.

Изобретение относится к электроизмерительной технике и может быть использовано в кабельной промышленности для контроля и ремонта эмалевой изоляции проводов. Цель изобретения - увеличение точности контроля и протяженности дефектных участков в изоляции провода, а также создание возможности ремонта дефектных участков эмалевой изоляции проводов путем несения эмали на место обнаруженного дефекта при непрерывно перемещающемся проводе.

Изобретение относится к электроэнергетике и может быть использовано для определения места короткого замыкания на воздушной линии электропередачи по несинхронизированным замерам с двух ее концов.

Изобретение относится к электроизмерительной технике, в частности к способу автоматического определения неисправных ламп. Способ автоматической диагностики нагрузок в сети электроснабжения заключается в том, что в начале линии размещают центр управления нагрузками, как минимум состоящий из микропроцессорного блока, передатчика команд и датчика тока, потребляемого линией, команды управления передаются по каналу связи передатчиком команд, каждая команда, как минимум, состоит из полей адреса и кода команды, список возможных кодов команд, как минимум, включает коды команд подключения и отключения нагрузки к линии электроснабжения, каждая нагрузка подключается к линии электроснабжения через выключатель, управляемый приемником команд. При этом каждый приемник команд имеет уникальный и групповой адреса, принимает и выполняет команды, направленные в его адрес. Процесс локализации неисправных нагрузок предполагает передачу команды подключения всех нагрузок к линии электроснабжения, после чего измеряют потребляемый линией ток, передают команду отключения очередной нагрузки, затем вновь измеряют потребляемый линией ток. Если ток в линии не уменьшился на заданную величину, нагрузку считают неисправной, далее процесс повторяют для следующей нагрузки до тех пор, пока все нагрузки не будут проверены. Технический результат - сокращение времени диагностики, уменьшение энергопотребления. 1 з.п. ф-лы, 1 ил.

Использование - в области электротехники. Технический результат - повышение надежности работы ППТ. Способ заключается в регистрации формы кривой напряжения поврежденного полюса передачи, определении временного интервала снижения напряжения полюса ниже уставки Uyст до 0, сравнении этого временного интервала с заданной уставкой tкл, при превышении которой происходит формирование выходного сигнала первого канала защиты о выявлении повреждения на воздушном участке, а при значении временного интервала, меньше либо равного tкл, - формирование выходного сигнала первого канала защиты о выявлении повреждения на кабельном участке линии постоянного тока; вычислении частотной составляющей изменения напряжения с наибольшей амплитудой по первым точкам перехода кривой напряжения через 0, сравнении этой частотной составляющей с заданной уставкой fminКЛ, при превышении которой формируется сигнал второго канала защиты о выявлении повреждения на кабельном участке, при значениях частотной составляющей, меньшей либо равной fminКЛ, но большей, чем fminВЛ, происходит формирование сигнала второго канала защиты о выявлении повреждения на воздушном участке линии постоянного тока. Формирование выходного сигнала защиты на отключение соответствующей полуцепи без АПВ производится при одновременном появлении сигналов первого и второго каналов, фиксирующих выявление повреждений на кабельном участке линии. Формирование сигнала на отключение полуцепи с АПВ происходит при одновременном появлении сигналов первого и второго каналов, фиксирующих повреждение на воздушном участке линии. 5 ил.

Изобретение относится к области электротехники и может быть использовано для защиты электрической сети энергоснабжения. Технический результат - повышение надежности и избирательности решений о рабочих состояниях параллельных линий многофазной электрической сети энергоснабжения. При защите параллельных линий электрической сети энергоснабжения первый защитный прибор (13а) соединен с первой линией (11а) сети энергоснабжения для регистрации измеренных значений, характеризующих рабочее состояние первой линии (11а). Первый защитный прибор (13а) через коммуникационное соединение (15) соединен с расположенным по соседству вторым защитным прибором (13b). Для того чтобы повысить надежность и избирательность при контроле параллельных линий, предложен способ, при котором второй защитный прибор (13b) соединен с проходящей параллельно первой линии (11а) второй линией (11b) сети энергоснабжения. Оба защитных прибора (13а, 13b) обмениваются измеренными значениями, зарегистрированными ими относительно соответствующей им линии (11а, 11b), и/или выведенными из этих измеренных значений сигналами. Каждый защитный прибор (13а, 13b) выполнен с возможностью выполнения защитной функции для своей соответствующей линии (11а, 11b) при выполнении главного алгоритма (25) защит. Каждый защитный прибор для выполнения своего главного алгоритма (25) защиты привлекает зарегистрированные на собственной линии (11а) измеренные значения, а также принятые от другого защитного прибора (13b) измеренные значения и/или сигналы. 3 н.п. и 20 з.п. ф-лы, 11 ил.

Изобретение относится к электроизмерительной технике. Технический результат: повышение точности определения места повреждения при передаче с одного конца линии на другой минимального количества данных (только векторов фазных токов) без использования итерационного процесса. Сущность: проводят измерение в момент короткого замыкания фазных токов и напряжений основной гармоники в начале и в конце линии, тока прямой последовательности нормального режима, предшествующего замыканию, в начале линии и конце линии. Передают информацию о фазных токах начала линии от начала линии к концу линии. Передают информацию о фазных токах конца линии от конца линии к началу линии посредством каналов связи. Определяют симметричные составляющие фазных токов прямой, обратной и нулевой последовательностей на каждом из концов линии. Определяют симметричные составляющие фазных напряжений прямой, обратной и нулевой последовательностей в начале линии и в конце линии. По таблице в зависимости от вида короткого замыкания определяют ток в месте короткого замыкания I · K , I . K значения расчетных токов и напряжений U . ' , I . ' , U ' . ' , I . ' ' . По полученным значениям рассчитывают расстояние от начала линии до места повреждения (для устройства в начале линии) расстояние от конца линии до места повреждения (для устройства в конце линии). 3 табл. 2 ил.

Изобретение относится к определению направления на место замыкания в трехфазной электрической сети. Сущность: устройство содержит средство для определения значения величины фазора направления в точке измерения в трехфазной электрической сети после выявления замыкания в трехфазной электрической сети и средство для сравнения значения величины фазора направления с направленной рабочей характеристикой для определения направления на место замыкания от точки измерения. Средство для определения значения величины фазора содержит средство для формирования кумулятивной суммы фазора, состоящей из, по крайней мере, двух значений, определенных в разные моменты времени, электрической величины фазора в точке измерения и задание кумулятивной суммы фазора в качестве значения для величины фазора направления. Технический результат: повышение надежности определения направления. 2 н. и 12 з.п. ф-лы, 7 ил.

Предлагаемое изобретение относится к электроэнергетике и может быть использовано для определения места повреждения (короткого замыкания) на линиях электропередачи по измерениям с двух ее концов без использования эквивалентных параметров питающих систем. Техническим результатом является повышение точности определения места повреждения. Способ определения места повреждения включает в себя определение параметров линии по замерам с двух концов в момент короткого замыкания, определение относительного расстояния до места короткого замыкания с дальнейшим определением расстояния до места короткого замыкания. Технический результат достигается за счет использования измеренных фазных величин токов и напряжений и полных фазных и междуфазных величин сопротивлений линии. 2 з.п. ф-лы, 3 ил.

Изобретение относится к электротехнике, в частности к релейной защите, и предназначено для реализации в устройствах определения места повреждения разветвленных линий электропередачи. Технический результат: повышение точности определения места повреждения. Сущность: в начале ЛЭП и в конце каждого ответвления устанавливают на проводах ЛЭП устройства контроля тока и напряжения, число которых на единицу больше числа контролируемых веток. Одновременно всеми устройствами регистрируют время прохождения скачка фазного напряжения в единой шкале времени, синхронизированной от спутниковых сигналов глобальной системы позиционирования. Передают зарегистрированные времена в диспетчерский центр для их автоматической обработки. Для зафиксированных времен от каждой пары устройств контроля тока и напряжения разностно-дальномерным способом определяют поврежденную ветку. Для зафиксированных времен от пары устройств контроля тока и напряжения, одно из которых находится на поврежденной ветке, разностно-дальномерным способом определяют место повреждения на этой ветке. При определении места повреждения используют зафиксированные времена прихода импульса к концам ответвлений ЛЭП, а также длины ответвлений и расстояния между началами ответвлений. 1 ил.

Изобретение относится к контрольно-измерительной технике и может быть использовано для определения наличия повреждения кабеля электроснабжения, расположенного в земле, и участка кабеля заданной длины, на котором это повреждение расположено. Сущность: подключают источник переменного тока к кабелю электроснабжения. Измеряют напряженность магнитного поля, причем измерения проводят на поверхности земли и на высоте а в начале и конце участка кабеля, выделенного для измерения, длиной L. Рассчитывают глубину залегания кабеля и в начале и конце участка кабеля. Определяют проводимость исследуемого участка кабеля. Полученное значение проводимости Y изоляции сравнивают с проводимостью неповрежденного кабеля YH, соотношение Y>YH свидетельствует о наличии повреждения кабеля электроснабжения на исследуемом участке. Затем участок делят на две части, повторяют измерения, определяют проводимости первой Y1 и второй Y2 частей участка. Если Y1>YH, то повреждение находится в первой части участка кабеля, если Y2>YH - во второй. Далее процесс повторяют до определения заданной (требуемой) длины участка кабеля, на котором находится повреждение. Технический результат: снижение трудоемкости и временных затрат. 1 ил.

Использование: в области электротехники. Технический результат заключается в повышении надежности электроснабжения потребителей. Способ заключается в контроле напряжения на шинах распределительного устройства, и установке на опорах ВЛЭП регистраторов для сигнализации протекания тока ОЗЗ, при этом контролируют фазное напряжение на шинах распределительного устройства, регистраторы оснащают блоком контроля и сигнализации (БКС), токоограничивающим сопротивлением и высоковольтным тиристором, управляемым сигналами, сформированными БКС, индивидуальными для каждой опоры ВЛЭП, при этом, факт протекания тока ОЗЗ по опоре ВЛЭП сигнализируют дистанционно по характеру изменения фазного напряжения на шинах распределительного устройства, обусловленному индивидуальным повторно-кратковременным шунтированием токоограничивающего сопротивления посредством управляемого высоковольтного тиристора. 2 ил.

Изобретение относится к контролю электрических сетей. Сущность: устройство содержит средство для определения во время короткого замыкания фазы на землю в точке (F) в трехфазной электрической линии (30) значений тока и напряжения, когда полная комплексная проводимость нейтраль-земля электрической сети вне электрической линии (30) имеет первое значение, средство для определения значений тока и напряжения, когда полная комплексная проводимость нейтраль-земля электрической сети вне электрической линии (30) имеет второе значение, отличное от первого значения, и средство (40) для определения расстояния до места короткого замыкания фазы на землю в точке (F) от точки измерения на основе определенных значений тока и напряжения. Средство (40) использует четыре уравнения, соответствующие эквивалентному контуру для короткого замыкания фазы на землю в трехфазной электрической линии. Технический результат: повышение точности. 2 н. и 8 з.п. ф-лы, 2 ил.
Наверх