Способ извлечения золота из руд и концентратов

Изобретение относится к области гидрометаллургии благородных металлов. Способ извлечения золота из руд и концентратов включает загрузку в реактор предварительно измельченного исходного сырья и его обработку раствором цианида с циркуляцией пульпы и диспергированием путем подачи сжатого воздуха. При этом процесс обработки пульпы проводят с использованием двухлучевого оппозитного гидроакустического излучателя с оппозитным веерным излучением широкополосных с непрерывным спектром акустических колебаний и веерного распыления в рабочем объеме реактора облаков микропузырьков воздуха, активно засасываемого в зону разрежения, создаваемого излучателем. Техническим результатом изобретения является интенсификация процесса извлечения золота из руд и концентратов. 2 пр.

 

Изобретение относится к области гидрометаллургии благородных металлов и направлено, в частности, на интенсификацию процесса извлечения золота из руд и концентратов. Результат достигается тем, что обработку пульпы ведут в поле механических колебаний широкого непрерывного спектра частот акустического диапазона, создаваемого гидродинамическим преобразователем, с одновременным введением мелкодисперсных пузырьков воздуха в зону обработки, за счет разрежения, создаваемого этим же гидродинамическим преобразователем.

Интенсификация процессов выделения ценных металлов, и в частности золота, из рудной массы - весьма актуальная проблема, постоянно привлекающая внимание исследователей [1, 2], разрабатывающих новые методы ускоренного и более полного извлечения золота.

Известны способы интенсификации процессов выщелачивания благородных металлов воздействием инфранизкочастотного электрического тока [3, 4, 5, 6], импульсно-волнового воздействия с наложением электрических полей [7, 8, 9, 10, 11, 12].

Недостатки перечисленных способов - сложность аппаратурного обеспечения технологических процессов, высокая энергоемкость, высокий расход реагентов, а также относительно низкое извлечение отдельных элементов.

Среди способов интенсификации процессов выщелачивания весьма привлекательны способы с применением ультразвуковых воздействий, поскольку использование ультразвука в технологии обогащения и флотации связано с рядом нелинейных специфических явлений, сопровождающихся распространением ультразвуковых колебаний в жидких средах. Среди этих явлений главное - кавитация, вызывающая энергичные мелкомасштабные течения с большими градиентами скоростей, гидродинамические импульсы при захлопывании кавитационных полостей и др. Ультразвуковая обработка позволяет освобождать поверхность рудных частиц от всевозможных минеральных покрытий, снижать диффузионные сопротивления в растворах, ускорять обновление растворов вокруг частиц, интенсивно накислороживать растворы (при специальном применении), и в раде случаев существенно сокращать длительность выщелачивания [13, 14, 15].

Вследствие дисперсности и повышенной вязкости пульпы растворимость кислорода в ней понижена и его диффузия затруднена. Кроме того, тонко измельченные колчеданы легко окисляются, поглощают кислород и тем самым замедляют процесс растворения золота. Поэтому при выщелачивании пульп особое значение приобретает непрерывное насыщение их кислородом. Обычно это осуществляется энергичным перемешиванием пульпы, продуванием ее воздухом или чистым кислородом [16, 17].

Известны способы извлечения золота из бедных руд, интенсифицированные ультразвуком с частотой 35 кГц и мощностью ультразвука 300 Вт [18], а также электромагнитным полем с ультразвуковой частотой не менее 2·1011Гц [19] (что лежит за пределами ультразвукового диапазона [20]), однако конструкции как высокочастотного, так и низкочастотного генераторов ультразвука, обеспечивающих излучение в узком диапазоне частот, не предназначены для решения дополнительных функций, аэрации, например, и ни высокая частота ультразвука, неспособного вызвать кавитацию, ни низкая выделенная частота ультразвука, которая по определению не может быть резонансной для частиц и кавитационных газовых пузырьков различных размеров, не обеспечивают приближения к теоретически возможному пределу интенсификации процесса выщелачивания и приводят лишь к дегазации раствора [14, 15, 20].

Известен также способ (наиболее близкий прототип) ускорения выщелачивания богатых золотосодержащих концентратов интенсивным накислороживанием золотосодержащего концентрата в растворе цианида в аппарате с циркуляцией пульпы [21].

Настоящее изобретение направлено на интенсификацию процессов выщелачивания за счет совмещения широкополосного акустического воздействия с интенсивной аэрацией. Указанный результат достигается использованием оппозитного гидроакустического излучателя с оппозитным веерным излучением широкополосных с непрерывным спектром акустических колебаний, а также веерным рапределением в рабочем объеме облаков микропузырьков воздуха, активно засасываемого в зону распыления за счет особенностей конструкции гидроакустических излучателей.

В гидроакустических источниках, акустические колебания возбуждаются при взаимодействии потока жидкости с твердой излучающей системой. Эти излучатели позволяют генерировать акустические колебания с частотами от единиц Гц до 45 кГц, причем примерно 70% энергии излучения приходится на диапазон 0,5-10 кГц. Повышения плотности энергии в среде добиваются совпадением частоты автоколебаний в натекающей струе и частоты собственных колебаний препятствия. Установки с гидроакустическими излучателями в общем виде представляют собой устройство для подачи жидкости под давлением и гидроакустический преобразователь. Устройство по конструкции принципиально схоже с инжекторами и обладает свойством распылять в жидкости газ, в частности воздух, засасываемый за счет создаваемого в преобразователе разрежения.

В результате проведенного анализа уровня техники интенсификации выщелачивания золотосодержащих руд источник, характеризующийся признаками, тождественными всем существенным признакам заявленного изобретения, не обнаружен, следовательно, заявленное изобретение соответствует условию "новизна".

Дополнительный поиск известных решений показал, что заявленное изобретение не вытекает для специалиста явным образом из известного уровня техники, поскольку в предложенном способе используется акустическое воздействие с широким непрерывным спектром частот, среди которых всегда существуют частоты, резонансные собственным частотам газовых кавитационных пузырьков различных размеров, а также способность гидроакустических излучателей инжектировать микропузырьки газа (в данном случае, воздуха) в жидкую среду. Следовательно заявленное изобретение соответствует условию "изобретательский уровень".

Сведения, подтверждающие возможность осуществления изобретения с получением вышеуказанного технического результата.

В качестве источника широкополосного акустического воздействия используется оппозитный гидроакустический излучатель «веерного» типа,наиболее подходящий для реализации предлагаемого способа.

Гидроакустический излучатель характеризуется следующими параметрами:

конфигурация: двойной, оппозитный;

диапазон частот 3 Гц до 45 кГц;

плотность энергии - 0,5-2 Вт·с/см3;

основная часть (0,7) энергии излучения приходится на диапазон 0,5-10 кГц.

Сущность изобретения иллюстрируется следующими примерами.

Пример 1. (по прототипу в оптимальном варианте) Установку по интенсивному цианированию снабжают керамическим диспергатором, установленным перед реакционной зоной. Реактор загружают концентратом, подают цианистый раствор для выщелачивания в реактор для проведения цианирования, включают циркуляцию раствора, включают подачу сжатого кислорода через керамический диспергатор, измеряют его расход и регулируют так, чтобы содержание кислорода в растворе было на уровне 5-10 мг/л, после чего ежечасно оценивают содержание золота в растворе. Процесс ведут до тех пор, пока концентрация золота в растворе не перестанет меняться в течение часа. По данным авторов в оптимальном режиме длительность процесса составляет 10 ч.

Пример 2. Установку по интенсивному цианированию снабжают двухлучевым оппозитным гидроакустическим излучателем, установленным перед реакционной зоной. Реактор загружают концентратом, подают цианистый раствор выщелачивания в реактор для проведения цианирования, включают циркуляцию раствора, включают гидроакустический излучатель, являющийся одновременно инжектором воздуха, после чего ежечасно оценивают содержание золота в растворе. Процесс ведут до тех пор, пока концентрация золота в растворе не перестанет меняться в течение часа. Проведенные исследования свидетельствуют, что в данном случае длительность процесса не превышает 6 ч.

Приведенные примеры иллюстрируют, что оппозитный гидроакустический излучатель с указанными параметрами, обеспечиваемыми при прокачке через него рабочего выщелачивающего раствора под давлением 4 атм, представляет собой источник акустического воздействия на суспензию, ускоряющего процесс выщелачивания, и параллельно обеспечивает активную аэрацию рабочей зоны, позволяющую дополнительно интенсифицировать процесс выщелачивания металла из предварительно измельченной золотоносной руды. Таким образом, изложенные выше сведения свидетельствуют о том, что заявленное изобретение, предназначенное для использования в гидрометаллургии, обладает заявленными выше свойствами. Для заявленного способа в том виде, как он охарактеризован в изложенной формуле изобретения, подтверждена возможность его осуществления с помощью описанных в заявке средств и методов. Следовательно заявленное изобретение соответствует условию "промышленная применимость".

Литература.

1. Кошель Е.А. Повышение извлечения золота из упорного сырья на основе применения магнитно-импульсной обработки. Автореф. канд. дис. Москва, УРАН ИПКОН РАН, 2011.

2. Гроо Е.А. Технология извлечения золота из бедных руд в условиях удаленного расположения месторождений. Афтореф. канд дис, С. - П. Национальный минерально-сырьевой университет «Горный», 2012.

3. Воронин П.А., Алкацев М.И., Келин В.Н., Кондратьев Ю.И., Хулелидзе К.К. Способ подземного выщелачивания металлов А. с.1197536, 1984.

4. Крылова Г.С., Елисеев В.Н., Ибрагимова Н.В., Кошель Е.А., Жуйков Ю.Ф., Бурмистенко Ю.Н. Способ интенсификации выщелачивания золота А. с.1197537, 2003.

5. Воронин П.А., Алкацев М.И., Келин В.Н., Кондратьев Ю.И., Хулелидзе К.К. Способ подземного выщелачивания металлов из руд А. с.1343920 СССР 1986.

6. Кондратьев Ю.И., Воронин П.А., Алкацев М.И., Кондратьев Д.Ю. Способ подземного и кучного выщелачивания металлов. Патент РФ №2116440, 1998.

7. Таскаев А.А., Воробьев А.Е., Секисов А.Г. Способ складирования и подготовки руд к переработке. Патент РФ 2026972, 1995.

8. Секисов А.Г., Пискунов С.А., Филатов Б.Л. Способ выщелачивания золотоносных комплексных руд, Патент РФ 2044875, 1995.

9. Воробьев А.Е., Забельский В.К., Сазонов А.Г., Рыскильдин К.Я., Чернецов Б.С., Чекушина Т.В. Способ кучного электрохимического выщелачивания металлов, Патент РФ 2087696, 1995.

10. Воробьев А.Е., Бубнов В.К., Чекушина Т.В., Бубнов В.В., Кабылденов А.С., Поляцкий И.В. Способ кучного выщелачивания комплексных руд Патент РФ 2091571, 1997.

11. Воробьев А.Е., Забельский В.К., Сазонов А.Г., Татарко Н.И.; Чекушина Т.В. Способ подземного выщелачивания металлов Патент РФ 2092687, 1997.

12. Чантурия В.А., Воробьев А.Е., Чекушина Т.В., Федоров А.А., Способ кучного электрохимического выщелачивания руд, Патент РФ 2110681, 1998.

13. Черных С.И., Рыбакова О.И., Лебедев Н.М., Жирнова Т.И. К вопросу изучения влияния ультразвука, магнитных полей и электрического тока на флотацию золота. Цветная металлургия №6, 2003, с.15.

14. Агранат Б.А. Основы физики и техники ультразвука. М. «Высшая школа», 1987, 352 с.

15. Акопян В.Б., Ершов Ю.А. Основы взаимодействия ультразвука с биологическими объектами. М., Из-во РГТУ им Баумана, 2006, 223 с.

16. Рубцов Ю.И. Разработка и научное обоснование ресурсосберегающей цианидной технологии скоростного кучного выщелачивания золота из скальных кварцевых руд. Автореф. док. дисс. Чита, Забайкальский государственный университет, 2012.

17. Медведев А.С. Выщелачивание и способы его интенсификации М.: МИСиС, 2005. - 240 с.

18. Алгебраистова Н.К., Гроо Е.А., Макшанин А.В. Способ извлечения золота из бедных малосульфидных руд. Патент №2465353, 2006.

19. Хрунина Н.П., Рассказов И.Ю. Способ электромагнитно-ультразвуковой дезинтеграции сростков микрокомпонентов золоторудных концентратов. Патент РФ 2455072, 2006.

20. «Ультразвук». Маленькая энциклопедия. (Под редакцией Голяминой И.П.). Москва, «Советская энциклопедия, 1979.

20. Рубцов Ю.И., Краснов А.В., Краснов С.А., Ульданов Ю.Ю., Зонтов П.Б. Способ и устройство для выщелачивания богатых золотосодержащих концентратов. Патент РФ №2168555,2001.

21. Дудзинский Ю.М., Сухарьков О.В., Моничева Н.В. Энергетика прямоточного гидродинамического излучателя в условиях гидростатического давления. Акустичний вюник, 2004, 7, №1, с.44-49.

Способ извлечения золота из руд и концентратов, включающий загрузку в реактор предварительно измельченного исходного сырья и его обработку раствором цианида с циркуляцией пульпы и диспергированием путем подачи сжатого воздуха, отличающийся тем, что процесс обработки пульпы проводят c использованием двухлучевого оппозитного гидроакустического излучателя с оппозитным веерным излучением широкополосных с непрерывным спектром акустических колебаний и веерного распыления в рабочем объеме реактора облаков микропузырьков воздуха, активно засасываемого в зону разрежения, создаваемого излучателем.



 

Похожие патенты:

Изобретение относится к способу переработки сульфидных концентратов, содержащих благородные металлы. Способ включает смешивание концентрата с карбонатом натрия, карбонатом кальция, продуктом на основе оксида железа и углеродистым восстановителем.
Изобретение относится к комбинированному способу кучного выщелачивания золота из упорных сульфидных руд. Способ включает сооружение непроницаемого основания, отсыпку штабеля руды, монтаж систем орошения выщелачивающих и сбора продукционных растворов, окисление сульфидной минерализации и последующее цианирование руды.

Изобретение относится к способу переработки золотосодержащих руд с примесями ртути. Способ включает измельчение исходного материала, цианидное выщелачивание с получением продуктивного раствора золота с примесями ртути, введение сульфидсодержащего реагента для осаждения ртути, сорбцию золота на активированный уголь с возвратом оборотного цианидного раствора на выщелачивание, десорбцию золота и электролиз золота из десорбата.

Изобретение относится к области гидрометаллургии благородных металлов и может быть использовано для извлечения золота из хвостов золотоизвлекательных установок, перерабатывающих углистые сорбционно-активные руды и продукты обогащения.
Изобретение относится к способу извлечения дисперсного золота из упорных руд и техногенного минерального сырья. .

Изобретение относится к гидрометаллургии золота и может быть использовано для переработки золотосодержащих руд, концентратов, промпродуктов, шламов и хвостов. .

Изобретение относится к гидрометаллургии благородных металлов, в частности к извлечению благородных металлов из цианистых растворов и/или пульп по угольно-сорбционной технологии.

Изобретение относится к цветной металлургии и предназначено для извлечения золота из упорной арсенопирит-пирротиновой руды. .
Изобретение относится к гидрометаллургии благородных металлов, а именно к способу извлечения золота из минерального сырья. .
Изобретение относится к области металлургии и горного дела, в частности к способу извлечения золота из лежалых хвостов намывных хвостохранилищ. .
Изобретение относится к металлургии цветных и благородных металлов, в частности к извлечению золота из концентратов. Способ включает стадийное цианистое выщелачивание золота, на первой из которых измельченный исходный материал при перемешивании выщелачивают оборотным цианистым раствором. Из продукта первой стадии выделяют классификацией песковую фракцию. На второй стадии песковую фракцию выщелачивают в цианистом растворе с концентрацией NaCN 0,5-2 г/л. При этом растворы, полученные на второй стадии, направляют для выщелачивания исходного материала. Золото извлекают из растворов выщелачивания первой стадии. Кеки выщелачивания первой и второй стадий смешивают со связующим и пористым наполнителем, смесь гранулируют, складируют в виде штабеля и дополнительно извлекают золото из штабеля кучным выщелачиванием. В качестве пористого наполнителя используют золу сжигания каменных углей в количестве 5-10% от массы кеков. Кучное выщелачивание золота проводят обеззолоченным раствором с содержанием 0,1-0,5 г/л NaCN. Продуктивный раствор с кучного выщелачивания подкрепляют цианидом и направляют на стадию выщелачивания песковой фракции. Техническим результатом является повышение суммарного извлечения золота из концентратов на 4-5%. 2 з.п. ф-лы, 1 табл., 1 пр.
Изобретение относится к области гидрометаллургии благородных металлов и может быть использовано, в частности, для извлечения золота при кучном выщелачивании упорных золотосодержащих руд цианидными растворами. Способ заключается в том, что в руду перед укладкой в штабель или в процессе его формирования вводят пиритные огарки. В качестве пиритных огарков используют выветрелые, лежалые огарки и огарки текущего производства. После формирования штабеля ведут выщелачивание золота растворами цианидов. Техническим результатом является повышение степени извлечения золота при цианидном выщелачивании упорных руд, снижение расхода цианида. 7 з.п. ф-лы, 6 табл., 6 пр.

Изобретение относится к области металлургии цветных и благородных металлов, в частности к способу извлечения золота из теллуристых руд и концентратов. Исходное сырье обрабатывают раствором, содержащим 1-10 г/л сульфита натрия, 0,1-1 мг/л растворенного кислорода, при рН=10-11. После обработки кек отделяют от раствора и подвергают цианированию. Отделенный от кека раствор возвращают для обработки новой порции сырья в растворе сульфита натрия. Техническим результатом является повышение скорости растворения золота при цианировании на 20-30% за счет разрушения прочной связи между золотом и теллуром. 1 з.п. ф-лы, 1 табл., 1 пр.
Изобретение относится к области гидрометаллургии благородных металлов и может быть использовано, в частности, для извлечения благородных металлов при кучном выщелачивании золотосодержащих глинистых руд цианистыми растворами. Способ извлечения благородных металлов из глинистых руд включает окомкование дробленой руды с цементом, укладку штабеля из окомкованной руды и выщелачивание цианистыми растворами. При этом верхний слой рудного штабеля высотой 0,2-0,5 м укладывают рудой, окомкованной с повышенным на 10-40% расходом цемента. Техническим результатом является увеличение скорости выщелачивания за счет увеличения механической прочности окомкованных частиц верхнего слоя рудного штабеля. 2 табл., 2 пр.
Группа изобретений относится к извлечению дисперсного золота из упорных руд и техногенного минерального сырья. Способ включает агломерацию золотосодержащей минеральной массы исходного сырья путем добавки к ней связующего материала, формирование штабеля, выщелачивание золота подачей в штабель раствора реагента, выщелачивающего золото, сбор рабочих растворов с последующим выделением из него золота. В первом варианте способа при агломерации золотосодержащую минеральную массу разделяют на две навески, причем первую навеску обрабатывают карбонатно-пероксидным раствором, а вторую - активным цианидным раствором. После агломерации навески смешивают и укладывают в штабели, выдерживают и проводят выщелачивание путем подачи в штабели накислороженной воды или слабого щелочного раствора цианида натрия или калия в инфильтрационном, фильтрационном или пульсационно-статическом режиме. Во втором варианте способа золотосодержащую массу не разделяют на навески. Обеспечивается повышение эффективности извлечения золота из руд и техногенных минеральных образований. 2 н.п. ф-лы, 1 пр.

Изобретение относится к способу кучного выщелачивания дисперсного золота из упорных руд. Способ характеризуется тем, что перед укладкой руды в штабели проводят дробление и разделение на подрешеточный и надрешеточный продукты руды. Подрешеточный продукт агломерируют с использованием раствора, содержащего окислители для ассоциирующих с золотом минералообразующих элементов. Укладку руды в штабели осуществляют слоями, при этом нижний слой отсыпают из надрешеточных продуктов и орошают его раствором, содержащим окислители для ассоциирующих с золотом минералообразующих элементов. Затем на нижний слой отсыпают агломерированные подрешеточные продукты для формирования верхнего слоя штабеля. После выдержки осуществляют орошение всего штабеля сначала низкоконцентрированным раствором, содержащим окислители для ассоциирующих с золотом минералообразующих элементов, или водой. Затем верхний слой штабеля пропитывают концентрированным раствором, содержащим окислители и комплексообразователи для золота, выдерживают вторую паузу, а затем осуществляют орошение всего штабеля низкоконцентрированным раствором, содержащим окислители и комплексообразователи для золота, или водой. Техническим результатом является повышение извлечения дисперсного золота и сокращение расхода комплексообразователя при выщелачивании. 1 пр.

Изобретение относится к области цветной металлургии. Способ извлечения золота включает цианирование руды при измельчении. В мельницу последовательно подают при соотношении твердой фазы к жидкой фазе от 3:2 до 2:1 предварительно дробленную до крупности фракций от 2 мм до 4 мм руду, добавку гидроксида натрия для создания рН среды от 9 до 11 и насыщенные кислородом до концентрации от 15 мг/дм3 до 18 мг/дм3 оборотные воды с содержанием цианида от 0,002 до 0,04% и проводят цианирование руды при измельчении в мельнице до крупности менее 74 мкм. Обеспечивается интенсификация цианирования и повышение извлечения золота. 1 табл., 2 пр.

Изобретение относится к металлургической промышленности, в частности к области гидрометаллургии благородных металлов, и может быть использовано для извлечения золота из упорного сырья. Способ извлечения благородных металлов из упорного сульфидного сырья включает сверхтонкое измельчение, предварительную обработку пульпы при повышенной температуре и сорбционное цианирование. При этом предварительную обработку проводят в две стадии: первую стадию осуществляют в присутствии кислорода при pH 2-3, вторую - в присутствии кислорода и извести при pH 10,5-11,0. При этом концентрат измельчают до крупности 95,0% класса минус 10 мкм и менее. Предварительную обработку проводят таким образом, чтобы степень окисления сульфидов составляла 35-55%. Технический результат заключается в создании условий предварительной подготовки концентрата к цианированию после сверхтонкого измельчения. 1 з.п. ф-лы, 5 табл., 2 пр.

Изобретение относится к извлечению благородных металлов кучным выщелачиванием из руд. Способ включает дробление руды, складирование штабеля руды на гидроизолированное основание, монтирование системы орошения и орошение щелочным раствором цианида натрия штабеля руды. При этом штабель руды орошают щелочным раствором цианида натрия, который предварительно насыщают кислородом воздуха до концентрации от 22 мг/дм3 до 26 мг/дм3 на установке с гидроакустическим излучателем. Штабель руды орошают путем подачи в него посредством системы орошения насыщенного кислородом щелочного раствора цианида натрия под давлением от 2 атм до 4 атм. Кроме того, руду предварительно дробят до фракций крупностью от 5 мм до 15 мм. Техническим результатом является ускорение процесса растворения золота при одновременном повышении извлечения золота и сокращение продолжительности кучного выщелачивания. 1 з.п. ф-лы, 3 табл., 2 пр.

Изобретение относится к отчистке растворов цианирования, полученных при гидрометаллургической переработке концентратов, содержащих благородные и цветные металлы, от цианистых комплексов цветных металлов. Способ включает обработку растворов цианирования гипохлоритом кальция в концентрации от 4,5 до 5 г/л с обеспечением перевода цветных металлов в нерастворимый осадок, а после появления осадка проводят выдержку в течение 2-5 ч с обеспечением поддержания рН раствора от 9,5 до 10,7. Обеспечивается сокращение продолжительности процесса сорбции золота из растворов после цианирования. 2 табл., 1 пр.
Наверх