Водорастворимый бесщелочной ускоритель схватывания и способ его получения

Изобретение относится к области строительных материалов, в частности к составам ускорителей схватывания, используемых в производстве торкрет-бетона мокрым способом, и к способу получения ускорителя схватывания. Техническим результатом, полученным при использовании предлагаемой комплексной добавки, является быстрое схватывание бетонной смеси с последующим быстрым и стабильным набором прочности бетона. Водорастворимый бесщелочной ускоритель схватывания содержит сульфаты, соединения алюминия, комплексообразователь и воду при следующем соотношении компонентов, мас.%: основной сульфат алюминия 20-40, сульфаты двухвалентных металлов 4-6, органический буферообразующий компонент 6-12, комплексообразователь 2-10, вода остальное. В способе получения ускорителя схватывания алюминат натрия предварительно смешивают с комплексообразователем, затем вводят органический буферообразующий компонент, после чего в полученной системе растворяют средний сульфат алюминия и далее к стабилизированному раствору основного сульфата алюминия добавляют сульфат двухвалентного металла. Изобретение развито в зависимых пунктах формулы изобретения. 2 н. и 3 з.п. ф-лы, 4 табл.

 

Изобретение относится к области строительных материалов, в частности к составам ускорителей схватывания, используемых в производстве торкрет-бетона мокрым способом.

К добавкам, которые используются либо в мокром, либо в сухом торкрет-процессе, предъявляются следующие требования:

- быстрое схватывание: начало и конец схватывания;

- повышенная способность к образованию максимальной толщины слоя;

- увеличение скорости развития прочности;

- достижение максимальной прочности при заданных условиях.

Широкое применение при торкретировании получили щелочи и другие химические вещества с сильноосновными свойствами, например жидкое стекло. Щелочной характер активного ингредиента делает такие добавки чрезвычайно едкими, что требует соблюдения мер предосторожности в обращении с ними. Кроме того, такие добавки способны инициировать процессы щелочной коррозии бетона, что отрицательно сказывается на долговечности возведенных элементов и сооружений.

Также известны добавки для торкретирования на основе хлорида кальция. Однако такие добавки не способны обеспечить весь комплекс характеристик, необходимых для торкрет-бетонов, и, кроме того, хлориды проявляют высокую коррозионную активность по отношению к арматуре, что требует дополнительного введения ингибиторов коррозии [1].

Наиболее близким по технической сущности и достигаемому техническому результату является жидкий ускоритель схватывания, содержащий соединения серы, алюминия, щелочных металлов и комплексообразующего агента [2].

Данная добавка не содержит щелочей и не вызывает коррозии арматуры в бетоне. Однако стабильные при хранении составы характеризуются весьма низкими значениями pH (согласно описанию, предпочтительный диапазон 1,5-3), что может приводить к коррозии оборудования. Поскольку при изготовлении этого ускорителя согласно патенту используют труднорастворимые соединения: фторид алюминия или криолит (3NaF·AlF3), добавка представляет собой не истинный раствор, а суспензию с размером частиц не более 5 мкм; однако для получения устойчивой при хранении суспензии требуется длительный помол компонентов в шаровой мельнице. Для достижения эффекта быстрого схватывания дозировка добавки должна составлять 5-15% от массы цемента, что заметно сказывается на В/Ц-отношении и, следовательно, прочности торкрет-бетона, а также приводит к удорожанию конечного материала.

Технической задачей изобретения является разработка не содержащего галогенидов водорастворимого бесщелочного ускорителя схватывания, характеризующегося ускоренным набором прочности в ранние сроки и концентрацией не менее 45%.

Техническим результатом, полученным при использовании предлагаемого бесщелочного ускорителя схватывания, является получение торкрет-бетона с максимально быстрым набором прочности при заданных условиях (расход и активность цемента, величина В/Ц).

Указанный технический результат достигается тем, что бесщелочной водорастворимый ускоритель схватывания, содержащий сульфаты, соединения алюминия, комплексообразователь и воду, согласно изобретению в качестве соединений алюминия содержит стабилизированный органическим буферообразующим компонентом на основе кислоты с константой ионизации pKa=2÷4 основной сульфат алюминия и в качестве комплексообразователя - многоатомные спирты НОСН2(CHOH)nCH2OH, где n=0÷4, пентаэритрит, замещенные спирты RCH2CH2OH, где R содержит элемент со свободной неподеленной парой электронов или смесь нескольких указанных продуктов, способных образовывать пяти- и шестичленные хелаты, при дополнительном введении водорастворимых сульфатов двухвалентных металлов. Ускоритель схватывания включает вышеуказанные компоненты в следующем соотношении, мас.%:

основной сульфат алюминия 20-40
сульфаты двухвалентных металлов 4-6
органический буферообразующий компонент 6-12
комплексообразователь 2-10
вода остальное

Основной сульфат алюминия могут получать взаимодействием среднего сульфата алюминия и раствора алюмината в присутствии комплексообразователя и органического буферообразующего компонента.

В качестве водорастворимых сульфатов двухвалентных металлов ускоритель схватывания может содержать сульфаты железа, кобальта, хрома, марганца, магния, бериллия или смесь нескольких указанных продуктов.

Дозировка предлагаемого ускорителя схватывания в торкрет-бетонах составляет 1-5% от массы цемента.

Способ получения водорастворимого бесщелочного ускорителя схватывания, включающий последовательное смешение указанных компонентов в заданном соотношении, соответственно, осуществляют посредством предварительного смешения алюмината натрия с комплексообразователем, затем вводят органический буферообразующий компонент, после чего в полученной системе растворяют средний сульфат алюминия и далее к стабилизированному раствору основного сульфата алюминия добавляют сульфат двухвалентного металла.

Между совокупностью существенных признаков заявляемого изобретения и достигаемым техническим результатом существует причинно-следственная связь.

Введение в состав бетонной смеси высококонцентрированного раствора основного сульфата алюминия приводит к мгновенному образованию в системе значительного количества алюмосиликатов кальция, что обеспечивает чрезвычайно быстрый набор прочности цементного камня и надежное сцепление заполнителя с растворной частью бетона. Отсутствие перекристаллизации алюмосиликатного каркаса обеспечивает стабильное нарастание прочности бетона и в последующие сроки [3].

Техническая сущность изобретения и достигаемые эффекты могут быть проиллюстрированы следующими примерами, не исчерпывающими все возможные варианты, приведенными в таблице 1.

Водорастворимый бесщелочной ускоритель схватывания для всех примеров, представленных в таблице 1, получают путем предварительного смешения алюмината натрия с комплексообразователем, затем вводят органический буферообразующий компонент, после чего в полученной системе растворяют средний сульфат алюминия и далее к стабилизированному раствору основного сульфата алюминия добавляют сульфат двухвалентного металла. При этом в качестве сульфата двухвалентного металла используют сульфаты железа, кобальта, хрома, марганца, магния, бериллия или смесь нескольких указанных продуктов. В качестве примеров приведены сульфаты марганца, магния и железа, а также смеси сульфатов марганца и магния, марганца и железа, магния и железа.

Проверку свойств комплексных добавок по настоящему изобретению проводили в соответствии с ГОСТ 30459-2003 на бетонной смеси состава (кг/м3): цемент - 350, песок - 850, щебень - 990, вода - 185 при В/Ц=0,53. Подвижность и сохраняемость определяли по ГОСТ 10181.1, прочность бетона - по результатам испытаний образцов-кубов 10×10×10 см по ГОСТ 10180.

В таблице 2 представлены результаты испытаний ускорителя схватывания по данной заявке и прототипа на сохраняемость бетонной смеси. Обеспечение необходимой исходной подвижности бетонной смеси достигалось введением 0,4% полиметиленнафталинсульфонатного суперпластификатора, после чего в бетонные смеси вводили добавку по заявке или прототип.

Таблица 3 содержит результаты испытаний по кинетике твердения бетона с ускорителем схватывания по заявке и прототипа.

Анализируя данные таблиц 2 и 3, можно сделать следующие выводы:

- бетон с добавкой по заявке превосходит добавку-прототип по срокам схватывания бетонной смеси, что очень существенно при использовании добавки в процессе торкретирования;

- бетон с добавкой по заявке превосходит добавку-прототип по набору прочности в ранние сроки;

- в 28-суточном возрасте прочность бетона с добавкой по данной заявке превосходит прочностные характеристики добавки-прототипа.

В таблице 4 приведены данные по растворимости солей, используемых в качестве компонентов для добавки по данной заявке и прототипу [4]. Растворимость криолита, используемого при приготовлении добавки-прототипа, столь мала, что не позволяет повысить концентрацию добавки до 45-50%, а также создает большие трудности в процессе ее приготовления. Сульфаты, используемые в качестве компонентов для получения добавки по настоящей заявке, хорошо растворимы при комнатной температуре, что существенно снижает энергетические затраты на приготовление ускорителя схватывания.

Литература

1. Рамачандран С.В. Добавки в бетон. М.: Стройиздат. 1988.

2. Denki Kagaku Kogyo К.К. EP 1676820 A1, опубл. 28.04.05.

3. И.Н. Ахвердов. Физика бетона. М.: Стройиздат. 1981.

4. Справочник химика, том 2. М.: Химия. 1964.

Таблица 2
Влияние состава бесщелочного ускорителя схватывания на сохраняемость бетонной смеси
№№ по табл.1 В/Ц Дозировка, % от массы цемента по товарному продукту Осадка конуса, см
сразу через 5 мин через 10 мин
1.1∗ 0,60 12,0 18 6 1
1.2∗ 0,59 10,0 19 7 2
1.3 0,53 5,0 18 2 0
1.4 0,53 5,0 18 1 0
1.5 0,53 5,0 18 1 0
1.6 0,53 5,0 17 1 0
1.7 0,53 5,0 19 1 0
1.8 0,53 5,0 19 1 0
1.9 0,53 5,0 18 1 0
1.10 0,53 5,0 19 2 0
Таблица 3
Влияние состава бесщелочного ускорителя схватывания на кинетику твердения
№№ по табл.1 Прочность на сжатие, кгс/см2, в возрасте
3 ч 5 ч 1 сут 2 сут 7 сут 28 сут
1.1 5 25 140 171 250 291
1.2 6 31 144 176 264 302
1.3 11 42 183 206 301 340
1.5 11 44 176 206 298 345
1.7 13 46 173 209 296 339
1.8 12 44 179 201 292 336
Таблица 4
Растворимость солей, используемых как компоненты добавок-ускорителей схватывания
Наименование соли Температура воды
0°C 10°C 16°C 18°C 20°C 25°C 50°C 100°C
Криолит - - 0,035 - - 0,042 0,079
Сульфат кобальта - - - - 36,2 - - 38,5
Сульфат магния - - - 33,7 - - 50,0
Сульфат марганца - 60 - - - - - -
Сульфат бериллия 35,3 - - - - - - 85,9
Сульфат алюминия 31,2 33,5 - - 36,2 - 52,2 89,0
Сульфат железа (II) 7-ми водный 15,7 20,5 - - 26,5 - 48,6 -

1. Водорастворимый бесщелочной ускоритель схватывания для торкрет-бетона, содержащий сульфаты, соединения алюминия, комплексообразователь и воду, отличающийся тем, что в качестве соединений алюминия содержит стабилизированный органическим буферообразующим компонентом на основе кислоты с константой ионизации pKa=2÷4 основной сульфат алюминия, а в качестве комплексообразователя - многоатомные спирты HOCH2(СНОН)nCH2OH, где n=0÷4, пентаэритрит, замещенные спирты RCH2CH2OH, где R содержит элемент со свободной неподеленной парой электронов или смесь нескольких указанных продуктов, способных образовывать пяти- и шестичленные хелаты, при дополнительном введении водорастворимых сульфатов двухвалентных металлов при следующем соотношении, мас.%:

основной сульфат алюминия 20-40
сульфаты двухвалентных металлов 4-6
органический буферообразующий компонент 6-12
комплексообразователь 2-10
вода остальное

2. Ускоритель схватывания по п.1, отличающийся тем, что основной сульфат алюминия получают взаимодействием среднего сульфата алюминия и раствора алюмината в присутствии комплексообразователя и органического буферообразующего компонента.

3. Ускоритель схватывания по п.1, отличающийся тем, что в качестве водорастворимых сульфатов двухвалентных металлов содержит сульфаты железа, кобальта, хрома, марганца, магния, бериллия или смесь нескольких указанных продуктов.

4. Ускоритель схватывания по п.1, отличающийся тем, что его дозировка в торкрет-бетон составляет 1-5% от массы цемента.

5. Способ получения водорастворимого бесщелочного ускорителя схватывания для торкрет-бетона, включающий последовательное смешение указанных компонентов в заданном соотношении соответственно, отличающийся тем, что алюминат натрия предварительно смешивают с комплексообразователем, затем вводят органический буферообразующий компонент, после чего в полученной системе растворяют средний сульфат алюминия и далее к стабилизированному раствору основного сульфата алюминия добавляют сульфат двухвалентного металла.



 

Похожие патенты:

Изобретение относится к способу приготовления композиции добавки-ускорителя твердения посредством реакции растворимого в воде соединения кальция с растворимым в воде кремнистым соединением и к способу приготовления композиции добавки-ускорителя твердения посредством реакции соединения кальция с компонентом, содержащим диоксид кремния, в щелочной среде, в обоих случаях реакция растворимого в воде соединения кальция с растворимым в воде кремнистым соединением проводится в присутствии водного раствора, который содержит растворимый в воде гребенчатый полимер, подходящий в качестве пластифицирующей добавки для гидравлических вяжущих веществ.

Изобретение относится к промышленности строительным материалов, в частности к составам бетона, используемым в производстве бетонных и железобетонных изделий и конструкций.
Изобретение относится к составам бетонной смеси. Бетонная смесь содержит портландцемент, песок, щебень, арабиногалактан и воду, причем арабиногалактан в ней содержится в количестве 0,06-0,09 мас.%, при этом она дополнительно содержит нитрат натрия в качестве ускорителя твердения в количестве 0,17-0,20 мас.% при расчете на массу всех компонентов смеси.

Изобретение относится к цементной композиции на основе белита, сульфоалюмината и феррита кальция (BCSAF), содержащей BCSAF клинкер, который имеет следующий минералогический состав относительно общей массы клинкера: от 5 до 30%, предпочтительно от 10 до 20%, фазы на основе алюмоферрита кальция с общей формулой C2AxF(1-x), где X изменяется от 0,2 до 0,8; от 10 до 35% фазы на основе сульфоалюмината кальция; от 40 до 75% белита (C2S); от 0,01 до 10% суммарно одной или более вспомогательных фаз, выбранных из сульфатов кальция, сульфатов щелочных металлов, перовскита, алюминатов кальция, геленита, свободной извести и периклаза и/или стеклообразной фазы, и алканоламин, где алканоламин имеет указанную структурную формулу и содержится в количестве от 0,01 до 1% по массе.
Изобретение относится к теплоизоляционным строительным материалам и может быть использовано в качестве комплексной наноразмерной добавки в технологии пенобетона.
Изобретение относится к составу химической добавки для цементных бетонов и растворов и может быть использовано в технологии производства бетонов и строительных растворов.
Изобретение относится к промышленности строительных материалов. .
Изобретение относится к области производства строительных материалов и касается составов сырьевых смесей дня изготовления кирпича, который может быть использован для постройки малоэтажных зданий.

Изобретение относится к составу комплексной добавки для бетонной смеси и может найти применение при приготовлении бетонных смесей для монолитных и сборных бетонных и железобетонных конструкций.

Изобретение относится к области строительных материалов и может быть использовано для изготовления изделий в промышленном и гражданском строительстве, в частности строительстве зданий и сооружений, монолитном строительстве, изготовлении оснований дорожных одежд, плит и перекрытий, фундаментов и оснований, бордюрных камней.
Изобретение относится к строительству и ремонту автомобильных дорог и может быть использовано для устройства дорожных покрытий II-III технических категорий. Щебеночно-мастичная ЩМ смесь для строительства и ремонта дорожных покрытий, содержащая минеральный материал, дисперсно-армирующую добавку - резиновый термоэластопласт РТЭП, и дорожный битум, где битум модифицирован добавками «Азол 1003» и поверхностно-активным веществом EVOTHERM®J-1, при их следующем соотношении, масс.%: битум БНД 60/90 98,6-99,3, «Азол 1003» 0,3-0,7, поверхностно-активное вещество EVOTHERM®J-1 0,4-0,7, при следующем соотношении компонентов, масс.%: минеральный материал 93,50-94,20, дисперсно-армирующая добавка РТЭП 0,2-0,4, модифицированный битум БНД 60/90 5,6-6,1.

Изобретение относится к сополимеру и способу его получения, диспергирующему средству и способу его получения, а также к применению сополимера. Сополимер содержит: i) 3-40 мол.% изопренолполиэфирного производного структурного элемента α; ii) 3-40 мол.% винилоксиполиэфирного производного структурного элемента β; и iii) 35-93 мол.% кислотного структурного элемента γ.
Изобретение относится к области производства строительных материалов на основе фосфогипсового вяжущего. Технический результат заключается в повышении прочности гипсового кирпича.
Изобретение относится к промышленности строительных материалов, в частности к производству мелкозернистых бетонов. Сырьевая смесь для изготовления мелкозернистого бетона содержит, мас.%: портландцемент 26,0-28,0; зола от сжигания бурого или каменного угля 71,1-73,1; нарезанное на отрезки 25-50 мм капроновое волокно 0,2-0,4; метилсиликонат натрия или этилсиликонат натрия 0,5-0,7, при водоцементном отношении 0,45-0,5.
Изобретение относится к промышленности строительных материалов, в частности к производству бетонных стеновых блоков для малоэтажного строительства. Бетонная смесь включает, мас.%: портландцемент 23,0-25,0, керамзит фракции 10-20 мм 20,0-26,0, керамзитовый песок 20,0-24,0, мелкий кварцевый песок 5,6-7,4, нарезанное на отрезки 5-25 мм асбестовое волокно 0,2-0,3, этилсиликонат натрия 0,2-0,3, вода 23,0-25,0.
Изобретение относится к промышленности строительных материалов, в частности к производству бетонных стеновых блоков, которые могут быть использованы при возведении складских помещений, гаражей.
Изобретение относится к составам асфальтобетонных смесей и может быть использовано при производстве износостойких долговечных дорожных покрытий с регулируемыми эксплуатационно-технологическими свойствами.

Изобретение относится к строительным материалам и может быть использовано для нанесения огнезащитных покрытий на строительные конструкции. Состав огнезащитный в виде сухой смеси, затворяемой водой для нанесения покрытий, характеризуется тем, что содержит, мас.%: портландцемент 20,0-60,0, вспученный вермикулит 10,0-40,0, хризотиловый асбест 5,0-25,0, шамот 5,0-25,0, вспученный перлит 10,0-30,0, полифункциональный модификатор бетона 0,1-1,0, мелкодисперсный водорастворимый клей 2,0-8,0 и водоудерживающую добавку 0,1-3,0.
Изобретение относится к промышленности строительных материалов, в частности к производству бетонных стеновых блоков для малоэтажного строительства. Бетонная смесь включает, мас.%: портландцемент 26-28, вспученный перлитовый песок, измельченный до прохождения через сетку №014, 29,7-37,7, мелкий кварцевый песок 12-16, метилсиликонат натрия либо этилсиликонат натрия 0,2-0,3, вода 24-26.
Изобретение относится к способу приготовления асфальтобетона для дорожного строительства с использованием продукта утилизации нефтяных шламов в качестве добавки.
Изобретение относится к области строительных материалов, в частности к производству жаростойкого бетона на основе химических связующих. Композиция для изготовления жаростойкого бетона, включающая отработанный катализатор ИМ-2201, щебень, песок и H3PO4, отличающаяся тем, что она дополнительно содержит обожженный солевой алюминиевый шлак при температуре 1000°C с содержанием, мас.%: SiO2 - 4,75; Al2O3 - 77,3; Fe2O3 - 1,6; CaO - 2,57; MgO - 7,5; R2O - 5,13, при следующем соотношении компонентов, мас.%: отработанный катализатор ИМ-2201 10-15, щебень 33-40, песок 10-13, H3PO4 10-15, указанный солевой шлак 24-30. Технический результат - повышение прочности при сжатии и термостойкости. 4 табл.
Наверх