Адсорбент для осушки газов

Адсорбент для осушки газов, содержащий пористую матрицу и в порах матрицы активное влагопоглощающее гигроскопическое вещество из группы гидрофосфатов или дигидрофосфатов натрия или калия с размерами частиц 1-10 нм в количестве 40-100 вес.% в расчете на сухое вещество матрицы. В качестве пористой матрицы используют мезопористые силикаты из группы силикат МСМ-41, алюмосиликат, цирконосиликат или титаносиликат с размером мезопор 2-50 нм и общим объемом мезопор не менее 1-2 см3/г, полученные методом золь-гель синтеза или темплатного синтеза. Гидрофосфаты или дигидрофосфаты натрия или калия вводятся методом пропитки из 1 М водного раствора с последующей сушкой адсорбента на воздухе при 100°C в течение 2 часов. После насыщения водой адсорбент сохраняет текстуру сухого сыпучего материала. Изобретение позволяет увеличить емкость по воде. 1 з.п. ф-лы.

 

Изобретение относится к адсорбентам, используемым для осушки от воды газовых сред, включая воздух и технические газы.

Глубокая осушка воздуха и технических газов, т.е. удаление воды, используется во многих современных технологиях и разработка адсорбентов с высокой емкостью по воде представляет собой важнейшую техническую задачу

Известны оксидные (например, силикагель) и цеолитные (типа А, X. Y и др.) адсорбенты для удаления воды из воздуха и других газов и их смесей (Р. Айлер, Химия кремнезема, М.: Мир, 1982; Д. Брек, Цеолитовые молекулярные сита, М.: Мир, 1976). Они имеют ряд недостатков: низкая адсорбционная емкость по воде (не выше 20-30 вес.% в расчете на сухой адсорбент, т.е. не более 0,2-0,3 г H2O на 1 г адсорбента), медленная адсорбция и десорбция (регенерация адсорбента), высокие температуры, требующиеся для десорбции воды (обычно выше 300°C).

Известны адсорбенты, основанные на использовании пористых матриц, модифицированных добавками гигроскопических соединений (как правило, солей). Подобные сорбенты описаны в патенте DE4130035, B01D 53/60, опубл. 23.09.1993, публикациях (I.V. Ponomarenko et al., Microporous and Mesoporous Materials, 129 (2010) 243; J. Mrowiec-Bialon et al., Chem. Mater., 9 (1997) 2486; Yu.I. Aristov et al., React. Kinet. Catal., 592 (1996) 325; D.I. Kolokolov et al., J. Phys. Chem., C, 11233 (2008) 12853).

Наиболее близким к настоящему изобретению прототипом является композитный осушитель газов и жидкостей, содержащий пористую матрицу с открытой системой пор, отличающийся тем, что композитный осушитель содержит активное влагопоглощающее высокогигроскопичное вещество, помещенное в поры матрицы и способное к обратимым процессам гидратации - дегидратации, причем в качестве активного влагопоглощающего вещества используют сульфаты щелочных и щелочноземельных металлов, нитраты щелочных и щелочноземельных металлов, галогениды щелочных металлов, галогениды кальция, и их смеси, например сорбенты, содержащие хлорид кальция (RU 2169606, B01D 53/26, опубл.27.06.2001).

Недостатком прототипа является невысокая емкость по воде, не превышающая 0,45 г H2O на 1 г сухого адсорбента и недостаточно низкие температуры регенерации (около 200°C). Невысокая емкость данных адсорбентов объясняется невысокими величинами объема пор, характерными для оксида алюминия (0,3-0,5 см3/г) и силикагеля (0,5-0,8 см3/г). Кроме того, системы на основе хлорида кальция расплываются при полном насыщении или высоком содержании воды в газе (воздухе).

Техническим результатом настоящего изобретения является создание эффективного адсорбента с емкостью, превышающей 0,45 г/г, и температурами десорбции (регенерации) не выше 100°C, сохраняющего текстуру сухого сыпучего материала при полном насыщении водой или при высоком содержании воды в газе (воздухе).

Для достижения технического результата предлагается адсорбент для осушки газов, содержащий пористую матрицу и в порах матрицы активное влагопоглощающее гигроскопическое вещество, отличающийся тем, что в качестве пористой матрицы используют мезопористые силикаты из группы, включающей силикат МСМ-41, алюмосиликат, цирконосиликат или титаносиликат с размером мезопор 2-50 нм и общим объемом мезопор не менее 1-2 см3/г, полученные методом золь-гель синтеза или темплатного синтеза, в мезопоры которых методом пропитки из водного раствора с последующей сушкой адсорбента при 100°C в течение 2 часов введено активное влагопоглощающее гигроскопическое вещество из группы гидрофосфатов или дигидрофосфатов натрия или калия с размерами частиц 1-10 нм в количестве 40-100 вес.% в расчете на сухое вещество матрицы.

Поскольку известно, что температурные характеристики определяются размером частиц, то достижение высокой емкости и снижение температуры выделения (десорбции) воды обеспечивается наноразмерными (1-10 нм) частицами нанесенных солей, то есть имеет место ярко выраженный наноразмерный эффект.

В качестве высокопористой матрицы используют оксидные и смешанные оксидные системы с объемом пор 1-2 см3/г на основе оксидов кремния, циркония, алюминия и титана, полученные золь-гель методом или темплатным синтезом, а также углеродные материалы. При этом удельная поверхность данных систем составляет от 500 до 1500 м2/г. Важнейшим свойством пористой матрицы, полученной методом золь-гель синтеза или темплатного синтеза, является наличие и преобладание мезопор с диаметром 2-50 нм и отсутствие или незначительная доля микропор (<2 нм).

Количество активного влагопоглощающего гигроскопического вещества из группы гидрофосфатов или дигидрофосфатов натрия или калия с размерами частиц от 1-10 нм составляет 40-100 вес.% (в расчете на сухую пористую матрицу).

Матрица предварительно подвергается термической обработке при температурах 200-600°C, предпочтительно 200-350°С, в течение 1-5 час. Регенерация адсорбента с целью удаления адсорбированной воды осуществляется нагреванием в токе сухого воздуха или инертного газа при температурах 60-120°C.

Изобретение иллюстрируется следующими примерами.

Пример 1. Для приготовления адсорбента осушителя газов используют мезопористый силикат типа МСМ, приготовленный темплатным синтезом с использованием цетилтриметиламоний бромида в качестве темплата и предварительно прогретый в токе воздуха при 200°C 3 ч. Удельная поверхность по БЭТ 1023,9 м2/г, объем мезопор (диаметр пор ≤50 нм) 1,947 см3/г, объем микропор (диаметр пор ≤ 2 нм) 0,253 см2/г. Гидрофосфат натрия вводят в матрицу мезопористого силиката (10 г) из 1 М водного раствора методом пропитки матрицы по влагоемкости при 20°C в три приема. После нанесения 80 вес.% Na2HPO4 (8 г), адсорбент сушат на воздухе при 100°C в течение 2 часов. Емкость адсорбента по воде определяют в статической установке по поглощению паров воды при 20°C при относительной влажности 75% до постоянного веса, после чего взвешиванием определяют количество адсорбированной воды. Емкость составила 1,2 г H2O/г адсорбента. После насыщения водой адсорбент сохраняет текстуру сухого сыпучего материала.

Пример 2. Образец адсорбента готовят по примеру 1, за исключением того, что гидрофосфат натрия вводят в количестве 100% (10 г). Емкость составила 1,45 г H2O/г адсорбента. После насыщения водой адсорбент сохраняет текстуру сухого сыпучего материала.

Пример 3. Для приготовления адсорбента используют в качестве матрицы мезопористый цирконосиликат, приготовленный золь-гель методом и предварительно прогретый в токе воздуха при 200°C 3 ч. Удельная поверхность по БЭТ 875 м2/г, объем мезоропор 1,4 см3/г. Гидрофосфат натрия наносят на мезопористый цирконосиликат (10 г) из 1 М водного раствора методом пропитки матрицы по влагоемкости при 20°C в три приема. После нанесения 80 вес.% гидрофосфата натрия (8 г), адсорбент сушат на воздухе при 100°C в течение 2 часов. Емкость адсорбента по воде определяют как в примере 1. Емкость составила 1,15 г H2O/г адсорбента. После насыщения водой адсорбент сохраняет текстуру сухого сыпучего материала.

Пример 4. Для приготовления адсорбента используют в качестве матрицы мезопористый алюмосиликат, приготовленный золь-гель методом и предварительно прогретый в токе воздуха при 200°C 3 ч. Удельная поверхность по БЭТ 987 м2/г, объем мезоропор 1,3 см3/г. Гидрофосфат натрия наносят на мезопористый алюмосиликат (10 г) из 1 М водного раствора методом пропитки матрицы по влагоемкости при 20°C в три приема. После нанесения 80 вес.% гидрофосфата натрия (8 г), адсорбент сушат на воздухе при 100°C в течение 2 часов. Емкость адсорбента по воде определяют как в примере 1. Емкость составила 1,15 г H2O/г адсорбента. После насыщения водой адсорбент сохраняет текстуру сухого сыпучего материала.

Пример 5. Для приготовления адсорбента используют в качестве матрицы мезопористый титаносиликат, приготовленный золь-гель методом и предварительно прогретый в токе воздуха при 200°C 3 ч. Удельная поверхность по БЭТ 980 м2/г, объем мезоропор 1,25 см3/г. Гидрофосфат натрия наносят на мезопористый титаносиликат (10 г) из 1 М водного раствора методом пропитки матрицы по влагоемкости при 20°C в три приема. После нанесения 80 вес.% гидрофосфата (8 г), адсорбент сушат на воздухе при 100°C в течение 2 часов. Емкость адсорбента по воде определяют как в примере 1. Емкость составила 1,05 г Н2О/г адсорбента. После насыщения водой адсорбент сохраняет текстуру сухого сыпучего материала.

Пример 6. Для приготовления адсорбента используют в качестве матрицы мезопористый силикат по примеру 1. Дигидрофосфат натрия наносят на мезопористый силикат (10 г) из 1 М водного раствора методом пропитки по влагоемкости при 20°C в три приема. После нанесения 80 вес.% NaH2PO4 (8 г), адсорбент сушат на воздухе при 100°C в течение 2 часов. Емкость адсорбента по воде определяют в статической установке по поглощению паров воды при 20°C до постоянного веса, после чего взвешиванием определяют количество адсорбированной воды. Емкость составила 1,3 г H2O/г адсорбента.

После насыщения водой адсорбент сохраняет текстуру сухого сыпучего материала.

Пример 7. Для приготовления адсорбента используют в качестве матрицы мезопористый силикат по примеру 1. Гидрофосфат калия наносят на мезопористый силикат (10 г) из 1 М водного раствора методом пропитки матрицы по влагоемкости при 20°C в три приема. После нанесения 80 вес.% K2HPO4 (8 г), адсорбент сушат на воздухе при 100°C в течение 2 часов. Емкость адсорбента по воде определяют в статической установке по поглощению паров воды при 20°C до постоянного веса, после чего взвешиванием определяют количество адсорбированной воды. Емкость составила 1,2 г H2O/г адсорбента. После насыщения водой адсорбент сохраняет текстуру сухого сыпучего материала.

Пример 8. Для приготовления адсорбента используют в качестве матрицы мезопористый силикат по примеру 1. Дигидрофосфат калия наносят на мезопористый силикат (10 г) из 1 М водного раствора методом пропитки матрицы по влагоемкости при 20°C в три приема. После нанесения 80 вес.% KH2PO4 (8 г), адсорбент сушат на воздухе при 100°C в течение 2 часов. Емкость адсорбента по воде определяют в статической установке по поглощению паров воды при 20°C до постоянного веса, после чего взвешиванием определяют количество адсорбированной воды. Емкость составила 1,1 г Н2О/г адсорбента. После насыщения водой адсорбент сохраняет текстуру сухого сыпучего материала.

Пример 9. Образец готовят по примеру 1, за исключением того, что количество гидрофосфата натрия, вводимого в поры матрицы, составляет 60% (6 г), а относительная влажность составила 86%. Емкость составила 1,4 г H2O/г адсорбента. После насыщения водой адсорбент сохраняет текстуру сухого сыпучего материала.

Пример 10. Образец готовят по примеру 1, за исключением того, что количество гидрофосфата натрия, вводимого в поры матрицы, составляет 60% (6 г), а относительная влажность составила 24%. Емкость составила 0,4 г H2O/г адсорбента. После насыщения водой адсорбент сохраняет текстуру сухого сыпучего материала.

Пример 11. Образец готовят по примеру 1, за исключением того, что количество гидрофосфата натрия, вводимого в поры матрицы, составляет 60% (6 г), а относительная влажность составила 56%. Емкость составила 0,8 г H2O/г адсорбента. После насыщения водой адсорбент сохраняет текстуру сухого сыпучего материала.

Пример 12. Образец готовят по примеру 1, за исключением того, что в качестве высокопористой матрицы используют активированный уголь, а количество гидрофосфата натрия, вводимого в поры матрицы, составляет 100% (10 г). Емкость составила 1,2 г H2O/г адсорбента. После насыщения водой адсорбент сохраняет текстуру сухого сыпучего материала.

Пример 13. Образец готовят по примеру 1, за исключением того, что в качестве высокопористой матрицы используют активированный уголь, а в качестве гигроскопичного вещества - дигидрофосфат натрия. Количество дигидрофосфата натрия, вводимого в поры матрицы, составляет 100% (10 г). Емкость составила 1,1 г H2O/г адсорбента. После насыщения водой адсорбент сохраняет текстуру сухого сыпучего материала.

Пример 14. Образец готовят по примеру 1, за исключением того, что в качестве высокопористой матрицы используют активированный уголь, а в качестве гигроскопичного вещества - гидрофосфат калия. Количество гидрофосфата калия, вводимого в поры матрицы, составляет 100% (10 г).

Емкость составила 1,05 г H2O/г адсорбента. После насыщения водой адсорбент сохраняет текстуру сухого сыпучего материала.

Пример 15. Образец готовят по примеру 1, за исключением того, что в качестве высокопористой матрицы используют активированный уголь, а в качестве гигроскопичного вещества - дигидрофосфат калия. Количество дигидрофосфата калия, вводимого в поры матрицы, составляет 100% (10 г). Емкость составила 1 г H2O/г адсорбента. После насыщения водой адсорбент сохраняет текстуру сухого сыпучего материала.

Пример 16. В качестве матрицы адсорбента - осушителя технологических газов (азот, гелий, аргон, кислород, водород) используют мезопористый силикат типа МСМ-41, предварительно прогретый в токе воздуха при 200°C 3 ч. Удельная поверхность по БЭТ 1023,9 м2/г, объем мезоропор (диаметр пор<50 нм) 1,947 см3/г, объем микропор (диаметр пор<2 нм) 0,253 см3/г. Гидрофосфат натрия наносят на мезопористый силикат (10 г) из 1 М водного раствора методом пропитки матрицы по влагоемкости при 20°C в три приема. После нанесения 80 вес.% гидрофосфата натрия (8 г), адсорбент сушат на воздухе при 100°C в течение 2 часов. Емкость адсорбента по воде определяют в проточной установке по поглощению паров воды при 20°C при пропускании технологического газа, содержащего до 1 вес.% воды, через адсорбент до его насыщения (определяется по достижению постоянного веса), после чего взвешиванием определяют количество адсорбированной воды. Емкость составила 0,95 г Н2О/г адсорбента. После насыщения водой адсорбент сохраняет текстуру сухого сыпучего материала.

Пример 17. Регенерацию адсорбента по примеру 1 после насыщения парами воды проводят продувкой адсорбента сухим воздухом или инертным газом при температуре 100°C в течение 1 ч.

Пример 18. Регенерацию адсорбента по примеру 1 после насыщения парами воды проводят продувкой адсорбента сухим воздухом или инертным газом при температуре 60°C в течение 2 ч.

Таким образом, предлагаемые в настоящем изобретении адсорбенты воды (осушители) характеризуются более высокой емкостью по воде (0,45-1,45 г H2O/г), чем известные системы, включая прототип, более низкой температурой десорбции воды для регенерации адсорбента 60-100°C и большей устойчивостью к расплыванию после насыщения адсорбционной емкости водой, сохраняя текстуру сухого сыпучего вещества.

1. Адсорбент для осушки газов, содержащий пористую матрицу и в порах матрицы активное влагопоглощающее гигроскопическое вещество, отличающийся тем, что в качестве пористой матрицы используют мезопористые силикаты с размером мезопор 2-50 нм из группы, включающей силикат типа МСМ, алюмосиликат, цирконосиликат или титаносиликат с объемом мезопор 1-2 см3/г, полученные методом золь-гель синтеза или темплатного синтеза, в мезопоры которых введено методом пропитки из водного раствора с последующей сушкой адсорбента при 100°C в течение 2 часов активное влагопоглощающее гигроскопическое вещество из группы гидрофосфатов или дигидрофосфатов натрия или калия с размерами частиц 1-10 нм в количестве 40-100 вес.% в расчете на сухое вещество матрицы.

2. Адсорбент по п.1, который регенерируют в токе сухого воздуха или инертного газа нагреванием при 60-100°C.



 

Похожие патенты:

Способ относится к очистке природного газа с помощью одного или большего числа адсорберов и к регенерации адсорберов. Способ включает прохождение сырья, содержащего природный газ, через первый адсорбер для получения продукта, содержащего очищенный природный газ; регенерацию второго адсорбера на стадии нагревания, и регенерацию второго адсорбера на стадии охлаждения.

Изобретение предназначено для разделения газожидкостных смесей и может быть использовано на объектах газовой, нефтяной и нефтехимической промышленности. Газожидкостный сепаратор содержит корпус с патрубком входа газожидкостной смеси, патрубки выхода газа и выхода жидкости.

Изобретение относится к области теплотехники. Устройство для компримирования и осушки газа содержит многоступенчатый компрессор со ступенью низкого давления, ступенью высокого давления и нагнетательным патрубком и адсорбционный осушитель с зоной осушения и зоной регенерации, причем между ступенью низкого давления и ступенью высокого давления помещен промежуточный холодильник, и при этом устройство дополнительно снабжено теплообменником, имеющим главную камеру с входной частью и выходной частью для первой первичной текучей среды, а концы трубок теплообменника соединены с отдельной входной камерой и выходной камерой для каждого трубного пучка; и при этом первый трубный пучок образует охлаждающий контур промежуточного холодильника, служащий для разогрева газа из ступени высокого давления для регенерации адсорбционного осушителя.

Изобретение относится к химической промышленности и может быть использовано для осушки газа, в частности сжатого. Устройство содержит аппарат осушки, корпус которого у первого в осевом направлении торца ротора разделен на по меньшей мере три секции для пропускания трех газовых потоков: основного, регенерационного и потока охлаждения.

Изобретение относится к технике, предназначенной для осаждения и удаления влаги из сжатых газов. Резервуар для осаждения и удаления влаги представляет собой корпус, к обечайке которого прикреплены сваркой ряд вертикальных гофрированных оцинкованных пластин с наклонными перегородками и который имеет дренажную трубу.

Изобретение относится к устройству и способу холодной осушки газов. Устройство для холодной осушки газа содержит теплообменник, первая часть которого представляет собой испаритель контура охлаждения, а вторая часть предназначена для охлаждения газа и конденсации паров воды из этого газа, и контур охлаждения, заполненный хладагентом и содержащий компрессор, конденсатор, первое средство расширения, байпасный трубопровод, на котором установлено второе средство расширения и регулирующий клапан, который регулируют с помощью блока управления в зависимости от сигналов, поступающих от измерительных элементов.

Изобретение может быть использовано в химической промышленности. Осушаемый газ (I) смешивают с газом регенерации (II) и подают в сепаратор газа (1) для отделения капельной влаги и механических примесей.

Изобретение относится к области добычи природного газа, в частности к ведению процесса осушки газа с использованием автоматизированных систем управления технологическими процессами (АСУ ТП) установок комплексной подготовки газа (УКПГ) газоконденсатных месторождений Крайнего Севера (газодобывающих комплексов).

Изобретение относится к подготовке природного и попутного нефтяного газа. Способ и устройство для осушки и очистки природных газов включает смешение с рециркулируемым газом регенерации, сепарацию от капельной жидкости и механических примесей, двухступенчатую адсорбцию паров тяжелых углеводородов и воды на синтетическом углеродном адсорбенте и адсорбенте композитного типа, соответственно, при одновременном косвенном охлаждении адсорбентов хладоагентом до температуры адсорбции, но не выше 50°С и не ниже температуры замерзания воды или температуры гидратообразования, регенерацию адсорбентов при пониженном давлении путем косвенного нагрева адсорбентов теплоносителем до температуры регенерации 80-150°С, и отдува десорбирующихся паров очищенным газом, подаваемым в количестве от 0,1% до 2,0% к расходу очищаемого газа, рециркуляцию газа регенерации с помощью жидкостно-кольцевого насоса с использованием конденсата водяного пара в качестве рабочей жидкости, а регенерированные адсорбенты охлаждают путем косвенного охлаждения хладоагентом до температуры адсорбции.

Изобретение относится к процессам выделения метанола из воды и может быть использовано при подготовке природного газа к переработке с целью предотвращения кристаллогидратов.

Изобретение относится к газовой промышленности и может быть использовано для промысловой регенерации насыщенного раствора триэтиленгликоля, который используют в качестве абсорбента для извлечения водяных паров из газа в установках осушки природных газов. Способ регенерации триэтиленгликоля включает поглощение им влаги из газового потока в абсорбере, отгонку воды из насыщенного влагой триэтиленгликоля в выпарной колонне, удаление из него углеводородов путем экстрагирования абсорбента водой и дополнительной обработкой коагулянтами и флокулянтами, причем в качестве коагулянта применяют гидроксохлорид алюминия, или сульфат алюминия, или оксид алюминия, последующий отстой водной смеси без подогрева в течение нескольких суток до полного расслоения, слив очищенного слоя водно-гликолевого раствора, его фильтрацию и направление на термическую регенерацию путем добавления в поток циркулирующего абсорбента. Изобретение обеспечивает повышение эффективности очистки триэтиленгликоля, сокращение производственных затрат и улучшение показателей экологической безопасности. 1 з.п. ф-лы, 1 ил., 1 табл., 7 пр.

Изобретение относится к технике подготовки углеводородного газа к переработке или транспорту. Установка подготовки углеводородного газа содержит соединенные трубопроводами компрессорную станцию, холодильник газа и сепаратор отделения газа от жидкости. Сепаратор снабжен выходом жидкости и выходом газа. Выход газа соединен трубопроводом с блоком адсорбционной осушки. Выход компрессорной станции дополнительно соединен трубопроводом, оснащенным регулирующей арматурой, с трубопроводом, соединяющим выход газа из сепаратора отделения газа от жидкости с блоком адсорбционной осушки. Регулирующая арматура обеспечивает регулировку расхода потока. Изобретение направлено на повышение надежности процесса подготовки газа, а также увеличение срока службы адсорбента при снижении капитальных и эксплуатационных затрат. 1 ил.

Изобретение относится к методу определения доли адсорбированного вещества, которое содержится в формованном теле, грануляте или порошке из цеолита, цеолитного соединения или силикагеля в качестве адсорбирующего материала, а также к соответствующему устройству и применению устройства для определения или мониторинга степени насыщения адсорбирующего материала, заложенного на хранение в емкость. Изобретение заключается в том, что в случае, когда адсорбирующий материал представлен в форме формованного тела, два электрода с удалением друг от друга размещаются на поверхности формованного тела и/или прочно вставляются в формованное тело, а в случае, когда адсорбирующий материал представлен в форме порошка или гранулята, соответствующее формованное тело из такого же материала и на длительное время вводится в порошок или гранулят, при этом электроды нагружаются переменным током, в результате чего определяется электрическая характеристика и исходя из электрической характеристики определяется степень насыщения адсорбирующего материала. Изобретение обеспечивает эффективное определение степени насыщения адсорбирующего материала. 4 н. и 12 з.п. ф-лы, 11 ил.

Настоящее изобретение относится к способу промысловой регенерации триэтиленгликоля (ТЭГ) выпариванием воды из основного объема влагосодержащего ТЭГ и удалением попутно накопленных этим ТЭГом примесей и воды из остального, специально изъятого из процесса осушки газа объема ТЭГ, экстрагированием примесей дополнительно добавленной водой при интенсивном перемешивании этой смеси с последующим отстаиванием, сливом отстоявшегося из смеси ТЭГ, фильтрованием и регулируемым дозированным возвращением этого, слитого после отстаивания, ТЭГ в основной объем, подаваемый на выпаривание воды. При этом перед стадией экстрагирования примесей в специально изъятый из оборота объем ТЭГ вводят не менее чем полуторакратный объем смеси воды и циклогексанона в объемном соотношении их, как два к одному соответственно. Способ позволяет эффективно и экономично отделять примеси при отстаивании регенерируемого ТЭГ с получением практически обезвоженного абсорбента для его возврата в процесс осушки природного газа. 1 ил., 1 табл.

Группа изобретений относится к области автомобильного транспорта, в частности к пневматическим тормозным системам транспортных средств. Влагоотделительный патрон содержит пружинную крышку и несущий элемент. Внутри объема патрона расположена наполненная сорбентом-осушителем камера сорбент-осушителя. Пружинная крышка и несущий элемент выполнены в виде закрытых с одной стороны цилиндров. На открытых концах пружинной крышки и несущего элемента расположено средство или средства для установления защелкивающегося соединения, посредством которого соединяется пружинная крышка с несущим элементом. Средства для установления защелкивающегося соединения на пружинной крышке выполнены с возможностью схватывания другими средствами для установления защелкивающегося соединения на несущем элементе с двух сторон, вертикально к осевому направлению. Устройство подготовки сжатого воздуха транспортного средства грузового автомобиля содержит влагоотделительный патрон. Достигается упрощение конструкции влагоотделительного патрона. 2 н. и 4 з.п. ф-лы, 3 ил.

Изобретение относится к нефтегазовой отрасли и может быть использовано при технологических операциях в процессе добычи и транспортирования природного и нефтяного газов. Способ осушки газа заключается в попеременном пропускании осушаемого газа через адсорберы, один из которых используют в режиме осушки, а другой - в режиме регенерации, с отбором и нагревом части осушенного газа для регенерации адсорбента, при этом газ после регенерации адсорберов направляют в первичный охладитель газа для охлаждения и удаления первичного конденсата, после чего направляют в холодильник для дальнейшего понижения температуры и выделения вторичного конденсата, затем осушенный и охлажденный газ подают на вход компрессора, где поднимают его давление до величины не ниже значения входного давления осушаемого газа, предпочтительно выше, и далее газ направляют в ресивер и на вход блока осушки. Блок осушки газа содержит входной трубопровод, два адсорбера с входными и выходными трубопроводами, соединенными последовательно с теплообменником для первичного охлаждения газа, холодильником, конденсатосборником, компрессором и ресивером, клапаны с системой управления, обеспечивающие переключение адсорберов с режима осушки в режим регенерации, и дроссель с трубопроводом подачи осушенного газа в регенерируемый адсорбер. Изобретение обеспечивает эффективную осушку газа с помощью блока осушки с замкнутым циклом регенерации и позволяет исключить выбросы газа в атмосферу. 2 н. и 4 з.п. ф - лы, 2 ил.

Изобретение относится к нефтегазовой отрасли и может быть использовано при технологических операциях в процессе добычи и транспортирования природного и нефтяного газов. Способ осушки газа заключается в попеременном пропускании осушаемого газа через адсорберы, которые работают в режиме осушки и в режиме регенерации, при этом для осушки основного расхода газа используют основные адсорберы, а для осушки газа регенерации используют вспомогательные адсорберы, при этом газ после регенерации основных адсорберов направляют в первичный охладитель газа для охлаждения и удаления первичного конденсата, после чего подают на вход компрессора, где поднимают его давление, далее газ направляют в ресивер, после понижают давление газа и направляют в один из вспомогательных адсорберов для окончательной осушки, после чего газ направляют на вход блока осушки, при этом, по мере увлажнения адсорбента в одном из вспомогательных адсорберов, параллельно с процессом регенерации основного адсорбера проводят процесс регенерации вспомогательного адсорбера, для чего часть сухого газа регенерации направляют во второй вспомогательный адсорбер, находящийся в режиме регенерации и далее в атмосферу. Блок осушки газа содержит входной трубопровод, два адсорбера с трубопроводами, клапаны с системой управления, дроссель, компрессор, ресивер и блок регенерации, содержащий вспомогательные адсорберы, при этом выходные трубопроводы основных адсорберов соединены с теплообменником для первичного охлаждения газа, компрессором и ресивером. Изобретение обеспечивает эффективную осушку газа и позволяет исключить выбросы газа в атмосферу. 2 н. и 4 з.п. ф-лы, 3 ил.

Изобретение относится к способу сушки природного газа или промышленного газа, содержащего кислые газообразные компоненты, в котором после сушки газа осуществляют удаление кислых газообразных компонентов из осушенного газа. Один и тот же физический растворитель используют для обеих стадий способа, как для сушки газа, так и для удаления кислых газов. Осушаемый газ приводят в контакт с физическим растворителем, поглощающим большую часть воды, содержащейся в газе. Физический растворитель, который при этом обогащается водой, направляют в устройство для регенерации растворителя, в котором растворитель нагревают. В устройстве для регенерации растворителя воду, содержащуюся в растворителе, отделяют от растворителя в противотоке с помощью части потока кислого газа, извлекаемого из осушенного полезного газа в ходе поглощения кислого газа, причем кислый газ снова высвобождают в устройстве для регенерации растворителя от кислых газов, отделяя от растворителя, и выпускают из устройства для регенерации растворителя. Изобретение также относится к установке, с помощью которой можно осуществить указанный способ. Изобретение обеспечивает эффективную осушку газа. 2 н. и 18 з.п. ф-лы, 1 ил.

Изобретение относится к способу осушки газов. Способ включает пропускание газа через две или более камеры охлаждения, соединенные последовательно, причем в каждую из камер подают поток растворителя, который удаляет воду из газа, далее подают смешанный поток, состоящий из газа и растворителя, в каждую из этих камер охлаждения и после совместного охлаждения, его разделяют с помощью газожидкостного сепаратора на поток газа с пониженным содержанием воды и поток обогащенного водой растворителя, постепенно снижают содержание воды в газе от первой в направлении потока камеры охлаждения к последней, причем каждый поток растворителя, отделенный и обогащенный водой, либо используют в качестве питающего потока для камеры охлаждения выше по потоку, или возвращают непосредственно в блок регенерации для освобождения от воды. При этом растворитель ниже по потоку от камеры охлаждения направляют из газожидкостных сепараторов в блок регенерации, рециркулируют и подают выше по потоку от последней камеры охлаждения в смесь газа и растворителя. Регенерированный поток растворителя после блока регенерации подают в поток газа последней в направлении потока камеры охлаждения, поток растворителя, отделенный с помощью сепаратора ниже по потоку, подают во все другие камеры охлаждения выше по потоку. 6 з.п. ф-лы, 2 ил.

Изобретение относится к устройству и способу для осушки газа охлаждением. Устройство состоит из замкнутого контура охлаждения, содержащего хладагент, циркулирующий в контуре с помощью компрессора, и последовательно расположенные в направлении движения потока хладагента конденсатор, соединенный с выходом компрессора, и средство расширения, за которым размещен испаритель, соединенный с входом компрессора, при этом испаритель образует первую часть теплообменника, содержащего также вторую часть, через которую направляют осушаемый газ, кроме того, в контуре охлаждения имеется обводной трубопровод, который может быть перекрыт перепускным клапаном с помощью рабочего элемента клапана, который удерживается в закрытом положении под действием усилия пружинного элемента, и с помощью чувствительного к давлению элемента, который воздействует на рабочий элемент клапана, и посредством трубки управляющего давления подвержен воздействию локального управляющего давления в контуре охлаждения, причем трубка управляющего давления подключена к контуру охлаждения и подсоединена к замкнутому контуру охлаждения выше по ходу движения потока от выхода испарителя. При работе устройства в режиме с нагрузкой перепускной клапан открывается, преодолевая действие силы упругости пружинного элемента, если давление в контуре охлаждения в точке выше по ходу движения потока от выхода испарителя превышает предварительно заданную величину. Изобретение обеспечивает эффективную осушку газа. 2 н. и 16 з. п. ф - лы, 10 ил.
Наверх