Способ получения композиционных покрытий на сплавах вентильных металлов

Изобретение относится к области обработки поверхности изделий и может быть использовано в машиностроении и других отраслях промышленности. Способ включает микродуговое оксидирование изделия в щелочном электролите с последующим импрегнированием оксидированной поверхности полимером, оплавление верхнего слоя полимера и охлаждение, при этом микродуговое оксидирование проводят в анодно-катодном режиме при значениях плотностей анодного и катодного токов 0,5-30 А/дм2 и соотношении между ними Iк/Iа=1,1-1,2, а в качестве полимера используют сверхвысокомолекулярный полиэтилен. Технический результат: повышение износостойкости и снижение коэффициента трения за счет создания однородной структуры и высокого качества поверхности. 3 з.п. ф-лы, 2 табл., 6 пр.

 

Изобретение относится к области обработки поверхности изделий и может быть использовано в машиностроении и других отраслях промышленности.

Известен способ микродугового оксидирования (МДО) изделий из вентильных металлов в щелочных электролитах (RU 2046157, 1992).

Известен также способ получения покрытий на изделиях из металлов и сплавов, включающий анодно-катодное микродуговое оксидирование в щелочном электролите на основе жидкого стекла (RU 2077612, 1993).

Недостатком известных способов является то, что технологический процесс получения покрытия происходит при воздействии анодных и катодных импульсов сложной формы, включающих различные длительности с изменяющейся плотностью тока в пределах одного импульса и три стадии обработки: микродуговое оксидирование в двух электролитах, а также трудоемкую и дорогостоящую операцию шлифования для удаления внешнего рыхлого слоя и обеспечения требуемой шероховатости поверхности изделия. Шлифование, особенно при обработке изделий сложной геометрической формы, в ряде случаев произвести трудно или невозможно.

Наиболее близким к предлагаемому техническому решению по технической сущности и достигаемому результату является способ получения композиционных покрытий на изделиях из алюминия и его сплавов, включающий электролитическое оксидирование с последующим нанесением полимерной пленки путем механического натирания (RU 2068037, 1993).

Недостатком данного способа является то, что технологический процесс получения покрытия включает в себя электролитическое оксидирование в гальваностатическом режиме постоянным током, что не позволяет получить оксидированное покрытие с высокими механическими характеристиками и ограничивает промышленное применение данного способа. Кроме того, способом механического натирания полимерной фторопластовой пленки не обеспечивается достаточной толщины ее при дальнейшем механическом изнашивании в узлах трения.

Задачей настоящего изобретения является разработка способа получения композиционных покрытий на сплавах вентильных металлов, обеспечивающего повышение качества обработки поверхности.

Поставленная задача достигается тем, что в способе получения композиционных покрытий на сплавах вентильных металлов, включающем микродуговое оксидирование изделия в щелочном электролите с последующим импрегнированием оксидированной поверхности полимерной пленкой, оплавлением верхнего слоя полимера и охлаждением, согласно изобретению, микродуговое оксидирование проводят в анодно-катодном режиме при значениях плотностей анодного и катодного токов 0,5-30 А/дм2 и соотношении между ними Iк/Iа=1.1-1.2, а в качестве импрегната используют сверхвысокомолекулярный полиэтилен. В частных случаях выполнения изобретения:

• импрегнирование сверхвысокомолекулярным полиэтиленом осуществляют шликерным способом,

• импрегнирование сверхвысокомолекулярным полиэтиленом осуществляют плазменным напылением,

• импрегнирование сверхвысокомолекулярным полиэтиленом осуществляют пневматическим распылением в кислородно-ацетиленовом пламени.

Достигаемый технический результат заключается в повышении износостойкости и снижении коэффициента трения за счет создания однородной структуры, а также в упрощении технологии за счет исключения операции дополнительного шлифования изделий.

Способ получения композиционных покрытий осуществляют следующим образом.

Изделие из алюминиевого сплава помещают в ванну из нержавеющей стали с электролитом из слабощелочного водного раствора. Подводят электрический ток к электродам, один из которых анод (на нем закреплено изделие), другой - катод - поверхность ванны. При взаимодействии электрического тока, электролита и материала обрабатываемого изделия происходит процесс анодно-катодного микродугового оксидирования и окисление его поверхности с образованием оксидного покрытия. В процессе оксидирования температура электролита поддерживается постоянной за счет охлаждения проточной водой через рубашку охлаждения ванны. Перемешивание раствора производится барботированием сжатым воздухом при помощи компрессора. После завершения процесса оксидирования, изделие извлекают из ванны, промывают, сушат. Затем производят процесс импрегнирования (нанесения) сверхвысокомолекулярного полиэтилена (СВМПЭ) в виде порошка с размером частиц - 40-50 мкм на оксидированную поверхность одним из методов: либо шликерным, либо путем плазменного напыления, либо с использованием кислородно-ацетиленового пламени. Затем окончательно оплавляют верхний слой полимера до пленкообразования (спекания) и охлаждают при комнатной температуре. Оптимально полезная толщина наполняемого слоя СВМПЭ для узлов трения не более 50-70 мкм, так как при большей толщине этого слоя исключается участие твердой подложки из МДО-покрытия в процессе трения.

Анодно-катодное микродуговое оксидирование в щелочном электролите позволяет получить на изделии из алюминиевого сплава оксидированное покрытие с высокими механическими характеристиками - микротвердостью 16-25 ГПа, износостойкостью на уровне износостойкости твердых карбидов металлов. Заявленный диапазон плотностей анодного и катодного токов 0,5 - 30 А/дм2 обусловлен тем, что при более высоких плотностях токов (>30А/дм2) выделяется слишком большая мощность на поверхности изделия (электролит может вскипеть), а на поверхности противоэлектрода (ванны) могут образоваться продукты окисления, которые быстро ухудшают качество раствора электролита. При плотностях токов, ниже заявленных (<0,5 А/дм2), необходимо слишком длительное время выхода на режим микродугового оксидирования, что значительно удорожает процесс оксидирования. Выбранное соотношение катодного и анодного токов Iк/Iа=1.1-1.2 обусловливает получение необходимой толщины покрытия микродугового оксидирования (70-120 мкм), достаточной для дальнейшего формирования композиционного покрытия.

При импрегнировании с использованием шликерного способа предварительно готовят шликер, состоящий из порошка СВМПЭ и глицерина. Для этого в необходимое количество порошка СВМПЭ добавляют глицерин до образования сметанообразной суспензии. После чего данную смесь шпателем или лопаткой равномерным слоем наносят на поверхность изделия, предварительно обработанную методом микродугового оксидирования. Затем изделие помещают в предварительно разогретую до температуры 240-250°C печь, выдерживают до полного расплавления и пленкообразования (спекания) полимерного слоя, после чего изделие выставляют на воздух, где происходит охлаждение и полимеризация полимерного слоя при комнатной температуре. Такой способ импрегнирования хорошо подходит для изделий, в которых необходимо выполнить композиционное покрытие на отдельных участках поверхности.

При импрегнировании с использованием плазменного напыления, порошок СВМПЭ вводят в струю низкотемпературной плазмы в соответствующем месте плазменной горелки так, чтобы обеспечивался нагрев подлетающего к изделию порошка полимера до температуры, при которой происходит его активация, плавление и полимеризация, но исключается сгорание в струе плазмы. Подобранные наиболее оптимальные параметры плазменного напыления порошка СВМПЭ следующие: плазмообразующий газ - аргон, напряжение дуги - 20-25B, рабочий ток - 350A, расстояние до изделия - 100 мм, расстояние от изделия до места ввода порошка - 120 мм.

При импрегнировании порошка СВМПЭ с использованием кислородно-ацетиленового пламени путем пневматического распыления его наносят на предварительно нагретое до температуры 300-320°C изделие с последующей активацией и плавлением кислородно-ацетиленовым пламенем, и последующим затем охлаждением полимерного слоя при комнатной температуре.

Повышение износостойкости и антифрикционности получаемых композиционных покрытий достигается за счет синергетического действия твердой основы МДО-покрытия, формируемого анодно-катодным методом при плотностях анодного и катодного токов 0,5-30 А/дм2 и соотношении между ними Iк/Iа=1.1-1.2, и более мягкого сверхвысокомолекулярного полиэтилена, импрегнированного в поверхность МДО-покрытия и обладающего высокими антифрикционными свойствами (см. табл.1).

Таблица 1
Полимер Плотность Твердость Износостойкость по кварцевому песку Коэффициент трения
кг/м3 МПа мин/мм3
СВМПЭ 934 40 18,40 0,08
СВМПЭ+MoS2 1150 55 31,60 -
ПЭНД (ПТР=0,3 г/10 мин) 950 55 10,50 0,10
ПЭВД 900 28 2,79 0,27
Полипропилен 850 51 2,08 0,35
Фторопласт-4 2130 38 6,36 0,05
Фторопласт-3 2160 130 5,46 -
Полистирол 1040 175 0,93 0,45
Полиметил-метакрилат 1170 181 1,30 0,55
Полиамидная смола 1080 109 12,90 0,22
Капролон 1130 180 3,38 0,23

Ниже приведены примеры выполнения образцов.

Пример №1. Образцы подготавливались следующим образом. Образцы типа «колодка», размером 10×10×10 мм, из алюминиевого сплава Д16 погружались в ванну со слабощелочным электролитом на основе KOH (2 г/л) с добавлением жидкого стекла (8 г/л) и гексаметафосфата натрия (2 г/л). Процесс велся в анодно-катодном режиме при напряжении 610-650 B на аноде и 190-290 B на катоде в течение 25 минут, при этом плотность тока не превышала 30 А/дм2, соотношение токов Iк/Iа=1.1. После завершения процесса оксидирования образцы извлекали из ванны, промывали, сушили при комнатной температуре. Таким образом, в результате микродуговой обработки образцов толщина МДО-покрытий составила 60-70 мкм. Затем на обезжиренную поверхность образцов наносили сверхвысокомолекулярный полиэтилен в виде порошка шликерным способом. После чего образец помещался в предварительно разогретую печь до температуры 240-245°C. При достижении температуры плавления СВМПЭ равномерно растекался по поверхности, заполняя все поры и микронеровности. Образцы выдерживались в печи до полного расплавления и пленкообразования (спекания) полимерного слоя и затем выставлялись на воздух, где происходила полимеризация полимерного слоя при комнатной температуре. Толщина полимерного слоя составила 50-60 мкм.

Пример №2. Образцы подготавливались следующим образом. Образцы типа «колодка», размером 10×10×10 мм, из алюминиевого сплава АМг6 погружались в ванну со слабощелочным электролитом на основе KOH (2 г/л) с добавлением алюмината натрия (15 г/л). Процесс велся в анодно-катодном режиме при напряжении 470-500 В на аноде и 50-80 В на катоде в течение 60 минут, при этом плотность тока была 20 А/дм2, соотношение токов Iк/Iа=1.2. После завершения процесса оксидирования образцы извлекали из ванны, промывали, сушили при комнатной температуре. Таким образом, в результате микродуговой обработки образцов толщина МДО-покрытий составила 90-100 мкм. Затем на обезжиренную поверхность образцов наносили сверхвысокомолекулярный полиэтилен в виде порошка шликерным способом. После чего образец помещался в предварительно разогретую печь до температуры 240-245°C. При достижении температуры плавления СВМПЭ равномерно растекался по поверхности, заполняя все поры и микронеровности. Образцы выдерживались в печи до полного расплавления и пленкообразования (спекания) полимерного слоя и затем выставлялись на воздух, где происходила полимеризация полимерного слоя при комнатной температуре. Толщина полимерного слоя составила 50-60 мкм.

Пример №3. Образцы подготавливались следующим образом. Образцы типа «колодка», размером 10×10×10 мм, из титанового сплава ВТ-3 погружались в ванну со слабощелочным электролитом на основе KOH (2 г/л) с добавлением жидкого стекла (2 г/л), гексаметафосфата натрия (2 г/л) и алюмината натрия (2 г/л). Процесс велся в анодно-катодном режиме при напряжении 500-560 В на аноде и 110-190 B на катоде в течение 60 минут, при этом плотность тока была 10 А/дм2, соотношение токов Iк/Iа=1.1. После завершения процесса оксидирования образцы извлекали из ванны, промывали, сушили при комнатной температуре. Таким образом, в результате микродуговой обработки образцов толщина МДО-покрытий составила 80-90 мкм. Затем на обезжиренную поверхность образцов наносили сверхвысокомолекулярный полиэтилен путем предварительного нагрева поверхности образцов кислородно-ацетиленовым пламенем до температуры 300-320°C и пневматического распыления порошка СВМПЭ с одновременной активацией его кислородно-ацетиленовым пламенем. После этого окончательно оплавляли верхний слой полимера до пленкообразования (спекания) и охлаждали при комнатной температуре. Толщина полимерного слоя составила 70 мкм.

Пример №4. Образцы подготавливались следующим образом. Образцы типа «колодка», размером 10×10×10 мм, из алюминиевого сплава Д16 погружались в ванну со слабощелочным электролитом на основе KOH (2 г/л) с добавлением жидкого стекла (8 г/л) и гексаметафосфата натрия (2 г/л). Процесс велся в анодно-катодном режиме при напряжении 470-500 B на аноде и 50-80 B на катоде в течение 120 минут, при этом плотность тока составляла 5 А/дм2, соотношение токов 1к/1а=1.2. После завершения процесса оксидирования образцы извлекали из ванны, промывали, сушили при комнатной температуре. Таким образом, в результате микродуговой обработки образцов толщина МДО-покрытий составила 80-90 мкм. Затем на обезжиренную поверхность образцов наносили сверхвысокомолекулярный полиэтилен в виде порошка методом плазменного напыления. Процесс плазменного напыления велся при следующих технологических характеристиках: напряжение дуги 20-25 B, ток 350 A, расход плазмообразущего газа (аргона) 20-25 л/мин, расход порошка 0,5-1,5 кг/ч, дистанция напыления 100-120 мм, диаметр пятна напыления 10 мм, скорость перемещения плазмотрона 2-5 мм/сек. Температура нагрева деталей при плазменном напылении не превышала 150-200°C. Слой СВМПЭ доводился до полного расплавления и пленкообразования (спекания) полимерного слоя, и затем образцы выставлялись на воздух, где происходила полимеризация полимерного слоя при комнатной температуре. Толщина полимерного слоя составила 60 мкм.

Пример №5. Образцы подготавливались следующим образом. Образцы типа «колодка», размером 10×10×10 мм, из алюминиевого сплава АМц погружались в ванну со слабощелочным электролитом на основе KOH (2 г/л) с добавлением жидкого стекла (8 г/л) и гексаметафосфата натрия (2 г/л). Процесс велся в анодно-катодном режиме при напряжении 470-500 B на аноде и 50-80 B на катоде в течение 220 минут, при этом плотность тока составляла 0,5 А/дм2, соотношение токов Iк/Iа=1.2. После завершения процесса оксидирования образцы извлекали из ванны, промывали, сушили при комнатной температуре. Таким образом, в результате микродуговой обработки образцов толщина МДО-покрытий составила 80-90 мкм. Затем на обезжиренную поверхность образцов наносили сверхвысокомолекулярный полиэтилен в виде порошка методом плазменного напыления. Процесс плазменного напыления велся при следующих технологических характеристиках: напряжение дуги 20-25 B, ток 350 A, расход плазмообразущего газа (аргона) 20-25 л/мин, расход порошка 0,5-1,5 кг/ч, дистанция напыления 100-120 мм, диаметр пятна напыления 10 мм, скорость перемещения плазмотрона 2-5 мм/сек. Температура нагрева деталей при плазменном напылении не превышала 150-200°C. Слой СВМПЭ доводился до полного расплавления и пленкообразования (спекания) полимерного слоя, и затем образцы выставлялись на воздух, где происходила полимеризация полимерного слоя при комнатной температуре. Толщина полимерного слоя составила 50 мкм.

Пример №6. Образцы подготавливались следующим образом. Образцы типа «колодка», размером 10×10×10 мм, из титанового сплава ВТ-22 погружались в ванну со слабощелочным электролитом на основе KOH (2 г/л) с добавлением жидкого стекла (2 г/л), гексаметафосфата натрия (2 г/л) и алюмината натрия (2 г/л). Процесс велся в анодно-катодном режиме при напряжении 500-560 B на аноде и 110-190 B на катоде в течение 90 минут, при этом плотность тока была 10 А/дм2, соотношение токов Iк/Iа=1.1. После завершения процесса оксидирования образцы извлекали из ванны, промывали, сушили при комнатной температуре. Таким образом, в результате микродуговой обработки образцов толщина МДО-покрытий составила 100-110 мкм. Затем на обезжиренную поверхность образцов наносили сверхвысокомолекулярный полиэтилен путем предварительного нагрева поверхности образцов кислородно-ацетиленовым пламенем до температуры 300-320°C и пневматического распыления порошка СВМПЭ с одновременной активацией его кислородно-ацетиленовым пламенем. После этого окончательно оплавляли верхний слой полимера до пленкообразования (спекания) и охлаждали при комнатной температуре. Толщина полимерного слоя составила 60 мкм.

Для сравнения были приготовлены также образцы композиционных покрытий по прототипу.

Все образцы испытывали на машине трения типа СМЦ-2 по схеме трения колодка-ролик в условиях однонаправленного скольжения в технической воде. Линейная скорость скольжения составляла 0,9 м/с (для роликов ⌀35 мм) и 1,3 м/с (для роликов ⌀50 мм) при первоначальной удельной нагрузке 20 кг/см2 с последующим (через 10000 об) увеличением ее до 50 кг/см2 для одного типа образцов и до 100 кг/см2 для другого типа. При испытании материалов на трение фиксировали момент трения и определяли коэффициент трения трущейся пары. В данном случае определяли коэффициент трения колодки, изготовленной по предлагаемой технологии, по контртелу (ролику) из стали 40X13, закаленной до HRC 45.

При исследовании антифрикционных свойств образцов фиксировали время начала испытаний, и через 10000 оборотов замеряли весовой износ при увеличении удельной нагрузки, при этом путь трения образца составлял 1099 м и 1578 м соответственно. Коэффициент трения записывался в течение всего времени эксперимента и затем рассчитывалось среднее значение.

В таблице 1 приведены данные для образцов с МДО-покрытием и с композиционным покрытием, полученным по предлагаемому методу (МДО с импрегнированным СВМПЭ), по коэффициенту трения, износу, в зависимости от удельной нагрузки.

Результаты испытаний свидетельствуют о том, что применение дополнительной обработки (импрегнирование СВМПЭ) покрытия, сформированного методом анодно-катодного МДО, приводит к положительному эффекту: повышению износостойкости и улучшению антифрикционных свойств по сравнению с ненаполненным полимером МДО-покрытием. Снижение коэффициента трения при удельной нагрузке 20 кг/см2 составляет практически 70%, а при 50 кг/см2 - 45%. При удельной нагрузке 100 кг/см2 образцы, изготовленные по рекомендуемой технологии, показывали высокие результаты при относительно небольшой скорости изнашивания образца и контртела, в отличие от образцов с ненаполненным полимером МДО-покрытием. В некоторых случаях (см. пример 2 в табл.) особенно при высокой удельной нагрузке (100 кгс/см2) это приводило к заеданию пары трения. Помимо этого все образцы, изготовленные по рекомендуемой технологии, сохраняли высокую износостойкость и прочностные характеристики. Существенны также отличия рассматриваемых параметров образцов от прототипа.

Как видно из таблицы 2, преимущества заявленного способа получения композиционных покрытий перед МДО-покрытием без импрегнирования, а также перед прототипом заключаются в повышении антифрикционных характеристик и износостойкости, что обеспечивает возможность использования изделий с такими композиционными покрытиями в различных тяжело нагруженных узлах трения.

Таблица 2
Поряд-ковый номер испыта-ния Покрытие Материал основы Лин. скорость, м/с Уд. нагрузка 20 кг/см2 Уд. нагрузка 50 кг/см2 Уд. нагрузка 100 кг/см2
fтр Скорость изнашивания, г/ч fтр Скорость изнашивания, г/ч fтр Скорость изнашивания, г/ч
колодка ролик колодка ролик колодка ролик
1 МДО Д16 0,9 0,315 0,013 0,009 0,378 0,031 0,026 - - -
МДО+СВМПЭ 0,128 0,012 0,011 0,207 0,012 0,011 - - -
2 МДО АМг6 0,9 0,232 0,078 0,009 - - - нестабильное трение, заедание, большой износ ролика
МДО+СВМПЭ 0,074 0,023 0,011 - - - 0,244 0,017 0,002
3 МДО ВТ-3 0,9 0,225 0,012 0,015 0,236 0,029 0,018 0,194 0,031 0,015
МДО+СВМПЭ - - - - - - 0,044 0,015 0,008
4 МДО Д16 0,9 0,253 0,007 0,018 0,361 0,011 0,032 - - -
МДО+СВМПЭ 0,109 0,009 0,018 0,208 0,010 0,011 - - -
5 МДО АМц 0,9 0,346 нет 0,017 0,325 0,006 0,005 - - -
МДО+СВМПЭ 0,106 0,027 0,004 0,094 0,031 0,021 - - -
6 МДО ВТ-22 1,3 0,394 нет 0,046 0,482 0,023 0,073 - - -
МДО+СВМПЭ 0,028 0,006 0,009 0,183 0,002 0,035 - - -
7 Прототип Д16 0,9 0,153 0,016 0,027 0,296 0,047 0,065 - Катастр. износ 0,095

1. Способ получения композиционных покрытий на сплавах вентильных металлов, включающий микродуговое оксидирование изделия в щелочном электролите с последующим импрегнированием оксидированной поверхности полимером, оплавлением верхнего слоя полимера и охлаждением, отличающийся тем, что микродуговое оксидирование проводят в анодно-катодном режиме при значениях плотностей анодного и катодного токов 0,5-30 А/дм2 и соотношении между ними Iк/Iа=1.1-1.2, а в качестве полимера используют сверхвысокомолекулярный полиэтилен.

2. Способ по п.1, отличающийся тем, что импрегнирование сверхвысокомолекулярным полиэтиленом осуществляют шликерным способом.

3. Способ по п.1, отличающийся тем, что импрегнирование сверхвысокомолекулярным полиэтиленом осуществляют плазменным напылением.

4. Способ по п.1, отличающийся тем, что импрегнирование сверхвысокомолекулярным полиэтиленом осуществляют пневматическим распылением в кислородно-ацетиленовом пламени.



 

Похожие патенты:
Изобретение относится к области гальванотехники и может найти применение в машиностроении, авиастроении, компьютерной технике и автомобилестроении. .
Изобретение относится к области восстановления изношенных деталей из алюминиевых сплавов и может быть использовано для восстановления с упрочнением поджимных и подшипниковых блоков шестеренных насосов типа НШ-К.
Изобретение относится к области обработки поверхности изделий из металлов или сплавов и может быть использовано в машиностроении и других отраслях промышленности.
Изобретение относится к области восстановления изношенных деталей из алюминиевых сплавов, например для восстановления с упрочнением поджимных и подшипниковых блоков шестеренных насосов типа НШ-К.

Изобретение относится к области электрохимического оксидирования алюминия и его сплавов и может найти применение в приборостроительной и радиоэлектронной промышленности, например, при изготовлении изоляционных деталей приборов контроля и регулирования температуры.
Изобретение относится к анодированию алюминия и его сплавов и может быть использовано для получения цветных свето- и коррозионностойких покрытий. .
Изобретение относится к области окрашивания анодированного алюминия и может быть использовано в приборостроении, машиностроении и других областях промышленности для получения на поверхности изделий из алюминия и его сплавов черно-белых или иных цветных изображений в виде надписей, рисунков, картинок и т.п.

Изобретение относится к электрохимическому способу нанесения покрытий на алюминий и его сплавы, широко применяемые в качестве конструкционных материалов, в клеевых соединениях и металлополимерных композиционных материалах.

Изобретение относится к области обработки поверхности изделий и может быть использовано в машиностроении и приборостроении. .

Изобретение относится к способам наполнения анодных оксидных покрытий на алюминиевых сплавах антифрикционным веществом, позволяющим получить антифрикционные и износостойкие покрытия.

Изобретение относится к способам защиты металлов от коррозии и предназначено для повышения коррозионной стойкости покрытий на сплавах алюминия, используемых в агрессивной хлоридсодержащей среде. Способ включает нанесение покрытия методом плазменно-электролитического оксидирования в биполярном гальваностатическом режиме в условиях микроплазменных разрядов при эффективной плотности тока iа=iк=5-10 А/дм2, продолжительности анодных и катодных импульсов 0,02 с в течение 5-10 мин в водном электролите, содержащем, г/л: тринатрийфосфат 45-55, тетраборат натрия 20-30 и вольфрамат натрия 3-5, и уплотнение нанесенного покрытия. Уплотнение осуществляют в водном растворе ингибитора коррозии, содержащего олеат натрия, а также алифатические или ароматические карбоновые кислоты, в качестве которого преимущественно используют ИФХАН-25 либо ИФХАН-39, путем погружения на 50-60 мин при температуре 95-100°C с последующей гидрофобизацией в этилацетатном растворе политетрафторэтилена. Технический результат - увеличение эффективности антикоррозионной обработки и обеспечение высоких показателей антикоррозионной защиты для широкого круга обрабатываемых сплавов алюминия при одновременном повышении экологической безопасности способа, улучшении условий труда и снижении затрат времени. 2 з.п. ф-лы, 1 табл., 13 пр.

Изобретение относится к способам получения защитных антикоррозионных покрытий на алюминии, титане, их сплавах и сплавах магния и может найти применение для защиты изделий и конструкций, контактирующих со средой, содержащей коррозионно-активные ионы, в частности, в химическом производстве, в пищевой промышленности, в условиях морского климата. Способ включает плазменно-электролитическое оксидирование (ПЭО) металлической поверхности в электролите, содержащем растворимые соли органических и неорганических кислот, с получением слоя оксидной керамики и последующее нанесение политетрафторэтилена (ПТФЭ) с термической обработкой полученного покрытия, при этом ПЭО осуществляют в биполярном режиме, ПТФЭ наносят с помощью электрофореза из его водной дисперсии, дополнительно содержащей додецилсульфат натрия и ОП-10 при следующем содержании компонентов, г/л: ПТФЭ с размером частиц, не превышающим 1 мкм 10-30, додецилсульфат натрия 0,1-2,0, ОП-10 0,1-2,0, а также изопропиловый спирт в количестве 5-100 мл/л и воду - остальное, при напряжении 40-300 В в течение 25-75 с, а термообработку осуществляют при температуре 300-310 °C в течение 10-15 минут. Технический результат - улучшение качества наносимых покрытий, повышение их износо- и коррозионной стойкости при одновременном упрощении способа и расширении круга обрабатываемых металлов. 3 з.п. ф-лы, 6 пр., 2 ил., 1 табл.

Изобретение относится к двигателю внутреннего сгорания (ДВС) и может быть использовано для нанесения покрытия на его рабочую поверхность. Анодно-оксидное покрытие ДВС, сформированное, по меньшей мере, на части поверхности стенки, которая обращена к камере сгорания, характеризуется тем, что оно содержит пустоты и наноканалы, меньшие по своим размерам, чем пустоты, при этом, по меньшей мере, часть пустот закупорена закупоривающим материалом, полученным путем преобразования герметизирующего материала в закупоривающий материал, и, по меньшей мере, часть наноканалов не закупорена. Способ изготовления анодно-оксидного покрытия ДВС включает формирование анодно-оксидного покрытия, по меньшей мере, на части поверхности стенки, обращенной к камере сгорания, герметизацию контура наноканалов, при этом анодно-оксидное покрытие имеет внутри себя пустоты и наноканалы, меньшие по размерам, чем пустоты, нанесение герметизирующего материала на пустоты и закупорку, по меньшей мере, части пустот закупоривающим материалом, полученным путем преобразования герметизирующего материала, чтобы сформировать анодно-оксидное покрытие, в котором, по меньшей мере, часть наноканалов не закупорена. Технический результат: снижение теплопроводности и теплоемкости покрытия, повышение теплоизолирующих свойств и параметров амплитуды циклических колебаний температуры рабочей поверхности камеры сгорания. 2 н. и 5 з.п. ф-лы, 9 ил., 3 табл.

Изобретение относится к титановым лопаткам большого размера последних ступеней паротурбинных двигателей. Лопатка содержит сплав на основе титана и имеет переднюю кромку, включающую оксид титана, содержащий поры и верхний герметизирующий слой, заполняющий поры, выбранный из группы, состоящей из хрома, кобальта, никеля, полиимида, политетрафторэтилена и сложного полиэфира. Рассмотрен способ изготовления такой лопатки и изделие, включающее сплав на основе титана и содержащее переднюю кромку. Изобретение обеспечивает повышение долговечности, и уменьшение потерь от эрозии, и высокую экономическую эффективность. 3 н. и 17 з.п. ф-лы, 4 ил., 1 табл.

Изобретение относится к области получения износостойких и коррозионно-стойких покрытий на изделиях из алюминия и его сплавов. Способ характеризуется тем, что изделие подвергают микродуговому оксидированию в анодно-катодном режиме при плотности тока 7-7,5 А/дм2 и соотношении анодного и катодного токов 1,0:0,9 в течение 70-75 мин в щелочном электролите, содержащем водные растворы гидроксида натрия и силиката натрия концентрацией 3,5-4 и 11,5-12 г/л соответственно, шлифуют до параметра шероховатости Ra 0,8-1,6, очищают от минеральных и органических загрязнений, пропитывают в ультразвуковой ванне в течение 10-13 мин суспензией политетрафторэтилена Ф-4Д, сушат и термически обрабатывают при температурах 40-50 и 290-300°С в течение 10-12 и 60-62 мин соответственно. Техническим результатом является повышение износостойкости и антифрикционных свойств покрытий. 3 ил., 1 табл., 1 пр.

Изобретение относится к области гальванотехники и может быть использовано для создания противовирусных устройств. Противовирусное алюминиевое устройство, способное инактивировать вирус, содержит анодную оксидную пленку, полученную анодированием алюминиевого материала, и имеет поры, внутри которых присутствует противовирусное неорганическое соединение. На поверхности пленки с противовирусным соединением формируют поверхностную пленку, которая включает противовирусное неорганическое соединение и связующее на основе смолы. Способ включает анодирование алюминиевого материала с формированием пор, осаждение противовирусного соединения в порах электрохимической обработкой, при этом стадия осаждения противовирусного неорганического соединения включает осаждение по меньшей мере одного из таких элементов, как Ag и Cu, в порах электрохимической обработкой, погружение материала в электролит с ионами йода и осаждение CuI или AgI - противовирусного соединения в порах электрохимической обработкой. Устройство способно дезактивировать вирусы в течение короткого периода времени. 3 н. и 21 з.п. ф-лы, 4 ил., 2 табл., 15 пр.

Изобретение относится к способам антикоррозионной обработки поверхности изделий из алюминия или алюминиевых сплавов. Поверхность изделия подвергают импульсному энергетическому воздействию излучением импульсного оптоволоконного иттербиевого лазера с длиной волны 1,065 мкм при удельной мощности излучения 4,539⋅1010…8,536⋅1010 Вт/см2, частоте следования импульсов 20…40 кГц и скорости сканирования поверхности лазерным излучением 250…700 мм/с. Технический результат заключается в получении на поверхности изделия из алюминия или алюминиевого сплава плотной непроницаемой пассивной пленки оксида алюминия, эффективно защищающей металл от коррозии. 2 з.п. ф-лы, 3 ил., 1 табл., 11 пр.
Наверх