Состав уплотнительного покрытия для модификации элемента статора турбины

Изобретение относится к порошковой металлургии, в частности для получения уплотнительного покрытия методом газотермического напыления. Может использоваться при производстве паровых или газовых турбин для обеспечения стабильности зазоров в сопряженных элементах проточной части турбины. Уплотнительное покрытие для модификации элемента статора энергетической турбины содержит, мас.%: нитрид бора - 2-5, поливиниловый спирт - 7-10, стабилизированный оксидом иттрия диоксид циркония системы ZrO2-7-9% Y2O3 - остальное до 100%. Соотношение содержания нитрида бора к содержанию поливинилового спирта составляет 1:2. Обеспечивается повышение качества покрытия, высокая пористость без расслоений и трещин в покрытии. 1 табл., 2 пр.

 

Изобретение относится к области порошковой металлургии и может быть использовано для получения уплотнительного покрытия методом газотермического напыления, например плазменного напыления, а также при производстве паровых или газовых турбин для обеспечения стабильности зазоров в сопряженных элементах проточной части турбины.

В настоящее время, ведущие мировые производители паровых турбин наиболее активно ведут исследования в направлении конструктивных решений уплотнений паровых турбин.

Уплотнительные или изнашиваемые покрытия применяются в газотурбинных двигателях в авиации, энергетике, газоперекачивающих агрегатах (ГПА) взамен вставок из уплотнительных материалов. Изнашиваемые покрытия снижают зазор между статором и ротором газогенератора (компрессор и турбина). Методом плазменного напыления уплотнительные покрытия делаются настолько податливыми, чтобы кромка лопатки или лабиринт легко врезались в их слой, однако, достаточно прочными, чтобы выдерживать напор газового потока при повышенных температурах.

Применение уплотняющих (прирабатываемых) покрытий в горячей части турбины газотурбинного двигателя (ГТД) позволяет заметно повысить КПД и тепловую мощность двигателя за счет уплотнения зазоров по периферийным торцам лопаток и по гребешкам лабиринтных уплотнений между ступенями по всей окружности вращения, сводя к минимуму износ дорогостоящих вращающихся лопаток ротора турбины. Основными требованиями к уплотнительным покрытиям в ГТД являются достаточная прочность, податливость при врезании лопаток лабиринтными выступами, антифрикционность, теплозащитные свойства, эрозионная стойкость и низкое сопротивление "выветриванию" рабочей поверхности (со стороны газового потока).

Из уровня техники известно, что истираемые уплотнения, нанесенные на стационарные кожуха газовых или паровых турбин, используются для того, чтобы позволить элементам вращающегося узла (например, оконечностям лопаток турбины или зубцам вала и т.п.) контактировать со статором без существенного повреждения или износа. Контакт между вращающимися элементами и истираемым уплотнителем приводит в результате к протертым канавкам в истираемом уплотнителе, создающим уплотненный зазор между этими двумя деталями. Примеры истираемых уплотнений описаны в патенте США №6547522 В2, опубликованном 15.04.2003.

Известен уплотнительный материал (АС №1767926 А1, 15.08.1994, С23С 4/06), включающий рабочий слой, содержащий диоксид циркония (ZrO2), стабилизированный 5-10 мас.% оксида иттрия (Y2O3), а также нитрид бора (BN) и/или графит (С) при следующем соотношении компонентов, мас.%:

стабилизированный диоксид циркония 80-95
нитрид бора и/или графит 5-20

Недостатком данного технического решения является то, что порошковый материал, применяемый для получения данного уплотнительного покрытия, является механической смесью порошков, в которой частицы ZrO2 и BN (или BN+C) не связаны друг с другом, т.е. не скомпактированы в гранулы. В связи с тем, что BN является мелкодисперсным тугоплавким, инертным порошком, не образующим покрытия (в чистом виде), то в процессе напыления такого порошкового материала будет происходить его расслоение на составляющие компоненты, что приведет к потере BN в полученном покрытии.

Известен высокотемпературный композиционный материал для уплотнительного покрытия (Патент РФ №2303649 С2, 27.07.2007, С23С 4/10) - прототип, включающий нитрид бора и стабилизированный диоксид циркония. При этом композиционный материал содержит также нихромовое волокно длиной 3-5 мм, а стабилизированный диоксид циркония содержится в двух фракциях - диоксид циркония, стабилизированный 7% оксида иттрия, фракции 100-250 мкм и стабилизированный диоксид циркония активированной пылевидной фракции при следующем соотношении компонентов, мас.%:

стабилизированный диоксид циркония фракции 100-250 мкм 10-15
нитрид бора 15-25
нихромовое волокно 9-12
стабилизированный диоксид циркония
активированной пылевидной фракции остальное

Недостатком данного технического решения является то, что данный способ требует нанесения влажного состава на поверхность основы ручным или механизированным способом, и также последующие сушку и прессование в вакууме при нагреве до 1100°C. А кроме того, нанесение используемого в данном решении композиционного материала требует применения специального дорогостоящего оборудования и приспособлений (вакуумные печи, термофиксаторы), особенно при нанесении на крупноразмерные конструкции сложной формы.

Наиболее близким по технической сущности к предложенному материалу является высокотемпературный композиционный материал для уплотнительного покрытия (Патент РФ №2386513 С2, 20.04.2010, С23С 4/10) - прототип, включающий нитрид бора, алюмогель и стабилизированный диоксид циркония в следующем соотношении компонентов, мас.%:

гексагональный нитрид бора 5-15
алюмогель 3-6
стабилизированный диоксид циркония системы
ZrO2-7-8% Y2O3 остальное до 100%

Недостатком данного технического решения является то, что в составе покрытия после нанесения данного материала присутствует оксид алюминия, который может приводить к дополнительному износу лопаток турбин.

Недостаток известных составов уплотнительных покрытий заключается в том, что материалы изготавливаются в виде механической смеси или путем добавления связующего, который после нанесения остается в покрытии, что может приводить к снижению ресурса статора и наведению дополнительных остаточных напряжений в уплотнительное покрытие.

Задачей, на решение которой направлено изобретение, является изготовление материала уплотнительного покрытия, в составе которого присутствует связующее вещество, которое при нанесении полностью выгорает.

Технический результат заявленного изобретения - повышение качества получаемого покрытия. Технический результат достигается тем, что состав уплотнительного покрытия для модификации элемента статора энергетической турбины включает компоненты при следующем соотношении, мас.%: нитрид бора - 2-5, поливиниловый спирт - 7-10, двуокись циркония, стабилизированную 7-9% оксидом иттрия - остальное до 100%. Полученный материал обладает высокой пористостью после напыления и не растрескивается с отслоением при врезании в условиях термоциклирования.

Проведенные исследования показали, что при напылении данного состава плазменным напылением покрытие формируется с высокой пористостью - до 20%. Дальнейшее увеличении содержания поливинилового спирта пористость достигает своего предельного значения, после которого начинается расслоение покрытия.

В зависимости от твердости материала лопатки, который врезается в покрытие, подбирается содержание нитрида бора и поливинилового спирта. Оптимальным соотношением содержания нитрида бора к содержанию поливинилового спирта является 1:2.

Пример 1. Порошок на основе оксида циркония с нитридом бора и поливиниловым спиртом был нанесен методом плазменного напыления. Соотношение компонентов было следующим, мас.%: нитрид бора - 5, поливиниловый спирт - 10, двуокись циркония, стабилизированную 7-9% оксидом иттрия, - остальное до 100%. Пористость составила покрытия составила 20%. Результаты испытаний на истираемость при врезании показали, что соотношение линейного износа материала 20Х13 к уплотнительному покрытию составило 1:5. За единицу принимают износ лопатки. Нормальное соотношение износов лопатки к уплотнительному материалу для компрессора составляет от 1:2 до 1:6.

Пример 2. Порошок на основе оксида циркония с нитридом бора и поливиниловым спиртом был нанесен методом плазменного напыления на ряд образцов. В таблице 1 приведены результаты металлографического анализа пористости покрытий.

Таблица 1
Образец покрытия Содержание нитрида бора, мас.% Содержание поливинилового спирта, мас.% Пористость Наличие дефектов
1 2 10 18% отсутствуют
2 3 10 18% отсутствуют
3 4 10 20% отсутствуют
4 5 10 20% отсутствуют
5 5 12 28% расслоение

Состав уплотнительного покрытия для модификации элемента статора энергетической турбины, включающий стабилизированный диоксид циркония, отличающийся тем, что он дополнительно содержит нитрид бора и полиэстер при следующем соотношении компонентов, мас.%: нитрид бора - 2-5, поливиниловый спирт - 7-10, стабилизированный оксидом иттрия диоксид циркония системы ZrO2-7-9% Y2O3 - остальное до 100%, причем соотношение содержания нитрида бора к содержанию поливинилового спирта составляет 1:2.



 

Похожие патенты:
Изобретение относится к области металлургии, в частности к высокопрочным прецизионным сплавам на основе никеля для получения покрытий микроплазменным или холодным сверхзвуковым напылением.
Изобретение относится к области металлургии, в частности к высокопрочным сплавам на основе никеля для получения износостойких покрытий на металлические конструктивные элементы.

Изобретение относится к технологии нанесения покрытий на поверхности трения. Способ включает размещение порошковой навески из карбида титана между двумя слоями молибденовой фольги, электрический взрыв фольги с формированием импульсной многофазной плазменной струи, оплавление плазменной струей поверхности трения при значении удельного потока энергии 3,5…4,5 ГВт/м2 и напыление на оплавленный слой компонентов плазменной струи с последующей самозакалкой и получением композиционного покрытия, содержащего карбид титана и молибден.
Изобретение может быть использовано при получении высокопрочных материалов. Для получения корундовой микропленки осаждают слой корунда на пленочную основу или барабан из материала с пониженной адгезией, в качестве которого используют фторопласт, а затем снимают корундовую пленку с пленочной основы или барабана.

Изобретение относится к теплозащитным электропроводящим покрытиям. Способ нанесения теплозащитного электропроводящего покрытия на углеродные волокна и ткани включает плазменное напыление керметной композиции в виде механической порошковой смеси, содержащей 5-15 вес.% нихрома, 15-5 вес.% диоксида циркония, 70 вес.% алюминия, 10 вес.% никельалюминия и 4-7 вес.% оксида иттрия в качестве стабилизирующей добавки для диоксида циркония.
Изобретение относится к порошковой металлургии, в частности к способу диспергирования наноразмерного порошка диоксида кремния в жидкой среде. Может использоваться в качестве модифицирующей добавки в лакокрасочные материалы, бетоны, клеи для укладки плитки.

Изобретение относится к способам нанесения износостойких покрытий, а именно покрытий из нитрида титана, и может быть использовано в металлообработке. Способ включает очистку поверхности пескоструйной обработкой и нанесения покрытия детонационным методом.
Изобретение относится к области порошковой металлургии и может быть использовано для защиты теплонагруженных узлов и элементов конструкции двигательных установок от теплового и эрозионного разрушения в струе высокотемпературных продуктов сгорания топлива, содержащих, в частности, конденсированную фазу, путем плазменного напыления эрозионностойких теплозащитных покрытий.

Изобретение относится к области металлургии, а именно к нанесению покрытий газотермическим напылением, и может быть использовано для защиты деталей от износа, а также при ремонте деталей.

Изобретение относится к композиционным материалам на основе тугоплавких металлов и может быть использовано в электролизерах при получении алюминия. .
Изобретение относится к получению покрытий. Может использоваться в различных отраслях машиностроения при изготовлении или восстановлении деталей. Сжатый воздух предварительно нагревают до температуры 300-500°C, подают его в сверхзвуковое сопло и формируют в нем высокоскоростной воздушный поток. В поток вводят порошки оксида алюминия и меди с размером частиц не более 50 и 20 мкм соответственно, которые берут в равных долях и наносят покрытие толщиной слоя не более 2 мм на стальную основу. Затем проводят механическую обработку покрытия с устранением 40-50% толщины нанесенного слоя. Обеспечивается увеличение адгезии покрытия к подложке, улучшение качества покрытий и повышение надежности изделий. 2 табл., 5 пр.

Изобретение относится к области получения покрытий на полюсные наконечники (ПН) (анод и катод) эндокардиального электрода (ЭКЭ) электрокардиостимулятора. Тонкопленочное покрытие состоит из пористого слоя биосовместимого металла толщиной L/n1, где n1=1,3÷3, образованного из порошка металлов со средним размером фракций d=L/n1, где L - шероховатость рабочей поверхности ПН ЭКЭ, слоя биосовместимого нитрида металла MeN, полученного PVD методом со столбчатой высокопористой структурой толщиной Λ=d/n2, где n2=1,3÷10, и ионно-модифицированного поверхностного слоя MeN толщиной δ=Λ/n3, где n3=1,3÷100. Поверхность ПН ЭКЭ предварительно обрабатывают пескоструйкой с шероховатостью L=60-100 мкм. Пористый слой биосовместимого металла наносят плазменным газотермическим методом при атмосферном давлении в атмосфере аргона порошка металла с размером частиц d=L/n1. Слой биосовместимого нитрида металла MeN наносят PVD методом в атмосфере азота с давлением ~1·10-3 Торр при температуре 450-500°С. Проводят обработку поверхности пучком ионов биосовместимых металлов Me с энергией 20-100 кэВ и дозой не менее 1017 частиц/кв.см. В результате получают тонкопленочное покрытие, которое является биосовместимым, коррозионностойким в плазме крови, обладает высокой приэлектродной емкостью Гельмгольца, характеризуется высокой адгезией к изделию и механической прочностью. 2 н. и 6 з.п. ф-лы, 1 ил., 1 табл.

Изобретение относится к формированию покрытий на медных электрических контактах и может быть использовано в электротехнике. Способ включает электрический взрыв композиционного электрически взрываемого проводника, состоящего из двухслойной плоской медной оболочки массой 60-360 мг и сердечника в виде порошка диборида титана массой, равной 0,5-2,0 массы оболочки, формирование из продуктов взрыва импульсной многофазной плазменной струи, оплавление ею поверхности медного электрического контакта при поглощаемой плотности мощности 4,5-6,5 ГВт/м2, осаждение на поверхность продуктов взрыва, формирование на ней композиционного покрытия системы TiB2-Cu и последующую импульсно-периодическую электронно-пучковую обработку поверхности покрытия при поглощаемой плотности энергии 40-60 Дж/см2, длительности импульсов 150-200 мкс и количестве импульсов 10-30 имп. Изобретение позволяет получить контакты, обладающие высокой электроэрозионной стойкостью. 2 пр., 2 ил.

Группа изобретений относится к технологии детонационного напыления композиционных износостойких покрытий. Засыпают в детонационную установку дозированное количество смеси порошковых материалов для напыления покрытия и напыляют смесь на обрабатываемую поверхность с использованием энергии детонации. В способе по варианту 1 используют смесь порошковых материалов для напыления покрытия, которая содержит до 25% ультрадисперсных алмазов, до 50% оксида алюминия и остальное - порошок на основе карбида вольфрама. В способе по варианту 2 в ствол пушки детонационной установки устанавливают мишень с нанесенным на ее поверхность покрытием из карбида вольфрама, а в качестве смеси порошковых материалов для напыления покрытия используют смесь, содержащую до 25% ультрадисперсных алмазов и остальное - оксид алюминия. Обеспечивается повышение качества наносимого покрытия. 2 н.п. ф-лы, 1 ил., 1 табл., 1 пр.
Изобретение относится к композиции, применяемой в технологии лазерной наплавки покрытий на металлическую подложку, и может быть использовано в инструментальном производстве при изготовлении и ремонте деталей технологической оснастки и инструмента. Техническим результатом, на достижение которого направлено заявленное изобретение, является обеспечение равномерного распределения твердых включений по объему покрытия за счет синтеза карбида титана, что в итоге позволяет улучшить качество покрытия, а именно увеличить его твердость и износостойкость. Порошковая композиционная смесь для лазерной наплавки на металлическую подложку включает порошки из титана и карбида кремния с размером частиц 20-100 мкм при следующем соотношении компонентов, мас.ч.: титан - 5-7; карбид кремния - 3-6. Частицы порошка титана могут быть выполнены в виде сфер. 1 з.п. ф-лы, 1 табл.
Изобретение относится к области машиностроения и может быть использовано для создания износостойких покрытий на рабочих поверхностях осевых режущих инструментов за счет увеличения стойкости инструментов и ресурса работы инструментов, который достигается многократностью переточек. Осуществляют наплавку на задние поверхности осевых режущих инструментов слоя твердого сплава методом электроискрового легирования, при котором создают слой из карбида титана или вольфрама, или борида титана или вольфрама с кобальтовой или никелевой связкой толщиной 80-90 мкм. Проводят заточку задних поверхностей инструмента с припуском на обработку 20-30 мкм и шероховатостью Ra 0,8 мкм и дополнительно наносят методом финишного плазменного упрочнения алмазоподобное покрытие на основе оксикарбонитрида кремния толщиной 1,5-2 мкм твердостью 53-54 ГПа. Обеспечивается увеличение стойкости инструмента и ресурса его работы. 1 табл., 12 пр.

Изобретение относится к области формирования функциональных покрытий, в частности оксида алюминия, на поверхности изделий из титана и его сплавов методами плазменного напыления и микродугового оксидирования. Способ включает электроплазменное напыление на поверхность изделия порошка оксида алюминия дисперсностью 50-100 мкм с дистанцией напыления от 100 до 120 мм при токе дуги от 300 до 350 А и микродуговое оксидирование в анодном режиме при плотности тока (1-2)×103 А/м2, продолжительностью от 10 до 30 минут в щелочном электролите на основе гидрооксида натрия 1-3 г/л. Задачей изобретения является повышение механических свойств плазмонапыленных покрытий на титане и его сплавах, в частности микротвердости, при сокращении времени нанесения. 2 ил., 2 табл., 1 пр.

Изобретение относится к способу газоплазменного напыления теплозащитного покрытия на лопатки турбины газотурбинного двигателя. На перовой части лопатки формируют связующий жаростойкий подслой на основе интерметаллидных никель-алюминиевых (β+Y1) фаз и термобарьерный керамический слой на основе диоксида циркония путем воздействия плазменным напылением на воздухе сфокусированной плазменной струей со скоростью напыляемых частиц 2400 м/с и температурой 5000-12000 K с обеспечением в связующем жаростойком подслое продольной слоистой микроструктуры интерметаллидных зерен, а в термобарьерном керамическом слое - сфероидальных зерен диоксида циркония со столбчатой субструктурой. Связующий жаростойкий подслой толщиной 200 мкм формируют из порошковой смеси марки ПНХ20К20Ю13-1 с дисперсностью частиц 80 мкм при токе дуги I=180 А, напряжении дуги U=260 В, давлении плазмообразующего газа воздуха PB=6,2 атм, давлении транспортирующего газа аргона PAr=5,0 атм. Термобарьерный керамический слой толщиной 150 мкм формируют из порошковой смеси марки ЦрОИ-7 с дисперсностью частиц 90 мкм при токе дуги I=190 А, напряжении дуги 220 В, давлении плазмообразующего газа воздуха PB=2,0 атм, давлении транспортирующего газа аргона PAr=0,1 атм. Технический результат состоит в повышении жаростойкости и термоциклической долговечности их рабочей поверхности за счет улучшения микроструктуры связующего подслоя и рабочего керамического слоя покрытия лопатки в результате термо- и газодинамической интенсификации процесса плазменного напыления. 5 ил., 1 табл.

Изобретение относится к способу и устройству газопламенного напыления наноструктурированных покрытий. Распылитель содержит форкамеру. В качестве исходного материала используют порошковый материал. Одновременно с формированием в камере сгорания распылителя высокотемпературного газового потока в упомянутой форкамере устанавливают давление выше, чем давление в камере сгорания, и формируют высокотемпературный газовый поток, в который подают порошковый материал с образованием газопорошковой струи, которую подают в камеру сгорания со скоростью, большей скорости высокотемпературного газового потока. Осуществляют перенос высокотемпературным газовым потоком наночастиц, полученных из исходного материала, и осаждение их на подложке. В результате получают качественное покрытие из порошкового материала. 2 н.п. ф-лы, 3 ил.

Изобретение относится к области нанесения газотермических покрытий, а именно к способам нанесения плазменных покрытий на детали, работающие в экстремальных условиях. Способ нанесения износостойкого покрытия на стальную поверхность включает очистку поверхности, получение дисперсной порошковой смеси самофлюсующегося сплава и диборида титана, введение в плазменную струю смеси и ее напыление с последующим оплавлением поверхности покрытия. Очистку поверхности осуществляют путем полировки, а в качестве самофлюсующегося сплава используют сплав кобальта, предварительно механически легированный порошком алюминия с размером частиц менее 1 мкм, при этом исходные компоненты смеси взяты в следующем соотношении, мас.%: сплав кобальта 34,0-59,5; алюминий 6,0-10,5; диборид титана 30,0-60,0. Повышается микротвердость и износостойкость покрытия, а также качество покрытия за счет снижения пористости основного слоя. 1 табл., 2 пр.
Наверх