Способ идентификации скважины с измененной объемной обводненностью куста нефтяных скважин

Изобретение относится к области измерения и контроля дебита нефтяных скважин и может быть использовано в информационно-измерительных системах добычи, транспорта, подготовки нефти, газа и воды. Технический результат направлен на обеспечение возможности идентификации скважины с измененной объемной обводненностью куста нефтяных скважин непосредственно в процессе измерения дебита нефтяных скважин. Способ заключается в непрерывном измерении суммарных расходных параметров куста нефтяных скважин: массового расхода жидкости Мжи, объемного расхода газа Qги, объемной обводненности Wжи и коэффициента K г / в и = 0,01 Δ Q г и Δ W ж и , где Qги и ΔWжи - соответственно разности предыдущих и текущих средних численных значений суммарных расходных параметров куста нефтяных скважин, соответственно, свободного объемного расхода газа Q ¯ г и и объемной обводненности W ¯ ж и . В случае отклонения значения коэффициента Кг/ви за пределы заданных уставок ±ΔКг/ви, вычисляют параметры Мжi, объемный расход газа Qгi и обводненность Wжi каждой скважины соответственно. Вычисляют значение коэффициента . Сравнивают значения коэффициентов Кг/вi по каждой скважине с текущим значением Кг/ви,. Скважину с измененным значением объемной обводненности Wжi идентифицируют по признаку минимальной разности между значением Кг/вi одной из скважин куста и значением коэффициента Кг/ви. 1 з.п. ф-лы, ил. 1

 

Изобретение относится к области измерения и контроля дебита нефтяных скважин и может быть использовано в информационно-измерительных системах добычи, транспорта, подготовки нефти, газа и воды.

Известны [1] методы изучения технического состояния скважин, а также методы контроля разработки нефтяных и газовых месторождений, которые относятся к промысловой геофизике. Геофизические методы целенаправленно решают вопросы исследования эксплуатационных скважин и являются основным источником информации об изменении режимов работы нефтедобывающих скважин, о процессе разработки нефтяных и газовых месторождений.

В то же время, частично эту информацию, в какой-то мере, могут поставлять информационно-измерительные системы, и в частности, [2…4] автоматизированные групповые замерные установки (АГЗУ) с различной степенью их комплектации [5…7], применяемые в системах сбора и транспорта нефти на эксплуатируемых месторождениях. Одну из задач, например, задачу идентификации скважины из группы скважин с резким изменением режима работы можно решить с помощью АГЗУ по ее производительности по жидкости и по остаточному (свободному) газу.

В независимости от конструкторского исполнения АГЗУ и методов измерения, реализуемых ими, общим для них является дискретный характер измерения с переключением каждой скважины из группы скважин для опроса, причем, на время измерения продукции одной скважины все другие скважины подключаются напрямую к сборному нефтяному коллектору.

При условиях: время измерения дебита продукции одной скважины 2 часа, число скважин в одном кусте 8…14 одну скважину, в лучшем случае, можно опросить один раз в сутки. Естественно, при возникновении на какой-либо скважине аварийной ситуации, или, скажем, изменении ее режима работы, необходимая информация придет на диспетчерский пульт с запаздыванием. Таким образом, идентификация конкретной скважины с измененным режимом работы в худшем случае произойдет только через 24 часа, что является существенным недостатком сепарационных АГЗУ. Естественно, говорить об оперативном вмешательстве в процесс измерения, контроля и транспорта нефти куста нефтяных скважин не приходится.

Наиболее близким техническим решением (прототипом) к заявляемому способу является способ идентификации скважины с измененной обводненностью куста нефтяных скважин, заключающийся в подключении всех добывающих скважин куста нефтяных скважин к промежуточному нефтесборному коллектору и непрерывном измерении посредством установленного на промежуточном нефтесборном коллекторе бессепарационного расходомера, например, мультифазного, суммарных расходных параметров куста скважин: массового расхода жидкости (водонефтяной смеси) и объемного расхода газа, причем все добывающие скважины подключают к промежуточному нефтесборному коллектору через переключатель нефтяных скважин с возможностью отвода продукции каждой скважины куста нефтяных скважин через байпасный трубопровод в обход бессепарационного расходомера [8].

Данный способ позволяет выявить нарушения рабочих режимов эксплуатации нефтяных скважин куста нефтяных скважин, используя результаты дискретных (ГЗУ) и непрерывных (мультифазный расходомер) измерений, тем не менее, он также имеет существенный недостаток, который заключается, во-первых, в том, что он не дает возможности идентифицировать конкретную скважину с нарушенным режимом работы (в части изменения объемной обводненности), а, во-вторых, данный способ не дает возможности, или, по крайней мере, затрудняет определение характера (причины) нарушения этого режима работы.

Задачей, на решение которой направлено заявленное изобретение, является оперативное обеспечение возможности идентификации скважины с измененной обводненностью куста нефтяных скважин непосредственно в процессе измерения дебита скважин.

Технический результат достигается тем, что в способе идентификации скважины с измененной обводненностью куста нефтяных скважин, заключающемся в подключении всех добывающих скважин куста к промежуточному нефтесборному коллектору и непрерывном измерении посредством установленного на промежуточном нефтесборном коллекторе поточного влагомера и бессепарационного расходомера, например, мультифазного, суммарных расходных параметров куста нефтяных скважин: массового расхода жидкости (водонефтяной смеси) Мжи, объемного расхода газа Qги и объемной обводненности Wжи, причем все добывающие скважины подключают к промежуточному нефтесборному коллектору через переключатель нефтяных скважин с возможностью отвода продукции каждой скважины куста нефтяных скважин через байпасный трубопровод, в обход поточного влагомера и бессепарационного (в комплекте с контроллером) расходомера, по кусту нефтяных скважин непрерывно вычисляют и запоминают (с помощью контроллера) численное значение коэффициента

K г / в и = 0,01 Δ Q г и Δ W ж и ,

где ΔQги и ΔWжи - соответственно разности предыдущих и текущих средних численных значений суммарных расходных параметров куста нефтяных скважин, соответственно, свободного объемного расхода газа Q ¯ г и и объемной обводненности W ¯ ж и , в случае отклонения численного значения которого за пределы заданных уставок ±ΔКг/ви, вычисляют и запоминают (с помощью контроллера) расходные параметры, а именно, массовый расход жидкости (водонефтяной смеси) Мжi, объемный расход газа Qгi и объемную обводненность Wжi каждой скважины соответственно по формулам: Мжiжижи(n-1); Qгi=Qги-Qги(n-1) и Wжi =Wжи-Wжи(n-1), где: n - число скважин в кусте; Мжи(n-1), Qги(n-1) и Wжи(n-1) - соответственно, суммарный массовый расход жидкости; суммарный объемный расход свободного газа и суммарная объемная обводненность, измеренные в режиме байпасирования по (n-1) скважинам, вычисляют и запоминают (с помощью контроллера) по каждой скважине куста нефтяных скважин численное значение коэффициента K г / в i = Q г i 100 W ж i , сравнивают численные значения коэффициентов Кг/вi, по каждой скважине с текущим численным значением Кг/ви, а скважину с измененным численным значением объемной обводненности Wжi идентифицируют по признаку минимальной разности между численным значением Кг/вi одной из скважин куста нефтяных скважин и численным значением коэффициента Кг/ви.

В дополнение к этому, в процессе эксплуатации куста нефтяных скважин после каждого очередного отклонения текущего численного значения Кг/ви за пределы заданных уставок ±Δ Кг/ви с последующей идентификацией i-той скважины с измененной объемной обводненностью, численные значения коэффициентов Кг/вi (данной скважины) и соответственно Кг/ви принимают в качестве предварительно заданных с сохранением численного значения уставки ±ΔКг/ви.

Требуемый технический результат обеспечен наличием в совокупности существенных признаков (характеризующих предлагаемый способ идентификации одной из скважин куста нефтяных скважин по признаку изменения объемной обводненности куста нефтяных скважин) вышеуказанных отличительных признаков, а необнаружение в общедоступных источниках патентной и технической информации эквивалентных технических решений с теми же свойствами несомненной промышленной применимостью предполагает соответствие заявляемого объекта критериям изобретения.

В данном устройстве (см. чертеж) для измерения дебита нефтяных скважин все скважины куста нефтяных скважин 1 подсоединены к промежуточному нефтесборному коллектору 2 через многоходовый переключатель 3 скважин (ПСМ). С помощью байпасного трубопровода 4 имеется возможность посредством переключателя скважин 3 подключить выход каждой скважины куста 1 нефтяных скважин в обход поточного влагомера 5 и бессепарационного, например мультифазного, расходомера 6 в комплекте с контроллером (не показан), установленных на промежуточном нефтесборном коллекторе 2, который, в свою очередь, через обратный клапан 7 присоединен к нефтесборному коллектору 8.

Устройство работает следующим образом. Установленные на промежуточном нефтесборном коллекторе 2 поточный влагомер 5 и мультифазный расходомер 6 осуществляют непрерывный мониторинг (измерения) суммарных (по кусту нефтяных скважин) расходных параметров соответственно по объемной обводненности, по водонефтяной смеси и по свободному газу. Измерения производятся, соответственно, в единицах объема (обводненность и газ) и массы (водонефтяная смесь, нефть). Вместе с тем, ПСМ допускает такой режим работы, при котором каждая скважина куста нефтяных скважин 1 может быть подключена посредством байпасного трубопровода 4 непосредственно к нефтесборному коллектору 8 через обратный клапан 7, а продукция остальных скважин поступает на вход промежуточного трубопровода-коллектора 3 и далее через поточный влагомер 5, бессепарационный расходомер 6 и обратный клапан 7 - в нефтесборный коллектор 8.

Непрерывные измерения (мониторинг) суммарного дебита группы скважин позволят осуществить оперативный контроль технического состояния эксплуатируемых скважин. Например, резкое уменьшение суммарного дебита может с большей вероятностью свидетельствовать о выходе из строя одной из скважин. Самое же главное, отметим еще раз тот факт, что при наличии оценки объемной обводненности, полученной с помощью непрерывных мгновенных измерений, оперативно отмечается факт изменения режима работы, но только, обезличенной скважины, которую и нужно идентифицировать.

Для определения тех или иных отклонений в режиме работы одной из скважин куста нефтяных скважин естественно предположить, что это отклонение скажется прежде всего на изменении какого-либо интегрального показателя куста нефтяных скважин, например, объемной обводненности. Пусть это изменение измерено (зафиксировано) влагомером, установленным на промежуточном нефтесборном коллекторе, с абсолютной погрешностью ΔWжи=±1,0%, тогда, учитывая число скважин в кусте (не менее 8-ми), изменение объемной обводненности одной скважины Wжi должно составлять ориентировочно 10%. При наличии такой обводненности одной из скважин, очевидно, что на выходе куста нефтяных скважин практически незначительно изменится массовый расход смеси, но произойдут заметные изменения массовых расходов воды и нефти и соответственно изменится объемный расход свободного газа. И поскольку на выходе куста нефтяных скважин надежно, с высокой точностью измеряется (не вычисляется) суммарный объемный расход свободного газа Qги и интегральная объемная обводненность Wжи, удобнее и надежнее пользоваться в дальнейшем этими параметрами.

В общем виде, между Qги и Wжи существует связь [9]:

Q г и = M ж и ( 1 W ж и ρ в ρ ж ) Г с в P 0 P р а б ,                                               (1)

где Мжи - интегральный массовый расход жидкости; ρж и ρв - плотности, соответственно, жидкости и воды (водонефтяной смеси); Гсв - газовый фактор; Р0 и Рраб - давление, соответственно, в нормальных и рабочих условиях.

Поскольку нами предполагается, что Гсв=Const и Рраб=Const, то зависимость между Qгi и для каждой скважины куста нефтяных скважин можно представить в виде

Численные значения Kг/вi каждой скважины куста нефтяных скважин заносятся в память контроллера.

Пусть у одной из скважин куста нефтяных скважин изменилась (увеличилась) объемная обводненность, тогда в соответствии с формулой (1) изменится (уменьшится) и Qгi на величину ΔQгi, естественно, на такую же величину уменьшится и интегральный объемный расход газа куста нефтяных скважин. Численная величина этого изменения (ΔQгi=ΔQг/ви) надежно измерится объемным расходомером газа, относительная погрешность которого составляет δ(Q)≈1,5%.

Зная измеренные и вычисленные величины отклонений интегрального объемного расхода газа ΔQг/ви и интегральной объемной обводненности ΔWжи на выходе куста нефтяных скважин, непрерывно вычисляют и запоминают (с помощью контроллера) численное значение коэффициента K г / в и = 0,01 Δ Q г и Δ W ж и ,

где ΔQги, ΔQги и ΔWжи - соответственно разности предыдущих и текущих средних численных значений суммарных расходных параметров куста нефтяных скважин, соответственно, свободного объемного расхода газа Q ¯ г и и объемной обводненности W ¯ ж и . В случае отклонения численного значения Кг/ви за пределы заданных уставок ±ΔКг/ви, вычисляют и запоминают (с помощью контроллера) расходные параметры, а именно, массовый расход жидкости (водонефтяной смеси) Мжi, объемный расход газа Qгi и объемную обводненность Wжi каждой скважины соответственно по формулам: Мжiжижи(n-1); Qгi=Qги-Qги(n-1) и Wжi=Wжи-Wжи(n-1), где n - число скважин в кусте; Мжи(n-1), Qги(n-1) и Wжи(n-1) - соответственно, суммарный массовый расход жидкости; суммарный объемный расход свободного газа и суммарная объемная обводненность, измеренные в режиме байпасирования по (n-1) скважинам. С помощью контроллера по каждой скважине куста нефтяных скважин вычисляют и запоминают численное значение коэффициента сравнивают , численные значения коэффициентов Kг/вi по каждой скважине с текущим численным значением Кг/ви, а скважину с измененным численным значением объемной обводненности Wжi идентифицируют по признаку минимальной разности между численным значением Кг/вi одной из скважин куста нефтяных скважин и численным значением коэффициента Кг/ви. Далее, в процессе эксплуатации куста нефтяных скважин после каждого очередного отклонения текущего численного значения Кг/ви за пределы заданных уставок ±ΔКг/ви с последующей идентификацией i-той скважины с измененной объемной обводненностью, численные значения коэффициентов Kг/вi (данной скважины) и соответственно Кг/ви принимают в качестве предварительно заданных с сохранением численного значения уставки ±ΔКг/ви.

Таким образом, предлагаемый способ, используя признак изменения обводненности куста нефтяных скважин и в дальнейшем отклонения коэффициента Кг/ви за пределы заданных уставок ±ΔКг/ви обеспечивает возможность идентификации скважины с измененной обводненностью куста нефтяных скважин.

Также непрерывные измерения и вычисления интегральных расходных показателей по обводненности, свободному газу ( Q ¯ г и , W ¯ ж и ) и по коэффициенту Кг/ви позволяют программным путем отслеживать тренды этих показателей и по их виду следить за динамикой их изменения с целью прогнозирования (экстраполяции) нарушения режима эксплуатации куста нефтяных скважин.

ИСТОЧНИКИ ИНФОРМАЦИИ, ПРИНЯТЫЕ ВО ВНИМАНИЕ ПРИ ОФОРМЛЕНИИ НАСТОЯЩЕЙ ЗАЯВКИ

1. Добрынин В.М., Вендельштейн Б.Ю., Резванов Р.А., Африкян А.Н. Промысловая геофизика: Учеб. для вузов. Под ред. д.г.-м.н. В.М. Добрынина, к.т.н. Н.Е. Лазуткиной. - М.: ФГУП Издательство «Нефть и газ» РГУ нефти и газа им. И.М. Губкина, 2004. - 400 с., илл.

2. НТЖ «Автоматизация, телемеханизация и связь в нефтяной промышленности. М.: ОАО «ВНИИОЭНГ», 2003. - №4 - с.7-18.

3. Абрамов Г.С., Барычев А.В., Зимин М.И. Практическая расходометрия в промышленности. - М.: ВНИИОЭНГ. - 2000. - 472 с.(80-83).

4. Справочник по добыче нефти. В.В. Андреев, К.Р. Уразаков, В.У. Далимов и др. Под ред. К.Р. Уразакова - М.: ООО «Недра-Бизнесцентр», 2000. - 374 с. (стр.259-263).

5. Авторское свидетельство СССР №1043293, кл. Е21В 43/00.

6. Авторское свидетельство СССР №1165777, кл. Е21В 47/10.

7. РФ, описание изобретения к патенту №2136881, C1, Е21В 47/10, 28.10.97.

8. Заявка №2011134553/03(051192, решение о выдаче патента на изобретение от 10.01.2013.

9. НТЖ «Автоматизация, телемеханизация и связь в нефтяной промышленности. М.: ОАО «ВНИИОЭНГ», 2006. - №11 - с.4-19.

1. Способ идентификации скважины с измененной объемной обводненностью куста нефтяных скважин, заключающийся в подключении всех добывающих скважин куста к промежуточному нефтесборному коллектору и непрерывном измерении посредством установленного на промежуточном нефтесборном коллекторе поточного влагомера и бессепарационного расходомера, например мультифазного, суммарных расходных параметров куста нефтяных скважин: массового расхода жидкости (водонефтяной смеси) Мжи, объемного расхода газа Qги и объемной обводненности Wжи, причем все добывающие скважины подключают к промежуточному нефтесборному коллектору через переключатель нефтяных скважин с возможностью отвода продукции каждой скважины куста нефтяных скважин через байпасный трубопровод в обход поточного влагомера и бессепарационного (в комплекте с контроллером) расходомера, отличающийся тем, что по кусту нефтяных скважин непрерывно вычисляют и запоминают (с помощью контроллера) численное значение коэффициента
K г / в и = 0,01 Δ Q г и Δ W ж и ,
где Qги и ΔWжи - соответственно разности предыдущих и текущих средних численных значений суммарных расходных параметров куста нефтяных скважин, соответственно, свободного объемного расхода газа Q ¯ г и и объемной обводненности W ¯ ж и , в случае отклонения численного значения которого за пределы заданных уставок ±ΔКг/ви, вычисляют и запоминают (с помощью контроллера) расходные параметры, а именно массовый расход жидкости (водонефтяной смеси) Мжi, объемный расход газа Qгi и объемную обводненность Wжi каждой скважины соответственно по формулам: Мжiжижи(n-1); Qгi=Qги-Qги(n-1) и Wжi=Wжи-Wжи(n-1), где n - число скважин в кусте; Мжи(n-1), Qги(n-1) и Wжи(n-1) - соответственно, суммарный массовый расход жидкости, суммарный объемный расход свободного газа и суммарная объемная обводненность, измеренные в режиме байпасирования по (n-1) скважинам, вычисляют и запоминают (с помощью контроллера) по каждой скважине куста нефтяных скважин численное значение коэффициента , сравнивают численные значения коэффициентов Кг/вi по каждой скважине с текущим численным значением Кг/ви, а скважину с измененным численным значением объемной обводненности Wжi идентифицируют по признаку минимальной разности между численным значением Кг/вi одной из скважин куста нефтяных скважин и численным значением коэффициента Кг/ви.

2. Способ идентификации скважины с измененной объемной обводненностью куста нефтяных скважин по п.1, отличающийся тем, что в процессе эксплуатации куста нефтяных скважин после каждого очередного отклонения текущего численного значения Кг/ви за пределы заданных уставок ±ΔКг/ви с последующей идентификацией i-той скважины с измененной объемной обводненностью, численные значения коэффициентов Кг/вi (данной скважины) и соответственно Кг/ви принимают в качестве предварительно заданных с сохранением численного значения уставки ±ΔКг/ви.



 

Похожие патенты:

Изобретение относится к области приборостроения и может быть использовано для контроля расхода медикаментов при внутривенных вливаниях. Изобретение относится к датчику (102, 202, 402, 502) для обнаружения пузырьков в газовой фазе, присутствующих в жидкости (208, 408, 527), протекающей по пути (204, 406, 508) потока.

Изобретение относится к области измерения и контроля дебита нефтяных скважин и может быть использовано в информационно-измерительных системах добычи, транспорта, подготовки нефти, газа и воды.

Способ одновременного определения расходов жидкой и газовой фаз потока газожидкостной смеси включает в себя зондирование потока несепарированной газожидкостной смеси непрерывным ультразвуковым сигналом, прием отраженного от неоднородностей сигнала, комплексное детектирование, выделяющее синфазную с зондирующим сигналом и квадратурную составляющие, проведение спектрального анализа и получение спектра мощности сигнала, определение средней частоты спектра сигнала.

Объемный газожидкостный двухфазный расходомер (10) измеряет расход суммарного газожидкостного потока (QM) в газожидкостном двухфазном потоке, включающем в себя жидкость и газ, и коэффициент пропорциональности (газовую долю (в)) расхода газового потока по отношению к расходу суммарного газожидкостного потока, а также вычисляет соответствующие расходы потоков жидкости и газа исходя из расхода суммарного газожидкостного потока (QM) и газовой доли (в).
Способ одновременного определения расходов жидкой и газовой фаз потока газожидкостной смеси, включающий зондирование восходящего потока несепарированной газожидкостной смеси непрерывным ультразвуковым сигналом, прием отраженного от неоднородностей сигнала, комплексное детектирование, выделяющее синфазную с зондирующим сигналом и квадратурную составляющие, проведение спектрального анализа с определением знака преобладающей частоты, определение частоты сигнала и доли времени, когда преобладающая частота принимает отрицательное значение.

Способ содержит создание циркуляции многофазной текучей среды (12) через горловину (26) трубки Вентури (20), ограниченной трубопроводом (14), и оценку первого расхода и второго расхода с использованием измеренной разности давления и величины, характеризующей относительную площадь, занимаемую измеренной газообразной фазой.

Электронный измеритель (20) включает в себя интерфейс (201), сконфигурированный для связи с расходомерной сборкой вибрационного расходомера и для приема колебательного отклика, и систему (203) обработки, связанную с интерфейсом (201).

Способ включает следующие шаги: (а) на основе электромагнитного измерения определяют диэлектрическую проницаемость многокомпонентной смеси, (б) определяют плотность многокомпонентной смеси, (в) получают значения температуры и давления, (г) на основе результатов, полученных по завершении шагов (а)-(в), и знания значений плотности и диэлектрической проницаемости компонентов текучей смеси вычисляют долю водной фракции многокомпонентной смеси.

Способ включает следующие шаги: (а) определяют температуру и давление многокомпонентной смеси, (б) на основе по меньшей мере двух измеренных физических характеристик многокомпонентной смеси и знания такой же физической характеристики индивидуальных компонентов многокомпонентной смеси определяют относительное содержание компонентов многокомпонентной смеси, (в) определяют скорость многокомпонентной смеси, (г) на основе результатов, полученных по завершении шагов (а)-(в), определяют расход индивидуального компонента текучей среды.

Группа изобретений относится к определению свойств многофазной технологической текучей среды. Способ определения свойств многофазной технологической текучей среды содержит этапы, на которых: пропускают многофазную текучую среду по колебательно подвижной расходомерной трубке и расходомеру переменного перепада давления; вызывают движение расходомерной трубки и определяют первое кажущееся свойство текучей среды; определяют, по меньшей мере, одно кажущееся промежуточное значение, которое представляет собой первый критерий Фруда для негазообразной фазы текучей среды и второй критерий Фруда для газообразной фазы текучей среды; определяют степень влажности текучей среды на основе преобразования между первым и вторым критериями Фруда и степенью влажности; определяют второе кажущееся свойство текучей среды с использованием расходомера переменного перепада давления; определяют фазозависимое свойство текучей среды на основе степени влажности и второго кажущегося свойства.

Изобретение относится к области геофизических исследований нефтяных и газовых скважин, а именно к определению профиля притока флюидов, поступающих в скважину из продуктивных пластов многопластовых коллекторов.
Изобретение относится к нефтяной промышленности и может быть использовано при определении интервалов скважины с заколонным движением жидкости. Технический результат направлен на повышение достоверности получаемых результатов при определении интервалов заколонного движения жидкости скважин, эксплуатируемых на залежах вязкой и сверхвязкой нефти.

Изобретение относится к нефтяной промышленности и может найти применение при исследовании скважины. Техническим результатом является определение заколонных перетоков при потоке жидкости за скважиной сверху вниз.
Изобретение относится к нефтяной промышленности и может найти применение при исследовании скважины. В предложенном изобретении решается задача повышения достоверности обнаружения перетоков вверх за эксплуатационной колонной и вертикальных движений флюидов в заколонном пространстве в скважинах с перфорированными двумя и более пластами.
Изобретение относится к газонефтедобывающей промышленности, в частности к исследованиям газонасыщенных пластов. Способ гидродинамических исследований газонасыщенных пластов без выпуска газа на поверхность включает спуск на колонне бурильных труб или НКТ в скважину компоновки испытательного оборудования в виде испытателя пластов с пакером и геофизическими датчиками в заданный интервал исследования газонасыщенного пласта.

Изобретение относится к области нефтегазовой промышленности и может быть использовано при разработке газовых месторождений. Техническим результатом предлагаемого изобретения является уточнение даты изменения коэффициентов фильтрационного сопротивления призабойной зоны за счет учета основных факторов, характеризующих степень обводнения призабойной зоны пласта.

Изобретение относится к газодобывающей промышленности. Техническим результатом является упрощение контроля герметичности, что приводит к повышению надежности и безопасности эксплуатации подземных хранилищ газа (ПХГ).

Изобретение относится к области измерения и контроля дебита нефтяных скважин и может быть использовано в информационно-измерительных системах добычи, транспорта, подготовки нефти, газа и воды.
Изобретение относится к нефтяной промышленности и может найти применение при определении обводненности продукции нефтедобывающей скважины. Технический результат направлен на повышение точности определения обводненности продукции скважины.

Изобретение относится к нефтегазодобывающей промышленности и может быть применено для изоляции водопритоков в открытых стволах многозабойных горизонтальных скважин.

Группа изобретений относится к моделированию конструкции и эксплуатационных характеристик скважин, а также к мониторингу скважин. Способ оценки доли притока флюида из каждой продуктивной зоны многозонной эксплуатационной скважины включает определение давления на устье скважины. Получают интегрированную индикаторную кривую (IPR1), отображающую соотношение между давлением и дебитом флюида из первой продуктивной зоны, и интегрированную индикаторную кривую (IPR2), отображающую соотношение между давлением и дебитом флюида из второй продуктивной зоны. Получают значение для интегрированной индикаторной кривой в точке смешения (IPRc) с помощью IPR1 и IPR2. Определяют в точке смешения начальную долю притока флюида из первой продуктивной зоны и начальную долю притока флюида из второй продуктивной зоны. Получают первую суммарную кривую оттока (TPR1), отображающую соотношение между давлением и дебитом флюида, движущегося из точки смешения в направлении устья. Определяют в точке смешения с помощью IPRc и TPR1 первую долю притока флюида из первой продуктивной зоны (Q11) и первую долю притока флюида из второй продуктивной зоны (Q21). Машиночитаемый носитель, доступный для процессора, содержит программу, которая включает команды для вышеперечисленных действий. Техническим результатом является повышение эффективности оценки доли притока из продуктивной зоны. 2 н. и 18 з.п. ф-лы, 5 ил.
Наверх