Способ эксплуатации подземного хранилища природного газа

Изобретение относится к области нефтегазовой промышленности и предназначено для эксплуатации подземных хранилищ газа (ПХГ). На ПХГ, на которых сооружены эксплуатационные скважины со вскрытием коллекторов хранилища, производят циклическую закачку в хранилище природного газа с созданием буферного и активного его объемов и отбор активного объема газа. В процессе эксплуатации ПХГ в нижнюю его часть закачивают диоксид углерода и замещают им в буферном объеме природный газ. В конце циклов отбора природного газа граница раздела диоксида углерода и природного газа достигает нижних отверстий интервала перфорации эксплуатационных скважин. Изобретение обеспечивает увеличение активного объема хранимого природного газа в ПХГ и снижение затрат на образование его буферного объема.

 

Изобретение относится к области нефтегазовой промышленности и предназначено для эксплуатации подземных хранилищ газа (ПХГ).

Известен способ эксплуатации подземного хранилища природного газа в пластах-коллекторах, включающий закачку буферного объема газа и циклическую закачку и отбор активного объема газа, причем после отбора/закачки активного объема газа определяют значение текущего пластового давления в ПХГ, при значении данного давления ниже величины минимального/максимального проектного давления в пласт-коллектор дополнительно закачивают инертный газ в объеме, обеспечивающем повышение величины текущего пластового давления до проектного значения, при этом в качестве инертного газа используют азот, диоксид углерода или любой другой газ, который не содержит компонентов, которые могут реагировать с оборудованием и средой пласта-коллектора (Патент на полезную модель Украины №40544, 10.04.2009).

Основным недостатком известного способа является то, что при эксплуатации ПХГ возникает потребность в определенных объемах инертного газа (например, диоксида углерода), необходимых для разовых закачек и поддержания в ПХГ проектных величин пластового давления.

Технической задачей предлагаемого изобретения является увеличение активного объема хранимого природного газа в ПХГ, снижение затрат на образование его буферного объема и захоронение диоксида углерода как промышленного отхода.

Поставленная техническая задача решается за счет того, что в способе эксплуатации подземного хранилища природного газа, включающем сооружение эксплуатационных скважин со вскрытием коллекторов хранилища, циклическую закачку в хранилище природного газа с созданием буферного и активного его объемов, отбор активного объема природного газа и закачку в хранилище диоксида углерода с заменой на него части буферного объема природного газа, в процессе эксплуатации подземного хранилища газа суммарное количество диоксида углерода закачивают с таким расчетом, чтобы в конце циклов отбора природного газа граница раздела диоксида углерода и природного газа в хранилище достигала нижних интервалов вскрытия коллекторов эксплуатационными скважинами, используемыми для отбора газа.

Сущность изобретения заключается в следующем.

Подземные хранилища природного газа (ПХГ) создают в выработанных газовых или нефтяных месторождениях или в геологических структурах, коллектора которых заполнены водой. Эксплуатация ПХГ заключается в циклической закачке природного газа в коллектора геологической структуры через сооружаемые эксплуатационные скважины с достижением величины пластового давления, не более максимального допустимого давления, зависящего от многих геологических факторов (герметичность покрышки геологической структуры, глубина структуры, активность окружающего водоносного бассейна и др.) и отборе природного газа из ПХГ потребителю по мере необходимости. При этом в ПХГ в процессе отбора природного газа остается некоторый его объем, зависящий от геологических, технологических и др. причин, который называют буферным газом. В ПХГ всегда имеется некоторый объем природного газа, который не может быть поставлен потребителю. Объем буферного газа может достигать половины и более всего объема газа в ПХГ после цикла закачки. При использовании описываемого изобретения предлагается замещать часть природного газа в буферном его объеме в ПХГ на неуглеводородные газы, например диоксид углерода (CO2). Источниками таких газов могут служить газы, в том числе не утилизируемые и загрязняющие природную среду, например дымные газы, выхлопные газы и др.

Диоксид углерода отличается от природного газа (метана) значительно большими плотностью и сжимаемостью, поэтому при его закачке в ПХГ изначально можно предполагать высокие скорости расслоения диоксида углерода и природного газа. Для ускорения процесса расслоения газов и создание в ПХГ буферного объема газа преимущественно за счет диоксида углерода предлагается CO2 закачивать в нижнюю часть ПХГ.

Создаваемая в ПХГ искусственная залежь природного газа, которая при отборе газа разрабатывается, а при закачке газа восстанавливается, снизу может подстилаться пластовой водой. Поскольку диоксид углерода имеет большую плотность и, кроме того, большую вязкость, по сравнению с метаном, то буферный объем CO2 в ПХГ выполняет роль газового поршня между пластовой водой и хранимым природным газом, который препятствует преждевременному прорыву пластовой воды к эксплуатационным скважинам при отборе природного газа и уменьшает его потери за счет растворимости в пластовой воде в случае непосредственного контакта с ней.

Кроме того известно, что газ CO2 обладает значительно большей растворимостью в воде, чем метан. Так при температуре 40°C растворимость CO2 составляет 1, а CH4 - 0,016 (граммы газа в 1 кг воды). Поэтому при закачке в ПХГ диоксида углерода в область контакта природного газа с водой значительная часть диоксида углерода будет растворяться в воде с образованием слабой малостабильной угольной кислоты (H2CO3), а при отборе природного газа из ПХГ по мере снижения пластового давления диоксид углерода снова будет возвращаться в газовую фазу, оттесняя природный газ к эксплуатационным скважинам.

Производить закачку диоксида углерода предпочтительнее на стадии закачки природного газа в ПХГ, чтобы за время выдержки ПХГ до стадии отбора природного газа из ПХГ произошло расслоение диоксида углерода и природного газа. В качестве скважин для закачки CO2 в ПХГ могут быть использованы имеющиеся, например, наблюдательные скважины, имеющие связь (интервал перфорации) с коллекторами геологической структуры для ПХГ на контакте с пластовой водой, или специальные скважины, специально сооружаемые для этого.

Наибольшая эффективность описываемого изобретения достигается в ПХГ, созданных на базе истощенных газовых месторождений с газовым режимом их эксплуатации, в которых за время отбора газа не успевает среагировать и продвинуться в поровое пространство коллекторов ПХГ пластовая вода. В таких ПХГ соотношение объемов всего хранимого в ПХГ природного газа в конце закачки и буферного его объема практически равно соотношению давлений в конце закачки и после отбора газа, поэтому имеется возможность замещения природного газа в буферном его объеме в размере, равном поровому объему ПХГ (с учетом давления) от нижней границы до интервала перфорации эксплуатационных скважин, используемых в конце цикла отбора природного газа.

Пример реализации способа.

Имеется ПХГ, созданное в истощенном газовом месторождении с газовым режимом эксплуатации (с малоактивной пластовой водой). Максимальное пластовое давление в конце цикла закачки природного газа (PЗ) составляет 10 МПа, минимальное пластовое давление в конце цикла отбора газа из ПХГ (PO), потребное для подачи газа потребителю, составляет 5 МПа. Объем порового объема ПХГ (VП) составляет 100 млн.м3, пластовая температура - T=320 K. Отношение порового объема ПХГ от плоскости нижних дыр интервала перфорации эксплуатационных скважин, используемых в конце цикла отбора газа, до покрышки ПХГ ко всему объему ПХГ составляет 0,4. Хранимый природный газ в ПХГ по составу является преимущественно метаном.

Определяем объем газа (VCH4), который может храниться в таком ПХГ, и объем, остающийся в ПХГ после отбора газа, т.е. объем буферного газа ( V C H 4 б ) :

VCH4=VП·PЗ·Tст/Zз·Тпл·Рст=100·10·293/0,89·320·0,1=10288 млн.м3,

( V C H 4 б ) = V П P О T с т / Z o T п л P с т = 100 5 293 / 0,93 320 0,1 = 4923 м л н . м 3 ,

где Zз - коэффициент сжимаемости метана в конце цикла закачки (Zз=0,89) и отбора (Zo=0,93) газа при соответствующих пластовых условиях; Tст, Pст - стандартные температура (293 K) и давление (0,1 МПа).

Из приведенных вычислений видно, что объем буферного газа в ПХГ составляет 0,48 (4923/10288) всего объема хранимого газа, а объем активного газа - 5365 млн.м3.

По предлагаемому способу закачиваем в нижнюю часть ПХГ диоксид углерода с таким расчетом, чтобы в конце цикла отбора газа его верхняя граница достигала плоскости нижних дыр интервала перфорации эксплуатационных скважин, т.е. для наших условий объем CO2 в конце цикла отбора газа будет занимать в ПХГ 0,6 всего его порового объема.

Определяем объем CO2, который мы можем закачать в ПХГ:

VCO2=0,6·VП·PO·Тст/ZCO2·Тпл·Рст=0,6·100·5·293/0,8·320·0,1=3434 млн.м3,

где ZCO2=0,8 - коэффициент сжимаемости CO2 при пластовом давлении 5 МПа.

По найденной величине определяем объем порового пространства ПХГ, занимаемый CO2 в конце цикла закачки газа:

V C O 2 П = V C O 2 T п л P с т Z C O 2 / T с т P З = 3434 320 0,1 0,4.293 10 = 15 м л н . м 3 ,

где ZCO2=0,4 - коэффициент сжимаемости CO2 при пластовом давлении 10 МПа.

Остальную часть порового пространства ПХГ будет занимать газ (метан), в результате объем хранимого газа составит:

V C H 4 ' = ( V П V C O 2 П ) P З T с т / Z з P с т = ( 100 15 ) 10 293 / 0,89 320 0,1 = 8745 м л н . м 3

Из данной величины буферный объем газа составит:

V ' C H 4 б = 0,4 V П P О T с т / Z o T п л P с т = 0,4 100 5 293 / 0,93 320 0,1 = 1969 м л н . м 3 ,

а активный (8745-1969)-6776 млн.м3.

Таким образом, на ПХГ с описанными параметрами имеется возможность увеличить объем активного газа с 5365 млн.м3 до 6776 млн.м3, а объем буферного газа уменьшить с 4923 млн.м3 до 1969 млн.м3. Кроме того, предлагаемый способ позволяет захоронить 3434 млн.м3 диоксида углерода.

В случае невозможности закачки всего объема диоксида углерода за один цикл, данная операция может быть реализована за несколько циклов закачки газа, при этом по методике, изложенной в примере реализации предлагаемого изобретения, определяется объем порового пространства ПХГ, занимаемый CO2 на каждом цикле закачки газа, а также объем закачиваемого природного газа с достижением максимального значения закачиваемого диоксида углерода на каком-то цикле закачки газа и соответствующих ему объемов хранимого и активного природного газа в ПХГ.

При использовании предлагаемого способа эксплуатации ПХГ значительно сокращаются объемы консервации природного газа на создание его буферных величин, увеличиваются активные объемы его хранения и использования, кроме того, имеется возможность утилизации (захоронение) значительных объемов диоксида углерода или других газов, загрязняющих природную среду.

Способ эксплуатации подземного хранилища природного газа, включающий сооружение эксплуатационных скважин со вскрытием коллекторов хранилища, циклическую закачку в хранилище природного газа с созданием буферного и активного его объемов, отбор активного объема природного газа и закачку в хранилище диоксида углерода с заменой на него части буферного объема природного газа, при этом в процессе эксплуатации подземного хранилища газа диоксид углерода закачивают за несколько циклов с таким расчетом, чтобы в конце циклов отбора природного газа граница раздела диоксида углерода и природного газа в хранилище достигала нижних отверстий интервала перфорации эксплуатационных скважин коллекторов, используемых для отбора газа.



 

Похожие патенты:

Изобретение относится к нефтегазовой промышленности и может быть использовано при бурении скважин в регионах вечной мерзлоты с наличием в ней гидравлически изолированных линз талых подземных водоносных пористых песчаных коллекторов - криопэгов (КП) с целью захоронения в них буровых отходов (БО).

Изобретение относится к газодобывающей промышленности. Техническим результатом является упрощение контроля герметичности, что приводит к повышению надежности и безопасности эксплуатации подземных хранилищ газа (ПХГ).

Изобретение относится к области нефтегазовой промышленности и предназначено для добычи газа, растворенного в водах глубинных горизонтов, создания и эксплуатации подземных хранилищ газа (ПХГ) в вышезалегающих геологических структурах.

Изобретение относится к области охраны окружающей среды от загрязняющих атмосферу техногенных выбросов парниковых газов и синтеза источников энергии. Обеспечивает повышение надежности утилизации в недрах техногенных избытков диоксида углерода и эффективности искусственного синтеза углеводородов, а также водорода и кислорода, которые могут восполнять истощающиеся в месторождениях нефти и газа запасы углеводородов и формировать новые месторождения нефти и газа.

Подземное хранилище сжиженного природного газа содержит расположенный на основании из уплотненного грунта и теплоизоляционной прослойки железобетонный резервуар с вертикально ориентированными боковыми стенами, окруженный по наружной боковой поверхности податливой прослойкой, изнутри теплоизолированный и гидроизолированный от сжиженного природного газа.

Изобретение относится к области эксплуатации подземных хранилищ природного и других газов. Способ эксплуатации подземных хранилищ газа включает периодическую закачку компрессорами поступающего из магистрального газопровода газа через эксплуатационно-нагнетательные скважины подземного хранилища газа в пласт-коллектор под давлением, превышающим пластовое давление, последующий отбор газа из подземного хранилища для дальнейшей подачи газа в магистральный газопровод.

Изобретение относится к способу создания малопроницаемого экрана в пористой среде при подземном хранении газа в пористых пластах-коллекторах и может быть использовано в нефтегазодобывающей промышленности.

Изобретение относится к способу хранения диоксида углерода (CO2) в пористом и проницаемом подземном пласте - коллекторе-резервуаре) и, в частности, к способу закачивания CO2 в коллектор углеводородов для его хранения.

Изобретение относится к созданию подземных резервуаров в отложениях каменной соли и может использоваться при создании подземных хранилищ для газонефтепродуктов. .

Изобретение относится к подземной системе хранения и резервирования СПГ для его накопления и выдачи потребителю. .

Изобретение относится к газовой отрасли и может быть использовано при создании и использовании подземных хранилищ газа. Обеспечивает повышение эффективности способа. Сущность изобретения: способ включает закачку и отбор газа из скважины, при чередовании которых одну часть пласта-коллектора изолируют, а другую вскрывают. Согласно изобретению при строительстве скважины осуществляют спуск в нее и дальнейшее цементирование эксплуатационной колонны с заколонным пакером, разделяющим интервал заколонного пространства скважины в зоне пласта-коллектора на две условно выделенные части. Перфорируют эксплуатационную колонну в обеих частях выше и ниже заколонного пакера. После этого спускают в скважину оснащенную циркуляционным клапаном лифтовую колонну с межколонным пакером таким образом, чтобы при установке лифтовой колонны в эксплуатационную колонну упомянутый циркуляционный клапан располагался ниже заколонного пакера и выше межколонного пакера, а межколонный пакер - между перфорированными участками эксплуатационной колонны. Затем заполняют пространство между эксплуатационной и лифтовой колоннами несмешиваемыми между собой порциями надпакерной жидкости. При дальнейшей эксплуатации скважины закачку газа в пласт-коллектор производят через лифтовую колонну и нижний интервал перфорации с временной изоляцией верхнего интервала перфорации одной из порций надпакерной жидкости, а отбор газа - через верхний интервал перфорации по межтрубному пространству с временной изоляцией нижнего интервала перфорации другой порцией надпакерной жидкости. 2 ил.

Изобретение относится к газодобывающей промышленности. Техническим результатом является упрощение контроля герметичности, что приводит к повышению надежности и безопасности эксплуатации ПХГ, созданных в водоносных пластах. В предлагаемом способе осуществляют циклическое воздействие на пласт, при котором каждый цикл включает закачку газа в пласт с последующим отбором газа. Воздействие на пласт осуществляют, по меньшей мере, в течение 10 циклов. В каждом цикле периодически одновременно измеряют текущее пластовое давление в газовой ( P t ф ) и водоносной ( P t ф в ) зоне хранилища, а также объем отбора (или закачки) газа, затем с учетом измеренных параметров определяют расчетное давление в ПХГ ( P t P ) для режима эксплуатации хранилища без утечек газа и для режима эксплуатации хранилища с утечками газа. Затем определяют функцию (F), как среднеарифметическое значение отклонений ( P t P ) от ( P t ф ) , полученных при каждом i-м измерении, для режима эксплуатации хранилища без утечек газа и функцию (Fy) для режима эксплуатации хранилища с утечками газа и при выполнении неравенства Fy<F делают вывод о наличии утечек газа в хранилище. 1 табл.

Изобретение относится к подземной системе хранения и резервирования СПГ для его накопления и выдачи потребителю, особенно при покрытии пикового потребления газа. Подземное хранилище (ПХ) СПГ расположено ниже уровня земли 1 на отметке, предотвращающей промерзание поверхности земли при самом длительном расчетном хранении СПГ, и ограждено по периметру от массива грунта бетонной стеной типа «стена в грунте» 2. Содержит расположенный на основании из уплотненного грунта 3 и теплоизоляционной прослойки 4 железобетонный резервуар 5. ПХ СПГ снабжено выходящей из железобетонного резервуара на поверхность земли 1 технологической шахтой 9 с трубопроводами 10, герметическими люками 11 и лестницей 12. Верх бетонного резервуара засыпан слоем легкого теплоизоляционного материала 13. Однотипные элементы 14 постоянной кривизны с сопрягаемыми друг с другом поверхностями 15 выполнены в виде железобетонных блоков вафельной конструкции 16, скрепляемых между собой внутри резервуара 5 торцевыми внутренними отбортовками 17 и стяжными резьбовыми соединениями 18 через уплотнительные прокладки 19. Изобретение обеспечивает упрощение строительства ПХ. 3 ил.

Изобретение относится к подземной системе хранения и резервирования сжиженного природного газа (СПГ) для его накопления и выдачи потребителю. Подземное хранилище (ПХ) расположено ниже уровня земли 1 на отметке, предотвращающей промерзание поверхности земли, и ограждено по периметру от массива грунта бетонной стеной 2 типа «стена в грунте». Содержит расположенный на основании из уплотненного грунта 3 и теплоизоляционной прослойки 4 железобетонный резервуар 5, который по наружной цилиндрической поверхности окружен кольцевым газовым промежутком 6, расположенным между железобетонным резервуаром 5 и бетонной стеной 2 типа. ПХ СПГ снабжено выходящей из железобетонного резервуара на поверхность земли 1 технологической шахтой 9 с трубопроводами 10 для наполнения-выдачи СПГ и его паров, а также герметическими люками 11 и лестницей 12. Кольцевой газовый промежуток 6 сверху закрыт плитой 13. Верх железобетонного резервуара 5 и плиты 13 засыпан слоем теплоизоляционного материала 14. ПХ СПГ также снабжено дополнительной технологической шахтой 21 с герметическими люками 22 и лестницей. Изобретение обеспечивает повышение надежности эксплуатации. 2 ил.

Изобретение относится к использованию подземных водных ресурсов, в частности к способу распределенного хранения и использования шахтных грунтовых вод. Согласно способу, выполняют следующие шаги: А. проводят геологоразведку местности, подземная область которой подлежит разработке, и производят сбор основных геологических данных о породах формаций; В. исследуют шахтные грунтовые воды и производят сбор данных о состоянии распределения потоков, качестве воды и ее давлении; С. на основании собранных на шаге А основных геологических данных о породах формаций и собранных на шаге В данных о состоянии распределения потоков, качестве воды и ее давлении выбирают одно или несколько мест выработок, через которые не смогут проникать шахтные грунтовые воды, в качестве мест для водосборников распределенного подземного резервуара; и D. после образования водосборников в выбранных местах, обеспечивают естественное просачивание в эти водосборники шахтных грунтовых вод, поступающих во время разработки очистных забоев, смежных с данными водосборниками. Описанный способ позволяет уменьшить утечки грунтовых вод и снизить негативное влияние на рост и восстановление окружающей природной среды. 12 з.п. ф-лы, 1 табл., 3 ил.

Изобретение относится к области геологии и может быть использовано для оценки полезной емкости природных криогенных резервуаров при использовании их в качестве резервуара для складирования дренажных рассолов. Согласно заявленному способу закачивают определенный объем дренажных рассолов через скважины, пробуренные в интервал многолетнемерзлых пород, пространственно ограниченный слабопроницаемыми отложениями. Измеряют площадь растекания рассолов (S) и определяют на отстраиваемых разрезах мощность обводненной толщи в центре репрессивного купола для определенного (n-го) момента времени (hn). Рассчитывают коэффициент эффективной емкости резервуара (nэф). Далее оценивают общую мощность обводненной толщи ММП (Vобщ) с учетом экологической безопасности для конечного этапа закачки дренажных рассолов на участке. Технический результат - повышение достоверности оценки полезной емкости резервуара при достижении экологической безопасности при закачке рассолов в мерзлый массив пород. 2 з.п. ф-лы, 2 табл., 2 ил.

Группа изобретений предназначена для использования в области подземного хранения CO2 и других вредных газов, а также защиты окружающей среды. Технический результат - повышение надежности хранилища и снижение затрат на его создание. В первом варианте реализации способа для закачки CO2 выбирают ловушку водоносного пласта с термобарическими параметрами, способствующими длительному захоронению CO2 в жидком агрегатном состоянии. Бурят скважины в купольной части структуры ловушки. Закачивают жидкий CO2 в центральные скважины и по мере опускания контакта «жидкий CO2-вода» закачивают CO2 в периферийные скважины. Осуществляют контроль динамики пластового давления с одновременным мониторингом появления жидкого СО2 в наблюдательных скважинах. Закачку жидкого СО2 прекращают при обнаружения его в наблюдательных скважинах, а также при достижении в ловушке давления, соответствующего максимально допустимому пластовому давлению. Контроль за герметичностью по латерали ловушки осуществляют посредством наблюдательных скважин, расположенных вблизи замыкающей изогипсы ловушки, а по вертикали ловушки - посредством расположенных на вышезалегающих горизонтах контрольных скважин. Во втором варианте реализации способа закачивают газообразный CO2. Одновременно контролируют динамику пластового давления глубинными манометрами. При достижении давления в ловушке значения, соответствующего жидкому агрегатному состоянию CO2, продолжают закачку CO2 уже в жидком агрегатном состоянии в приконтактные зоны ловушки, контролируя динамику пластового давления глубинными манометрами. 2 н.п. ф-лы, 6 ил.

Группа изобретений относится к системам для локализации и регулирования жидкостей, получаемых на рабочей площадке, например площадке для бурения нефтяных или газовых скважин. Система включает одну или несколько зон локализации жидкости, выполненных в виде бассейна для сбора и удержания жидкостей, берму, образующую периметр указанных зон, слой песка, помещенный поверх каждого бассейна, непроницаемую для жидкости мембрану, помещенную на слой песка, и дренажный камень, помещенный поверх мембраны и заполняющий бассейн. На мембрану для улучшения защиты мембраны от неблагоприятных повреждений дренажным камнем может накладываться геотекстильная ткань. С мембраной может быть связана система обнаружения утечек, предназначенная для определения возможных утечек в системе локализации. Один или несколько отстойных бассейнов для приема жидкостей могут проходить через бассейн и дренажный камень, заполняющий бассейн. Дренажная система связана с отстойными бассейнами для отвода жидкостей из зоны локализации. Обеспечивается высокий уровень защиты окружающей среды, повышается надежность и эффективность локализации жидкостей. 3 н. и 48 з.п.ф-лы, 12 ил.

Изобретение относится к подземному хранению природного газа в водоносных геологических структурах и, в частности, к физико-химическим методам регулирования формирования и последующего газодинамического состояния подземного хранилища газа в таких структурах. Технический результат - повышение эффективности хранения природного газа за счет обеспечения его газодинамической стабильности. Способ заключается в том, что осуществляют бурение скважин в сводовой области водоносной структуры. Через эти скважины производят нагнетание природного газа до достижения границей газоводяного контакта гипсометрических отметок, соответствующих проектному объему хранилища. После этого последовательно осуществляют закачку через пробуренные скважины в область газоводяного контакта водного раствора пенообразующих поверхностно-активных веществ - ПАВ. Затем в область водоносной структуры, залегающей ниже газоводяного контакта, производят закачку неуглеводородного газа, близкого по своим физико-химическим свойствам к природному газу. Объемы водного раствора ПАВ и неуглеводородного газа выбирают, исходя из соотношения 1:1÷6, обеспечивающего образование в процессе циклического отбора и закачки природного газа устойчивого пластового изолирующего экрана из пены, получаемой в результате механического перемешивания водного раствора пенообразующих ПАВ и неуглеводородного газа при их совместной фильтрации в пористой среде. Экран из пены создают малой проницаемости и толщиной, определяемой из условия экранирования-фильтрации через него подошвенной воды при интенсивном отборе газа из хранилища в течение 90-120 сут. 3 табл., 1 ил.

Изобретение относится к емкостям-хранилищам техногенного назначения и может быть использовано для сбора жидких углеводородов при их аварийных разливах. Устройство содержит трубные секции в виде жесткого цилиндрического корпуса с крышкой. Во внутренней полости секции размещена эластичная оболочка, герметично присоединенная к внутритрубной части технологического патрубка в крышке. К противоположной части патрубка присоединены приемное и раздаточное устройства. Приемное устройство снабжено приемной воронкой, перепускным блоком, вентилем и патрубком для коллекторного соединения с ответным патрубком приемного устройства смежной трубной секции. Раздаточное устройство снабжено раздаточным патрубком, присоединенной к нему раздаточной трубой с заглушкой и патрубком для соединения с ответным патрубком раздаточного устройства смежной трубной секции. В нижней средней части корпуса трубной секции установлен нагнетательный патрубок с возможностью соединения с трубой для нагнетания сжатого воздуха в полость между внутренней поверхностью корпуса и внешней поверхностью эластичной оболочки. Снижается опасность проникновения жидких углеводородов в грунт, повышаются технологические возможности для откачки из амбара жидких углеводородов. 4 ил.
Наверх