Датчик линейных перемещений

Изобретение относится к прецизионной измерительной технике и может быть использовано в различных отраслях: метрологии, приборостроении, в отсчетных системах измерительных приборов, координатно-измерительных машин и прецизионных станков, аэрокосмической промышленности, при обработке материалов, автоматизации, в робототехнике, в оптико-механической промышленности, а также во всех высокотехнологичных отраслях техники, науки и т.д. Датчик линейных перемещений - это устройство, содержащее две дифракционные решетки, из которых одна измерительная, жестко связанная с направляющей, а другая - индикаторная, каретку с источником излучения и матрицу фотоприемников для считывания информации при перемещении одной из решеток по направляющим. Отклонение от линейности поверхности направляющей вносит погрешность в величину перемещения, поэтому направляющая должна быть такой точности обработки, которая соизмерима с точностью датчика линейных перемещений. Технический результат изобретения - повышение точности датчика линейных перемещений на всем протяжении измерения линейного размера объекта независимо от качества направляющих. 2 ил.

 

Изобретение относится к прецизионной измерительной технике и может быть использовано в различных отраслях: метрологии, приборостроении в отсчетных системах измерительных приборов, координатно-измерительных машинах и прецизионных станков, аэрокосмической промышленности, при обработке материалов, автоматизации, в робототехнике, в оптико-механической промышленности, а также во всех высокотехнологических отраслях техники, науки и т.п.

Датчик линейных перемещений (ДЛП) - это устройство, содержащее две дифракционные решетки, из которых одна измерительная (Изм. Р.), жестко связанная с направляющей, а другая - индикаторная (Инд. Р.), каретку, содержащую источник излучения и матрицу фотоприемников для считывания информации при перемещении одной из решеток по направляющим. Каретка содержит средства для перемещения по направляющей, которые отслеживают ее поверхность. Отклонение от линейности поверхности направляющей вносит погрешность в величину перемещения, поэтому направляющая должна быть такой же точности обработки, которая соизмерима с точностью ДЛП.

К современным ДЛП предъявляются определенные требования:

- высокая точность, которая связана с точностью Изм. Р. высокоточными направляющими, по которым перемещается Изм. Р., причем чем выше частота решеток, тем выше требования к точности их изготовления;

- высокая скорость считывания информации;

- надежность и др.

Направляющая может быть:

1. - внешнего устройства, к примеру, микроскопа (УИМ-21, УИМ- 23, ДИП), станка, и т.д., к которым присоединяется датчик [1] (А.П. Комар и др. Полуавтоматическая установка для обмера голографических установок. Сборник трудов. Л., ч.1, 79-84, 1969);

2. - внутренняя, к примеру, специально механическим способом обработанная какая-то внутренняя поверхность корпуса датчика [2] (Патент РФ №2032142);

3. - автономная - жестко связанная с измерительной решеткой и относящаяся к самому датчику [3] (Патент РФ №2197713).

Несмотря на то что ДЛП по пп.2 и 3 конструктивно развязан с внешним устройством, и, следовательно, с его направляющей, точность ДЛП по прежнему будет зависеть от вновь введенной направляющей, в том числе от направляющей, жестко связанной с Изм. Р. [3] (Патент РФ №2197713). В этом конкретном случае используется высокоточная направляющая из Борского стекла, полученного на расплаве олова (линейность такой направляющей задается линейностью поверхности расплавленного олова с радиусом кривизны, равной радиусу Земли) и отклонением от линейности порядка 1,7 мкм/500 мм. У таких направляющих точность достаточно высокая и отсутствует необходимость механической обработки ее рабочей поверхности. Тем не менее, даже такая точность направляющей не удовлетворяет растущие потребности к точности ДЛП в области нанометров (сотые и тысячные доли микрона).

Высокопрецизионные направляющие порядка 1 мкм/м, такие, которые соответствовали бы точности ДЛП на дифракционных решетках с высокой частотой 1000 лин/мм и выше, очень сложны в изготовлении, а точнее, достигнуть реально эту величину при больших размерах длин и перемещений (метра и более), практически невозможно. Если же речь идет о точности датчика в нанообласти, что соответствует требованиям науки и технологии в наше время, то пока это не реализуемо.

Поэтому вопрос стоит не о создании ультрапрецизионных направляющих, а о создании устройств ДЛП, позволяющих исключить влияние направляющих на величину перемещения.

Решение этого вопроса очень важно, особенно при серийном производстве ДЛП, которое необходимо науке и промышленности, поскольку на каждом измерительном приборе, микроскопе, станке, и т.д., обязательно присутствуют измерительные системы. Это приводит не только к улучшению характеристик самого ДЛП, но и к экономической выгоде, т.к. каждая точно изготовленная деталь увеличивает срок службы любого изделия, в которое она встраивается. Более того, в настоящее время уже перешли к созданию ультрапрецизионных станков, в которых обязательно должны присутствовать измерительные системы линейные или радиальные с наноразрешением.

Таким образом, можно рассматривать только два варианта:

1 - вариант: необходимо найти способ для уменьшения отклонения от линейности поверхности направляющей и создания ультралинейных направляющих с отклонением микрона и менее на метр, что сейчас практически невозможно;

2 - вариант: создать такую конструкцию ДЛП, чтобы исключить влияние направляющей на точность датчика, что является целью предлагаемого изобретения.

Известно устройство [4] (АС №242413), содержащее большую измерительную решетку и малую индикаторную дифракционную решетку (Изм. Р. и Инд. Р.), каретку, содержащую источник света и фотоприемное устройство в виде матрицы фототранзисторов, причем для повышения надежности и упрощения конструкции фототранзисторы размещены в поворотном барабане, в углах параллелограмма, стороны которого описываются линиями, соединяющими центры пересечения осей фототранзисторов, причем расстояние между указанными осями равно четверти ширины малой дифракционной решетки, что обеспечивает сдвиг по фазе на 90° между сигналами фототранзисторов.

Устройство работает следующим образом. После прохождения света двух согласованных по частоте решеток, на их выходе формируются интерференционные полосы, которые смещаются в поле фототранзисторов синхронно с перемещением измерительной решетки. Фототранзисторы, размещенные в поворотном барабане в углах параллелограмма и обеспечивающие сдвиг по фазе на 90° между сигналами, преобразуют интенсивность интерференционных полос в электрический сигнал, однозначно характеризующий измеряемое перемещение.

Это устройство, несмотря на то что упрощается конструкция, обладает недостатками, связанными с тем, что фототранзисторы расположены таким образом, что они измеряют не только полезный сигнал, связанный с перемещением Изм. Р., но и сигнал, обусловленный перемещением этой решетки по неточным направляющим. Таким образом, это устройство не позволяет устранить ошибки, связанные с погрешностями измерений, внесенными перемещением одной из решеток по неточным направляющим. Кроме того, при таком расположении фототранзисторы не одинаково освещены источником света, что приводит к разным отношениям сигнал/шум, а следовательно, и к разным значениям вероятности ошибки при измерениях.

Известно техническое решение [5] (Патент РФ №2426972), содержащее измерительную дифракционную решетку, считывающую головку, включающую источник излучения, коллиматор, индикаторную решетку, матрицу фотоприемников, две группы опорных подшипников, жестко связанных с индикаторной решеткой, для перемещения считывающей головки относительно измерительной решетки и две группы магнитов и стеклянную направляющую.

Устройство работает следующим образом. При перемещении считывающей головки во время определения линейных размеров объекта индикаторная решетка смещается относительно измерительной дифракционной решетки.

Пучок излучения, генерируемый источником излучения и формируемый коллиматором, проходит через индикаторную и измерительную дифракционную решетки. В поле интерференционных полос, образующихся за решетками, устанавливается матрица фотоприемников, которая преобразует распределение интенсивности интерференционных полос в электрические сигналы. При смещении считывающей головки во время определения линейного размера объекта, индикаторная решетка смещается относительно измерительной дифракционной решетки и на выходах матрицы фотоприемников формируются переменные электрические сигналы, сдвинутые по фазе на 90°. Эти сигналы поступают затем в блок электроники и с помощью компаратора создаются счетные импульсы, по которым определяется линейный размер объекта. Однако данное устройство обладает недостатками, и они связаны с тем, что его точность зависит уже от своей собственной, автономной направляющей. Эта направляющая не несет на себе нагрузку других внешних узлов, как внешняя направляющая, в том числе и тяжелых и сложных (как в случае станков) и может быть изготовлена более легкой и более точной. Однако даже в этом случае, поскольку направляющая изготавливается механическим путем, то ей также присущи недостатки, связанные с неточностью ее изготовления и приводящие к погрешностям, влияющим на точность ДЛП. Поскольку к считывающей головке прикреплены подшипники, находящиеся в непосредственном контакте с поверхностью собственной направляющей, то они во время перемещения полностью отслеживают дефекты, связанные с ее нелинейностью, и вносят погрешность в точность ДЛП при считывания перемещения.

Наиболее близким к заявляемому техническому решению является устройство [6] (АС №1206609), по сути представляющее собой ДЛП для измерения перемещений и длин объектов, содержащее направляющую, измерительную дифракционную решетку (Изм. Р.), жестко связанную с направляющей, каретку с установленными на ней узлом излучателя, оправу с индикаторной дифракционной решеткой с возможностью перемещения вдоль поверхности измерительной дифракционной решетки и средствами для поворота индикаторной дифракционной решетки вокруг трех взаимно перпендикулярных осей и для ее поступательного перемещения в направлении, перпендикулярном к плоскости измерительной дифракционной решетки и фотоприемника. Средства для поворота индикаторной решетки обеспечивают муаровое и нониусное сопряжение.

Устройство работает следующим образом. После настройки штрихов решеток параллельно друг относительно друга с помощью оправы, содержащей средства для поворота штрихов Инд. Р.относительно штрихов Изм. Р. и получения муарового сопряжения (муаровые полосы в первом приближении перпендикулярны направлению штрихов решеток и желательно получать их как можно шире), а также после настройки Инд. Р. с целью получения соответствующего нониусного сопряжения (нониусные полосы параллельно штрихам решеток) и создания необходимого постоянного зазора между решетками в ходе всего диапазона перемещений, устройство готово к работе. Коллимированный свет, генерируемый источником излучения, жестко связанным с кареткой, падает на индикаторную и измерительную решетки. В поле интерференционных полос, образующихся за решетками, устанавливается фотоприемник. При определении линейного размера объекта Инд. Р. смещается относительно измерительной и на выходе фотоприемника формируются переменные электрические сигналы, сдвинутые по фазе на 90°. Эти сигналы поступают затем в блок электроники, где с помощью компаратора формируются счетные импульсы, по которым определяется линейный размер объекта или перемещения. Снабжение данного устройства средствами для поворота и перемещения индикаторной решетки позволяет повысить точность измерений за счет уменьшения погрешности, обусловленной лучшей фиксацией элементов устройства, приводящей к меньшим разбросам параметров устройства, к увеличению контраста интерференционного поля и уменьшения искажения формы интерференционных полос, в поле которых устанавливается фотоприемник.

Устройство обладает следующими недостатками: несмотря на то что оно содержит узлы, необходимые для первоначальной настройки взаимного параллельного расположения штрихов двух решеток - Изм. Р. и Инд. Р. - это устройство не позволяет устранить ошибки, связанные с погрешностями измерений, внесенными перемещением одной из решеток по неточным направляющим ДЛП или внешнего устройства, к которому каретка прикрепляется. При перемещении по неточным направляющим установленный первоначально период муаровых полос не сохраняется, так как оправа с фиксированной в ней индикаторной решеткой будет повторять неровность направляющей, что обязательно приведет к изменению угла ее штрихов относительно штрихов Изм. Р. и, соответственно, к переменному периоду муаровых полос, а это, в свою очередь, приведет к погрешности при считывании перемещения. Поэтому данное устройство не может быть использовано при измерении перемещений с высоким, а тем более ультравысоким разрешением.

Технической задачей предлагаемого изобретения является разработка датчика линейных перемещений, конструктивные характеристики которого позволяют не только уменьшить, но и исключить погрешность, вносимую направляющей, обладающей нелинейностью в направлении перемещения.

Поставленная задача достигается тем, что в заявляемом устройстве ДЛП, содержащем направляющую, измерительную дифракционную решетку, жестко связанную с направляющей, каретку с установленными на ней узлом излучателя, оправой с индикаторной дифракционной решеткой с возможностью перемещения вдоль поверхности измерительной дифракционной решетки и средствами для поворота индикаторной решетки вокруг трех взаимно перпендикулярных осей и для ее поступательного перемещения в направлении, перпендикулярном к плоскости измерительной дифракционной решетки и фотоприемника новым является то, что в каретке за измерительной решеткой по другую сторону от источника излучения дополнительно введена оправа, жестко связанная с кареткой, содержащая узел фотоприемников в количестве не менее двух, причем фотоприемники расположены на линии, параллельной оси измерительной решетки и перпендикулярной биссектрисе углов между штрихами измерительной и индикаторной решеток, и дополнительная оправа снабжена средствами для поворота узла фотоприемников в виде штифта и двух регулирующих винтов относительно оси измерительной дифракционной решетки и перпендикуляра к биссектрисе углов между штрихам измерительной и индикаторной решеток, причем штифт расположен на линии, на которой установлены фотоприемники с одной их стороны, а два независимо регулирующих винта расположены на одной прямой, перпендикулярной линии, на которой расположены фотоприемники, и симметрично относительно ее, с другой стороны и оправы закреплены в каретке независимо друг от друга.

На фиг.1 показано взаимное расположение нониусных и муаровых полос, где каждая синусоида соответствует периоду штриха Изм. Р., а также расположению ФП и разности фаз ΔφН в поле нониусных полос (ось ОХ) и разности фаз ΔφМ в поле муаровых полос (ось OY).

На фиг.2 изображен конкретный пример конструктивного решения предлагаемого устройства датчика линейных перемещений (ДЛП) для измерения линейных размеров объектов и линейных перемещений. Устройство содержит: направляющую 1, измерительную дифракционную решетку 2, жестко связанную с направляющей 1, каретку 3 с оправой 4 и установленными в ней узлами излучателя 5, зеркало 6 и индикаторной решеткой 7. В каретке 3 за измерительной решеткой, по другую сторону источника излучения, установлена дополнительная оправа 8, в которой расположен узел 9 с фотоприемниками (ФП) 10 и средства для поворота узла фотоприемников: штифт 11 и два регулирующих винта 12 и 13. Устройство работает следующим образом.

Собирается ДЛП согласно фиг.2. Коллимированный свет, генерируемый источником излучения 5, жестко связанным с оправой 4, падает на индикаторную 7 и измерительную 2 решетки. С помощью средств для поворота индикаторной решетки оправы 4 настраивается интерференционное поле за решетками. Первоначально можно выбирать любой период муаровой полосы (вплоть до бесконечной ширины d=∞) с помощью оправы 4 устройства ДЛП, обладающей средствами для поворота индикаторной дифракционной решетки вокруг трех взаимно перпендикулярных осей, и тем самым установить штрихи двух решеток Изм. Р. и Инд. Р. параллельно друг друга, т.е., позволяющей настроиться на разные периоды, в том числе и бесконечный. Выбираем бесконечный период муаровых полос (при этом угол между штрихами двух решеток практически равняется нулю), а интерференционное поле за решетками будет темным или светлым. После полной настройки ДЛП точность, с которой настраивается бесконечная муаровая полоса, не будет иметь никакого значения, так как исчезнет вообще зависимость ДЛП от периода муаровой полосы. Далее с помощью соответствующих средств оправы 4 настраиваются также и нониусные (параллельные штрихам измерительной решетки) полосы. Нониусные полосы настраиваются определенным образом, чтобы при их попадании в апертуре ФП-ов 10 можно было обеспечить следующие сдвиги фаз на ФП: ΔФnАВ=90°; ΔФnСD=90°; ΔФnАС=180°; ΔФnВD=180° (фиг.1). Далее, каретка 3 с индикаторной решеткой 7 перемещается вдоль направляющей на всю длину необходимого перемещения. При этом, поскольку каретка 3 вместе с индикаторной решеткой 7, жестко с ней связанной, будет отслеживать отклонение от линейности (неровности) направляющей, приводящее к изменению угла между штрихами решеток, будет наблюдаться изменение периода муаровых полос, которые из бесконечной величины перейдут в конечную величину. Причем, чем хуже качество направляющих, тем больше их отклонение от линейности, тем больше будет частота муаровых полос и тем меньше величина их периода. Период этих полос запоминается, так как это будет необходимо при настройке ФП на линии, параллельной оси Изм. Р. и муаровым полосам с помощью дополнительного устройства - голографического интерферометра (ГИ). Каретка 3 возвращается в первоначальное состояние, снимается с нее оправа со средствами для поворота индикаторной решетки и ДЛП с кареткой 3 и измерительной решеткой 2 устанавливается в выходной апертуре двухлучевого голографического интерферометра (ГИ) [7] (Патент РФ №1052095), где установлена каретка (ГИ) 31, имеющая возможность поворота в плоскости штрихов измерительной решетки. Это устройство (ГИ) используется для настройки фотоприемников ДЛП по следующим причинам: - устройство ГИ может заменить на время настройки ДЛП оправу 4 с установленными в ней узлами излучателя 5, зеркала 6 и индикаторной решеткой 7, а также средства для поворота индикаторной дифракционной решетки вокруг трех взаимно перпендикулярных осей и для ее поступательного перемещения в направлении, перпендикулярном к плоскости измерительной дифракционной решетки. Вместо излучателя ДЛП используется лазер интерферометра, вместо Инд. Р. используется интерференционное поле интерферометра, в выходной апертуре которого имеются интерференционные линии, пересекающие тот же участок Изм. Р., который ранее взаимодействовал с дифрагирующими лучами от Инд. Р. Вместо средств для поворота Инд. Р. в ДЛП используются идентичные средства подвижной каретки ГИ. Таким образом, оправа 4 ДЛП полностью заменена на ГИ, при этом каретка 3 ДЛП жестко закреплена с кареткой 31 ГИ. Кроме того, для получения необходимого, вышеуказанного периода нониусных полос, соответствующих указанных ΔФn для считывания перемещения, ГИ имеет возможность менять частоту своих интерференционных линий для правильного сопряжения со штрихами Изм. Р. датчика;

- устройство ГИ имеет рекордное разрешение порядка 2,6 нанометра и, потому, ФП, расположенные за измерительной решеткой, по другую сторону от источника излучения, в выходной апертуре ГИ могут регистрировать Δφ с такой же высокой точностью, которой обладает ГИ (2,6 нм), благодаря динамической модуляции светового потока в одном из плеч ГИ.

Выше указанные обстоятельства позволяют в дальнейшем осуществлять поворот линии, на которой установлены ФП 10 ДЛП с высокой точностью.

Точность ДЛП зависит от совпадения этой линии с осью Изм. Р. и направлению перемещения, совпадающей с осью ОХ, что и достигается в предлагаемом изобретении.

Настройка осуществляется в статическом режиме, т.е. без перемещения вдоль оси Изм. Р. и начинается с того, что поворачивают каретку 31 ГИ в плоскости расположения штрихов Изм. Р. и линий ГИ, изменяя угол между ними до получения наименьшего периода муаровых полос, ранее найденного и запомненного и, соответствующего наибольшего отклонения от линейности направляющей ДЛП во время перемещения каретки 3 ДЛП по его направляющей. При изменении угла между штрихами Изм. Р. и линиями интерференционного поля ГИ можно наблюдать изменения значений ΔФn, что связано с зависимостью ΔФn от ΔФМ, иначе говоря, это связано с зависимостью величины перемещения, как функции ΔФn от точности изготовления направляющих. После этого поворачивают узел дополнительной оправы 8, содержащей штифт 11 и винты 12 и 13 таким образом, чтобы восстановить первоначальные значения разности фаз ΔФn: ΔФnАВ=90°; ΔФnСD=90°; ΔФnАС=180° и ΔФnВD=180°. Именно эти значения ΔФn правильно определяют величину перемещения ДЛП. Повторяется эта процедура несколько раз для проверки постоянства значений разности фаз ΔФn и уточнения положения ФП, после чего узел с ФП фиксируется винтами 12 и 13. Если значения ΔФn остаются неизменными (постоянными) при разных периодах муаровых полос, макетируемых при повороте каретки 31 ГИ, это позволяет сделать вывод, что ΔФn=const., а ΔФМ=0 в любой паре ФП: ΔФМА'В'=0, ΔФМС'D'=0, ΔФМА'С'=0, ΔФМВ'D'=0, вне зависимости от периода муаровых полос и, тем самым, это позволяет сделать вывод об исключении влияния качества направляющих на точность ДЛП. На фиг.1 видно, что при соответствующем повороте узла с ФП проекция на ось OY линии, на которой установлены ФП, превращается в точку и ΔФм=0. После настройки узла с ФП на ГИ, ДЛП открепляется от каретки 31 ГИ, к нему прикрепляется оправа 4 со своими узлами 5, 6 и индикаторной решеткой 7.

Для удобства, в начале работы датчика первоначально устанавливаются бесконечные муаровые полосы. В дальнейшем ФП сохраняют свои значения ΔФn с большой точностью на протяжении всего перемещения ДЛП. После этого ДЛП готов к работе.

Таким образом, данное устройство ДЛП обеспечивает высокоточную работоспособность датчика во время линейного перемещения на всем протяжении его измерения, независимо от качества направляющего устройства ДЛП и позволяет:

- повысить точность при измерении перемещения с помощью ДЛП,

- осуществить перемещение Изм. Р. по неточным направляющим, не теряя точность ДЛП,

- получить экономическую выгоду от изготовления с помощью ДЛП более точных деталей, изделий, увеличивая их ресурс или при измерениях истинных значений длин или перемещений, независимо от недостатков устройств (неточных направляющих), к которым они пристроены.

Литература

/1/ - Полуавтоматическая установка для обмера топографических установок, Сборник трудов, Л., часть I, 79-84, 1969. А.П. Комар, А.Ф. Найденков, М.В. Стабников, Б.Г. Турухано, Н. Турухано.

/2/ - Измерительная микрометрическая головка «ТУ БОР». Патент РФ №2032142, пр. 19.03.1992. Турухано Б.Г., Турухано Н., Якутович В.Н.

/3/ - Датчик линейных перемещений. Б.Г. Турухано, Н. Турухано. Патент РФ №2197713, пр. 07.08.2000 г.

/4/ - Приемная головка датчика перемещения. В.В. Добырн, М.В. Стабников, Б.Г. Турухано. АС СССР №242413. Пр. от 26.ХII. 1967 г.

/5/ - Датчик линейных перемещений. Патент, №2426972, пр. 05.08.2009 г. Турухано Б.Г., Добырн. В.В., Турухано Н., Кормин В.Е.

/6/ - Оптико-электронное устройство для измерения линейных перемещений. Беккерман И.Б., Дорощук В.С., Кивензор Г.Я., Кивензор Л.А., Турухано Б.Г., Турухано Н., Яценко Э.К. АС СССР №1206609, пр. от 13 апреля 1984 г.

/7/ Устройства для синтеза длинных топографических дифракционных решеток. Турухано Б.Г., Горелик В.П., Турухано Н., Гордеев С.В. Патент РФ №1052095 от 10.10 1995 г. пр. 05.07.1982 г.

Датчик линейных перемещений, содержащий направляющую, измерительную дифракционную решетку, жестко связанную с направляющей, каретку с установленным на ней узлом излучателя, оправой с индикаторной решеткой и средствами для поворота индикаторной дифракционной решетки вокруг трех взаимно перпендикулярных осей и для ее поступательного перемещения в направлении, перпендикулярном к плоскости измерительной дифракционной решетки и фотоприемника, отличающийся тем, что в каретке, за измерительной решеткой, по другую сторону от источника излучения, дополнительно введена оправа, жестко связанная с кареткой, содержащая узел фотоприемников в количестве не менее двух, причем фотоприемники расположены на линии, параллельной оси измерительной дифракционной решетки и перпендикулярной биссектрисе углов между штрихами измерительной и индикаторной решеток и дополнительная оправа снабжена средствами в виде штифта и двух регулирующих винтов для поворота узла фотоприемников относительно оси измерительной дифракционной решетки и перпендикуляра к биссектрисе углов между штрихами измерительной и индикаторной решеток, причем штифт расположен на линии, на которой установлены фотоприемники с одной их стороны, а два независимо регулируемых винта, расположенные на одной прямой, перпендикулярной линии, на которой расположены фотоприемники и симметрично относительно ее, с другой стороны, и оправы закреплены в каретке независимо друг от друга.



 

Похожие патенты:

Изобретение относится к контрольно-измерительной технике и может быть использовано для измерения геометрических параметров протяженных объектов, в частности композитной арматуры, а также кабельной продукции, проволоки и других в процессе производства.

Изобретение относится к области измерительной техники, к измерительным устройствам, характеризующимся дистанционными оптическими средствами измерений, и может быть использовано при решении задач, требующих одновременного определения двух линейных и двух угловых координат объекта при постоянной дистанции до объекта. Предложено одноканальное двухкоординатное устройство измерения угловых и линейных координат объекта, работающее в большом диапазоне дистанций с высокой точностью и изменяемым диапазоном измерений. Такой технический результат достигнут нами, когда в устройстве измерения линейных и угловых координат объекта, содержащем осветитель, объектив с матричным фотоприемником, связанным с устройством обработки информации и установленным в плоскости, сопряженной с объектом, и измерительную марку, установленную на объекте, новым является то, что измерительная марка снабжена осветителем, включающим расположенные по ходу луча источник света, конденсор и рассеиватель, и двумя визирными элементами, образующими кольцевую и точечную структуры и разнесенными по оптической оси, за второй структурой по ходу луча установлен компенсатор оптического хода, при этом объектив выполнен с переменным фокусным расстоянием. 5 ил. .

Способ заключается в формировании подаваемого на поверхность исследуемого объекта потока светового излучения, регистрации в фиксированной точке отраженного света и преобразовании его в электрический сигнал, величину которого используют для определения расстояния от поверхности исследуемого объекта по формуле: Δ x = x 0 − x 0 2 U 0 U , где х0 - начальное расстояние от светоотражающей поверхности исследуемого объекта до фотоприемника; U0 - амплитуда выходного сигнала с фотоприемника, соответствующая х0; U - амплитуда выходного сигнала с фотоприемника, соответствующая Δх.

Устройство содержит закрепленное на основании (1) устройство (2) для регулировки и фиксации его положения относительно поверхности (12) объекта (13), соединенный с ним цилиндрический корпус (4), во внутренней полости (5) которого установлены источник (6) когерентного оптического излучения и фокусирующая излучение (31) на поверхность (12) объекта (13) оптическая система (8) с устройствами для регулировки и фиксации их положения (7) и (9), опорную балку (14), выполненную составной из однотипных цилиндрических элементов (28), светонепроницаемый защитный корпус (19) с окном (20), установленный с возможностью перемещения вдоль опорной балки (14), во внутренней полости (21) которого установлены светоделитель (22) и отражатель (23), жестко скрепленные между собой, и экран с устройствами для регулировки и фиксации их положения (24) и (26).

Способ заключается в том, что изображение объекта фокусируют объективом в плоскости приемника, сканируют его возвратно-поступательно вдоль линейки элементов приемника, предварительно определяют номер N облучаемого элемента приемника, выключают выходы остальных элементов, осуществляют периодическое равномерное возвратно-поступательное сканирование изображения объекта облучаемым элементом с амплитудой, равной ширине элемента b, формируют опорные импульсы в середине каждого полупериода сканирования, измеряют временные интервалы Δt1 и Δt2 между фронтами сигналов и опорными импульсами в каждом полупериоде сканирования и измеряют их разность Δt=Δt2-Δt1.

Устройство содержит неподвижную часть, подвижную часть с установленным на ней объектом, источник монохроматического излучения, одномодовый световод, формирующий точечный источник, совмещенный с передним фокусом оптической системы, две параллельные прозрачные пластины, установленные перпендикулярно оптической оси.

Устройство содержит источник монохроматического излучения, выход которого совмещен с входом одномодового световода, формирующего на выходе точечный источник монохроматического излучения, совмещенный с передним фокусом оптической системы, формирующей параллельный пучок света.

Изобретение относится к контрольно-измерительной технике и предназначено для измерения пространственного положения объекта посредством дистанционного измерения координат контрольных меток, закрепленных на нем.

Изобретение относится к области автоматизации производственных технологических процессов. .

Изобретение относится к станкостроению и предназначено для автоматического контроля линейных перемещений различных механизмов и узлов (контроль за перемещением по линейным осям станков с ЧПУ, контроль перемещения узлов роботов и манипуляторов, контроль перемещения измерительных наконечников в приборах активного контроля).

Изобретение относится к области контрольно-измерительной техники и может быть использовано для автоматизации процессов контроля и сортировки листового проката и других подобных изделий. Техническим результатом изобретения является повышение точности определения толщины листового изделия. В способе триангуляционного измерения толщины листовых изделий осуществляют подачу листового изделия в зону измерений, на изделие с двух противоположных сторон с помощью источников излучения оптических систем направляют зондирующие пучки излучения, как минимум три с каждой стороны изделия. Источники излучения оптических систем ориентированы таким образом, что зондирующие пучки на противоположных сторонах листового изделия образуют вершины пересекающихся выпуклых многоугольников. Толщину листового изделия вычисляют как расстояние между многоугольниками на противоположных сторонах листового изделия в области их пересечения. Способ триангуляционного измерения толщины листовых изделий позволяет измерять толщину листового изделия при его произвольной ориентации в измерительном объеме. 2 ил.

Изобретение может быть использовано для автоматического измерения объема пучка лесоматериалов, находящегося на движущемся объекте. В способе движущийся объект пропускают через измерительное устройство - измерительную рамку, оснащенную лазерными сканерами, которые измеряют внешний контур пучка, его длину и суммарную площадь торцов лесоматериалов. Полученные данные передают в компьютер с программным обеспечением. После обработки данные заносят в карточку вместе с видеоинформацией об измеряемом объекте и по мобильной телефонной связи передают на центральную базу учета данных. Измерения объема пучка лесоматериалов могут производиться в любую погоду и в любое время суток. Технический результат - упрощение измерения объема пучка лесоматериалов вне зависимости от их вида, в том числе за счет измерения суммарной площади торцов с помощью сканера. 1 ил.

Изобретение относится к способу определения положения детали в процессе сборки. Деталь 1 захватывают с помощью зажимного патрона 2 в положении захвата, которое зарегистрировано как положение А начала отсчета при измерении. Блокируют лучи 3 и 4 света лазерного или оптического датчика в направлении, пересекающем деталь, в положении блокировки. Посредством измерительного блока измеряют позиционное отклонение детали в положении блокировки в наклонном направлении относительно зажимного патрона. Получают величину Н отклонения путем сравнения измеренного значения с зарегистрированным положением А начала отсчета при измерении. Получают значение h поправки измерения для положения С ведущего конца детали на основании соотношения подобия между виртуальным треугольником, полученным путем задания величины отклонения в качестве одной стороны и положения А начала отсчета в качестве одной точки, и виртуальным треугольником, проходящим через положения В и В' блокировки и ведущий конец детали. Получают величину Δz позиционного отклонения ведущего конца детали путем сложения величины Н отклонения и значения h поправки измерения. Изобретение позволяет точно распознавать положение ведущего конца детали, даже когда зажимной патрон захватывает деталь с наклоном. 1 з.п. ф-лы, 4 ил.

Заявленное изобретение относится к устройству и способу изготовления аккумуляторной батареи, а именно к устройству, укладывающему электроды стопкой, и способу укладывания электродов стопкой. Предложенное устройство (110) поочередно укладывает стопкой пакетный положительный электрод (20) и отрицательный электрод (30), чтобы сформировать вырабатывающий энергию элемент. Устройство снабжено детектором (200) для обнаружения положения положительного электрода (24) в качестве первого электрода относительно пакетного электрода, который имеет разделитель (40)в форме оболочки, в которой предоставлен положительный электрод, и укладывающий стопкой узел (112), и (122) для укладывания стопкой положительного электрода (24) в качестве первого электрода на отрицательный электрод (30) в качестве второго электрода. Подающий положительный электрод стол (120) выполнен с возможностью корректировки положения электрода (20) на плоскости. Повышение точности расположения отрицательного и положительного электрода относительно разделителя (40) является техническим результатом изобретения. 2 н. и 17 з.п. ф-лы, 25 ил.

Изобретение относится к оптическим датчикам, предназначенным для измерения линейных перемещений объекта наблюдения. Датчик линейных перемещений содержит источник света и подложку. На последней размещены две прямолинейные шкалы в виде первого и второго рядов полосок, разделенных общей проводящий шиной. Полоски выполнены из материала с гистерезисной зависимостью сопротивления от температуры. Ряды полосок смещены относительно друг друга на одну полоску. Каждая из последних имеет сигнальный вывод. На другой стороне подложки расположены пленочные нагреватель и термопара. Термочувствительные полоски подключены к аналоговому коммутатору, входящему в интерфейс измерительной системы. Световая полоса излучения по высоте равна вертикальному размеру двойной шкалы из термочувствительных полосок. При этом подложка установлена в герметичной камере с прозрачной боковой стенкой, на верхней и нижней гранях которой выполнены выступы с продольными пазами. Источник излучения установлен на подвижной каретке, закрепленной с возможностью перемещения по пазам выступов с помощью расположенных в этих пазах шариков, закрепленных на верхней и нижней гранях каретки. Технический результат - повышение точности измерения за счет механической связи датчика с объектом наблюдения, получение компактной конструкции, которая может использоваться автономно в полевых условиях. 2 з.п. ф-лы, 4 ил.

Изобретение относится к деревообрабатывающей промышленности, в частности к распиловке круглого леса. Продольно-распиловочный станок для распиловки бревен содержит пильный инструмент с механизмом его перемещения и устройство отображения на экране монитора торца бревна и предполагаемой карты распила, выполненное в виде устройства дополненной реальности. Устройство дополненной реальности содержит компьютер с монитором, видеокамеру и специальное программное средство. Видеокамера соединена с компьютером и установлена с возможностью обзора торца бревна. Программное средство установлено на компьютер и содержит модуль преобразования расчетной карты распила в ее виртуальное изображение на плоскости торца бревна и модуль совмещения на мониторе указанного виртуального изображения карты распила с изображением торца бревна. Повышается точность пиления. 5 з.п. ф-лы, 6 ил.

Изобретение относится к эксплуатации и строительству зданий и сооружений и может быть использовано для проведения оперативного обследования зданий и сооружений, подвергшихся внутренним и/или внешним факторам, вызывающим их износ. Способ включает выполнение измерений с высокой скоростью (от нескольких тысяч до миллиона точек в секунду) расстояния от сканера до поверхности сооружения, имеющего сложную конструктивную форму, и регистрацию соответствующих направлений (вертикальные и горизонтальные углы) с последующим формированием трехмерного изображения 3D-модели сооружения, имеющего сложную конструктивную форму, представляющую рой точек {Xi, Yi, Zi, i=1, n}. Для выявления деформаций по рою точек выполняется построение ряда горизонтальных и вертикальных сечений 3D-модели, строится карта отклонений и графики отклонений стены от идеальной стеновой вертикальной плоскости. По сформированной числовой карте отклонений выполняется построение карты изолиний, цветотоновой карты, графиков поверхности, теневой карты, при построении цветотоновых карт отклонений используется шкала раскраски впадин - от темно-синего до голубого, выпуклостей - от желтого до темно-коричневого. Вертикальный масштаб графиков отклонений выбирается таким, чтобы наглядно представить микронеровности стены, а сечение карты изолиний отклонений выбирается в погрешности построения модели 1 мм. В случае, если сооружение имеет сложную форму с закруглениями, то в качестве поверхности, относительно которой изучается отклонение от вертикали, выбирается касательная к закруглению, вертикальная плоскость с азимутом 0°. При этом выявление дефектов строительства и начальной фазы деформационного процесса осуществляется по результатам сопоставления фактических отклонений и относительных изгибных деформаций с нормативными отклонениями и критическими значениями деформации сооружения, имеющего сложную конструктивную форму. Технический результат заключается в расширении эксплуатационных возможностей способа для оперативного определения степени деформации сооружения, имеющего сложную конструктивную форму. 4 ил.

Изобретение относится к эксплуатации и строительству зданий и сооружений и может быть использовано для проведения оперативного обследования зданий и сооружений, подвергшихся внутренним и/или внешним факторам, вызывающим их износ. Способ включает выполнение измерений с высокой скоростью (от нескольких тысяч до миллиона точек в секунду) расстояния от сканера до поверхности сооружения, имеющего сложную конструктивную форму, и регистрацию соответствующих направлений (вертикальные и горизонтальные углы) с последующим формированием трехмерного изображения 3D-модели сооружения, имеющего сложную конструктивную форму, представляющей рой точек {Xi, Yi, Zi, i=1, n}. Для выявления деформаций по рою точек выполняется построение ряда горизонтальных и вертикальных сечений 3D-модели, строится карта отклонений и графики отклонений стены от идеальной стеновой вертикальной плоскости, по сформированной числовой карте отклонений выполняется построение карты изолиний, цветотоновой карты, графиков поверхности, теневой карты, при построении цветотоновых карт отклонений используется шкала раскраски впадин - от темно-синего до голубого, выпуклостей - от желтого до темно-коричневого. Вертикальный масштаб графиков отклонений выбирается таким, чтобы наглядно представить микронеровности стены, а сечение карты изолиний отклонений выбирается в погрешности построения модели 3 мм. В случае если сооружение имеет сложную форму с закруглениями, то в качестве поверхности, относительно которой изучается отклонение от вертикали, выбирается касательная к закруглению, вертикальная плоскость с азимутом 0°. При этом выявление дефектов строительства и начальной фазы деформационного процесса осуществляется по результатам сопоставления фактических отклонений и относительных изгибных деформаций с нормативными отклонениями и критическими значениями деформации сооружения, имеющего сложную конструктивную форму. Технический результат заключается в расширении эксплуатационных возможностей способа для оперативного определения степени деформации сооружения, имеющего сложную конструктивную форму. 4 ил.

Изобретение относится к эксплуатации и строительству зданий и сооружений и может быть использовано для проведения оперативного обследования зданий и сооружений, подвергшихся внутренним и/или внешним факторам, вызывающим их износ. Способ включает выполнение измерений с высокой скоростью (от нескольких тысяч до миллиона точек в секунду) расстояния от сканера до поверхности сооружения, имеющего сложную конструктивную форму, и регистрацию соответствующих направлений (вертикальные и горизонтальные углы) с последующим формированием трехмерного изображения 3D-модели сооружения, имеющего сложную конструктивную форму, представляющей рой точек {Xi,Yi,Zi, i=1,n}. Для выявления деформаций по рою точек выполняется построение ряда горизонтальных и вертикальных сечений 3D-модели, строится карта отклонений и графики отклонений стены от идеальной стеновой вертикальной плоскости, по сформированной числовой карте отклонений выполняется построение карты изолиний, цветотоновой карты, графиков поверхности, теневой карты. При построении цветотоновых карт отклонений используется шкала раскраски впадин - от темно-синего до голубого, выпуклостей - от желтого до темно-коричневого. Вертикальный масштаб графиков отклонений выбирается таким, чтобы наглядно представить микронеровности стены, а сечение карты изолиний отклонений выбирается в погрешности построения модели 5 мм. В случае если сооружение имеет сложную форму с закруглениями, то в качестве поверхности, относительно которой изучается отклонение от вертикали, выбирается касательная к закруглению, вертикальная плоскость с азимутом 0°. При этом выявление дефектов строительства и начальной фазы деформационного процесса осуществляется по результатам сопоставления фактических отклонений и относительных изгибных деформаций с нормативными отклонениями и критическими значениями деформации сооружения, имеющего сложную конструктивную форму. Технический результат заключается в расширении эксплуатационных возможностей способа для оперативного определения степени деформации сооружения, имеющего сложную конструктивную форму. 4 ил.

Изобретение относится к эксплуатации и строительству зданий и сооружений и может быть использовано для проведения оперативного обследования зданий и сооружений, подвергшихся внутренним и/или внешним факторам, вызывающим их износ. Способ включает выполнение измерений с высокой скоростью (от нескольких тысяч до миллиона точек в секунду) расстояния от сканера до поверхности панельного сооружения и регистрацию соответствующих направлений (вертикальные и горизонтальные углы) с последующим формированием трехмерного изображения 3D-модели сооружения, представляющей рой точек {Xi, Yi, Z, i=l, n}. Для выявления деформаций по рою точек выполняется построение ряда горизонтальных и вертикальных сечений 3D-модели, строится карта отклонений и графики отклонений стены от идеальной стеновой вертикальной плоскости. По сформированной числовой карте отклонений выполняется построение карты изолиний, цветотоновой карты, графиков поверхности, теневой карты, при построении цветотоновых карт отклонений используется шкала раскраски впадин - от темно-синего до голубого, выпуклостей - от желтого до темно-коричневого. Вертикальный масштаб графиков отклонений выбирается таким, чтобы наглядно представить микронеровности стены, а сечение карты изолиний отклонений выбирается в погрешности построения модели 5 мм. При этом выявление дефектов строительства и начальной фазы деформационного процесса осуществляется по результатам сопоставления фактических отклонений и относительных изгибных деформаций с нормативными отклонениями и критическими значениями деформации панельного сооружения. Технический результат заключается в расширении эксплуатационных возможностей для оперативного определения степени деформации сооружения. 6 ил.
Наверх