Способ фотодинамической терапии онкологических заболеваний

Изобретение относится к медицине и может быть использовано для выбора индивидуальных дозиметрических параметров при лазерной терапии тканей организма человека. Облучают ткань широкополосным излучением из видимого и ближнего ИК диапазонов спектра. Измеряют спектр диффузного отражения ткани. По спектру диффузного отражения ткани определяют ее структурно-морфологические параметры, в числе которых концентрация кровеносных сосудов fbl и фотосенсибилизатора Cps в ткани, а также относительные содержания оксигемоглобина S и метгемоглобина CMetHb в крови. Устанавливают спектр пространственной освещенности в ткани Ф(z, λ) с использованием модели переноса оптического излучения в ткани и найденных значений ее структурно-морфологических параметров. Длины волн и мощности лазерных источников, а также время лазерного воздействия на ткань, обеспечивающие наибольшее поглощение света фотосенсибилизатором и наилучшую генерацию кислорода на глубине залегания патологического участка ткани или во всей ее толще при минимальном воздействии лазерного излучения на здоровую ткань, определяют на основе распределений эффективностей поглощения света фотосенсибилизатором Kps(z, λ) и эффективности фотодиссоциации оксигемоглобина n(z, λ) по длине волны света λ и глубине ткани z, рассчитываемых на основе выражений:

Kps(z, λ)=Cpsεps(λ)Ф(z, λ),

n ( z , λ ) = f b l S ( C t H b / μ t H b ) ε H b O 2 ( λ ) Ф ( z , λ ) ( q λ / h c ) , где εps и ε H b O 2 - молярные коэффициенты поглощения фотосенсибилизатора и оксигемоглобина, CtHb=150 г/л - средняя концентрация гемоглобина в крови, µtHb=64500 г/моль - молярная масса гемоглобина, h - постоянная Планка; c - скорость света в среде; q - квантовый выход фотодиссоциации оксигемоглобина. Способ позволяет определить оптимальные для конкретного пациента параметры лазерного воздействия, повысить эффективность фотодинамической терапии и минимизировать побочные неблагоприятные эффекты лечения за счет контроля концентраций фотосенсибилизатора и оксигемоглобина в ткани и эффективности поглощения ими света в слоях ткани с различной глубиной залегания, а также за счет контроля морфологических изменений облучаемой ткани. 15 ил., 2 табл.

 

Способ относится к медицине и может быть использован для выбора индивидуальных дозиметрических параметров при лазерной терапии тканей организма человека.

Фотодинамическая терапия (ФДТ) является методом лечения рака с применением света и химического вещества - фотосенсибилизатора (ФС), используемого в сочетании с молекулярным кислородом, который, в свою очередь, вызывает повреждение и гибель раковых клеток. Физический механизм ФДТ можно представить следующим образом. После внутривенного введения ФС он избирательно накапливается в опухолевых тканях. При облучении пораженного участка ткани светом определенной длины волны сенсибилизатор поглощает кванты света и затем передает энергию молекулярному кислороду в ткани, вследствие чего происходит его активация и образуется так называемый синглетный кислород. Данная возбужденная форма молекулы кислорода токсична для биоткани и разрушает опухоль. ФДТ также приводит к нарушению питания и гибели опухоли за счет повреждения ее микрососудов.

Поскольку ФДТ сопровождается непрерывной утилизацией молекулярного кислорода в фотохимических реакциях, то для максимального повреждения раковых клеток необходимо поддерживать требуемый уровень оксигенации опухолевой ткани на протяжении всего сеанса терапии. Эффективным методом устранения недостатка кислорода (гипоксии) в зоне опухоли является его дополнительная экстракция за счет лазерно-индуцированной фотодиссоциации оксигемоглобина (HbO2) [1]. При этом важно обеспечить возможность генерации кислорода на требуемой глубине в ткани, где находится опухолевый участок с ФС. Для решения этой задачи требуется знание концентрации HbO2 в ткани и распределения освещенности Ф(z,λ) по глубине z ткани и длине волны света λ.

Известны способы повышения эффективности ФДТ [2-4], основанные на контроле расхода ФС в фотохимических реакциях с участием кислорода путем сравнения спектров диффузного отражения (ДО) или флуоресценции реальной ткани с аналогичными спектрами модельных растворов с известным содержанием ФС. Однако за счет большого количества оптически активных хромофоров ткани (поглощающих и рассеивающих оптическое излучение) линия поглощения ФС в спектре отражения или флуоресценции ткани может быть сдвинута, а ее форма модифицирована по отношению к аналогичной линии для модельных растворов. Поэтому попытка интерпретировать измеряемый спектр на основе аналогичных спектров модельных образцов с конкретными оптическими параметрами не всегда правомерна.

В работе [5] предложен способ определения концентрации ФС в ткани на основе количественного анализа спектра ДО ткани с использованием закона Ламберта-Бера. Данный способ не позволяет достичь высокой точности определения концентрации ФС - коэффициент корреляции между результатами спектрального и биохимического анализов составляет всего лишь 0,77-0,88 [5]. Кроме того, он не позволяет контролировать эффективность доставки световой мощности в различные слои ткани (т.е. не решает задачу послойной дозиметрии лазерного излучения) и определять индивидуальную терапевтическую дозу облучения.

Известен ряд способов [6-8], в которых о концентрации ФС и HbO2 в ткани, а также о глубине проникновения света в ткань судят, в диффузионном приближении, по спектру ДО ткани, измеряемому с пространственным разрешением. Однако сложность необходимого экспериментального оборудования, большой динамический диапазон регистрируемых сигналов и жесткие ограничения по геометрии измерений и оптическим параметрам ткани, накладываемые диффузионным приближением, существенно затрудняют использование данных методов в клинической практике. Кроме того, данные способы не позволяют оценивать эффективность поглощения света фотосенсибилизатором и оксигемоглобином в различных слоях ткани и выбирать оптимальную терапевтическую дозу облучения.

Известен способ определения концентрации ФС в ткани, основанный на измерениях сигналов флуоресценции и диффузного отражения на расстояниях 0,65 и 1,35 мм от источника возбуждающего излучения соответственно [9]. К недостаткам данного способа следует отнести необходимость калибровочных измерений для образца с известной концентрацией ФС и влияние различия оптических параметров ткани на длинах волн возбуждающего излучения и света флуоресценции на результат измерений. Кроме того, знания одной лишь концентрации ФС недостаточно для анализа эффективности протекания фотофизических и фотохимических процессов в облучаемой ткани пациента и выбора оптимальной дозы облучения.

Известны также способы лазерной терапии биологических тканей, основанные на использовании длины волн лазерного излучения, обеспечивающих наиболее эффективное воздействие на ФС и HbO2 в слоях ткани с различной глубиной залегания [10-12]. Данные способы основаны на результатах моделирования светового поля в ткани при средних или выборочных значениях ее параметров и носят рекомендательный характер по выбору длин волн лазерного излучения. Однако эти данные непригодны для выбора оптимальных энергетических параметров лазерного воздействия, поскольку такой выбор должен осуществляться с учетом спектров поглощения света ФС и HbO2 в реально облучаемой ткани. При этом необходимо также принимать во внимание морфологические изменения ткани, вызываемые лазерным излучением. По данным экспериментальных исследований [13-15] в процессе сеанса ФДТ происходит частичное разрушение стенок кровеносных сосудов (с высвобождением гемоглобина) и существенно повышается концентрация метгемоглобина в опухолевой ткани (до 60% от общей концентрации гемоглобина), что, разумеется, влияет на выбор оптимальных спектральных и энергетических характеристик лазерного излучения.

Наиболее близким к заявляемому изобретению является способ фотодинамической терапии онкологических заболеваний [16], включающий введение фотосенсибилизатора в зону опухолевой ткани и воздействие на нее лазерным излучением одновременно на двух длинах волн. Первая длина волны совпадает с максимумом поглощения ФС, а вторая используется для фотодиссоциации оксигемоглобина с дополнительным выделением кислорода. Данный способ предполагает использование одних и тех же длин волн излучения и доз облучения для всех пациентов, что может приводить как к низкой эффективности ФДТ, так и к ряду нежелательных последствий, связанных с излишним нагревом ткани пациента и ее необратимыми изменениями (коагуляция, разрушение капилляров и т.д.).

Предлагаемое изобретение направлено на решение задач определения оптимальных для конкретного пациента параметров лазерного воздействия (дозы облучения и длины волны излучения), повышение эффективности ФДТ и минимизации побочных неблагоприятных эффектов лечения за счет контроля концентраций ФС и HbO2 в ткани и эффективности поглощения ими света в слоях ткани с различной глубиной залегания, а также за счет контроля морфологических изменений облучаемой ткани (объемного содержания кровеносных сосудов и соотношения различных форм гемоглобина).

Для решения данных задач в способе фотодинамической терапии онкологических заболеваний, включающем введение фотосенсибилизатора в зону опухолевой ткани и воздействие на нее лазерным излучением одновременно на двух длинах волн, обеспечивающих воздействие на фотосенсибилизатор и оксигемоглобин, дополнительно облучают ткань широкополосным излучением из видимого и ближнего ИК диапазонов спектра; измеряют спектр диффузного отражения ткани; по спектру диффузного отражения ткани определяют ее структурно-морфологические параметры, в числе которых концентрации кровеносных сосудов fbl и фотосенсибилизатора Cps в ткани, а также относительные содержания оксигемоглобина S и метгемоглобина CMetHb в крови; устанавливают спектр пространственной освещенности в ткани Ф(z,λ) с использованием модели переноса оптического излучения в ткани и найденных значений ее структурно-морфологических параметров; а длины волн и мощности лазерных источников, а также время лазерного воздействия на ткань, обеспечивающие наибольшее поглощение света фотосенсибилизатором и наилучшую генерацию кислорода на глубине залегания патологического участка ткани или во всей ее толще при минимальном воздействии лазерного излучения на здоровую ткань, определяют на основе распределений эффективностей поглощения света фотосенсибилизатором Kps(z,λ) и эффективности фотодиссоциации оксигемоглобина n(z,λ) по длине волны света λ и глубине ткани z, рассчитываемых на основе выражений:

Kps(z,λ)=Cpsεps(λ)Ф(z,λ),

n ( z , λ ) = f b l S ( C t H b / μ t H b ) ε H b O 2 ( λ ) Ф ( z , λ ) ( q λ / h c ) ,

где εps и ε H b O 2 - молярные коэффициенты поглощения фотосенсибилизатора и оксигемоглобина, CtHb=150 г/л - средняя концентрация гемоглобина в крови, µtHb=64500 г/моль - молярная масса гемоглобина, h - постоянная Планка; c - скорость света в среде; q - квантовый выход фотодиссоциации оксигемоглобина.

Сущность данного изобретения поясняется с помощью фиг.1-15.

На фиг.1 представлен спектр поглощения света фотосенсибилизатором «Фотосенс».

На фиг.2 представлены результаты численных экспериментов по восстановлению концентрации кровеносных сосудов в коже из спектра диффузно отраженного ею света, нормированного на λ=800 нм.

На фиг.3 представлены результаты численных экспериментов по восстановлению относительного содержания оксигемоглобина в крови (степени оксигенации крови) из спектра диффузного отражения кожи, нормированного на λ=800 нм.

На фиг.4 представлены результаты численных экспериментов по восстановлению относительного содержания метгемоглобина в крови из спектра диффузного отражения кожи, нормированного на λ=800 нм.

На фиг.5 представлены результаты численных экспериментов по восстановлению концентрации фотосенсибилизатора в кожной ткани из спектра диффузно-отраженного ею света, нормированного на λ=800 нм.

На фиг.6 представлен нормированный спектр диффузного отражения кожи, используемый для восстановления спектральной плотности излучения, поглощаемой фотосенсибилизатором и оксигемоглобином в слоях кожи с различной глубиной залегания.

На фиг.7 представлены истинные (сплошные кривые) и восстановленные (пунктир) распределения полной освещенности по глубине кожи на λ=575 (1) и 675 нм (2).

На фиг.8 представлены истинные (точки) и восстановленные (пунктир) спектральные эффективности поглощения света фотосенсибилизатором.

На фиг.9 представлены истинные (точки) и восстановленные (пунктир) спектры эффективности фотодиссоциации оксигемоглобина в трех слоях кожи [z1, z2]: 1-z1=0.1 мм, z2=1.0 мм; 2-z1=1.0 мм, z2=2.0 мм; 3-z1=3.0 мм, z2=5.0 мм.

На фиг.10 представлены коэффициенты корреляции между истинными и восстановленными спектрами эффективности поглощения света фотосенсибилизатором для трех слоев ткани с различной глубиной залегания; 1-z=0.1-1.0 мм; 2-z=1.0-2.0 мм; 3-z=3.0-5.0 мм.

На фиг.11 представлены коэффициенты корреляции между истинными и восстановленными спектрами эффективности фотодиссоциации оксигемоглобина для трех слоев ткани с различной глубиной залегания; 1-z=0.1-1.0 мм; 2-z=1.0-2.0 мм; 3-z=3.0-5.0 мм.

На фиг.12 представлены нормированные спектры ДО кожи, рассчитанные в рамках моделей кожи с многослойной (сплошная кривая) и однородной (пунктир) дермой.

На фиг.13 представлены спектры эффективности фотодиссоциации оксигемоглобина на глубине ткани z=0.1-1.0 мм (1) и z=1.0-2.0 мм (2), рассчитанные при истинных параметрах 5-слойной среды (сплошные кривые) и восстановленных параметрах 2-слойной среды (пунктир).

На фиг.14 представлены экспериментальные (сплошные кривые) и модельные (пунктир) спектры диффузного отражения света от кожи.

На фиг.15 представлены зависимости эффективности фотодиссоциации оксигемоглобина во всей толще дермы от длины волны возбуждающего излучения; 1-fb1=0,6% и S=54%; 2-fbl=1,6% и S=64%; 3-fbl=3,2% и S=83%.

Возможности и достоинства предлагаемого способа продемонстрируем на примере ФДТ кожной ткани. Для измерений спектра ДО кожи в данном способе можно использовать коммерчески доступные оптоволоконные спектрофотометры (производителей Avantes, Ocean Optics и др.), состоящие из источника широкополосного излучения, спектрометра и волоконно-оптического зонда. Зонд содержит пучок из семи оптических волокон с естественной плотной упаковкой (шесть осветительных волокон вокруг одного считывающего). Центральное (считывающее) волокно присоединяется к спектрометру. Шесть наружных (осветительных) волокон соединяются с источником излучения и передают свет на исследуемый объект.

Определение структурно-морфологических параметров (СМП) кожной ткани основывается на сравнении модельного и экспериментального спектров ДО ткани и подборе модельных параметров x=(xp), обеспечивающих минимум функционала:

где Nλ - количество точек в измеряемых спектрах; ωexpi) - экспериментальный спектр ДО, определяемый путем сравнения детектируемых сигналов от ткани (P) и от белого диффузного отражателя (Pref), как

где λ0 - нормировочная длина волны; ω(x,λi) - модельный спектр ДО, определяемый как

где R(x,λ) - отражательная способность (ОС) ткани, рассчитываемая в рамках оптической модели ткани (см. ниже). Под ОС среды подразумевается отношение R=P/P0, где P0 - мощность коллимированного света, падающего на среду; P - мощность диффузного излучения, выходящего с площадки на поверхности среды вне области падающего света. Нормировка (2) и (3) позволяет избавиться от влияния интенсивности излучения источника, чувствительности приемника и величины ОС опорного отражателя на точность оценок параметров СМП ткани.

Расчет спектра ОС кожной ткани будем осуществлять в рамках оптической модели, описывающей кожу в виде двухслойной среды (эпидермис и дерма) с одинаковыми параметрами светорассеяния и различными коэффициентами поглощения слоев. Роговой слой, в силу малой оптической толщины, играет крайне незначительную роль в диффузном отражении света, поэтому он условно включен в состав эпидермиса. Анатомические области дермы (сосковидная, ретикулярная, поверхностное и глубинное сплетение сосудов) не имеют ни четких физических границ, ни принципиальных морфологических различий, поэтому все они заменены одним однородным слоем. Более глубокие слои кожи (жировой слой и мышечная ткань) практически не участвуют в процессе отражения света в видимой и ближней ИК областях спектра по причине его сильного ослабления вышележащими слоями.

Полагаем, что ФС локализован в тканях дермы, где располагаются кровеносные сосуды. Тогда модельными параметрами x являются: nsk - показатель преломления кожи; Bsca - транспортный коэффициент рассеяния соединительной ткани при λ=400 нм; ρMie - доля рассеяния Ми в общем рассеянии ткани при λ=400 нм; x - параметр спектральной зависимости транспортного коэффициента рассеяния Ми; Le - толщина эпидермиса; fm - объемная концентрации меланина в эпидермисе; fbl - объемная концентрация капилляров в дерме; dv - средний диаметр капилляров; CtHb - концентрация общего гемоглобина в крови (г/л); S и CMetHb - относительные содержания оксигемоглобина (HbO2) и метгемоглобина (MetHb) в общем составе гемоглобина; Cβ - молярная концентрация бета-каротина; Cps - молярная концентрация ФС. Для параметров Le и CtHb используем фиксированные значения - Le=60 мкм, CtHb=150 г/л (средние для кожи человека). Оптические параметры кожи рассчитываются по формулам:

где β′ и g - транспортный коэффициент рассеяния и фактор анизотропии рассеяния эпидермиса и дермы [17]; ke и kd - коэффициенты поглощения эпидермиса и дермы; kt - коэффициент поглощения соединительной ткани [17]; kbl - коэффициент поглощения крови, учитывающий лазерно-индуцированное образование метгемоглобина в кровеносных сосудах облучаемой ткани; εHb, εHbO2, εβ и εps - молярные коэффициенты поглощения Hb, HbO2, бета-каротина и ФС в мм-1/(моль/л); µtHb=64500 г/моль - молярная масса гемоглобина; µbil=585 г/моль - молярная масса билирубина; α - поправочный коэффициент, учитывающий эффект локализованного поглощения света кровеносными сосудами [18]:

В качестве ФС рассмотрим краситель «Фотосенс» производства ГНЦ «НИОПИК», представляющий собой смесь фракций фталоцианина алюминия с различной степенью сульфирования. Оптическая плотность Фотосенса приведена в работе [19]. Максимум его молярного коэффициента поглощения εps приходится на λ=675 нм и, по данным работы [3], составляет 0,25 см-1/(мкМ). Зависимость εps(λ), полученная с учетом этих данных, представлена на фиг.1.

Исходя из результатов численных расчетов ОС кожи методом Монте-Карло, связь ОС с оптическими параметрами кожи аппроксимируется следующим выражением:

где a i,m - коэффициенты аппроксимации; δ d = [ 3 k d ( k d + β ' ) ] 1 / 2 - глубина проникновения света в дерму (в диффузионном приближении). Рассмотрим геометрическую конфигурацию волоконно-оптического зонда, при которой осветительное и считывающее волокна диаметром 0,8 мм разнесены на расстояние 0,83 мм друг от друга. Коэффициенты формулы (10), соответствующие такой геометрии эксперимента, приведены в табл.1. Данные коэффициенты отвечают следующим размерностям параметров среды: [Le]=[мм], [β′]=[мм-1], [ke]=[мм-1], [kd]=[мм-1]. Формула с высокой точностью аппроксимирует численные расчеты ОС. Средняя погрешность аппроксимации результатов численных расчетов R формулой (10) составляет 0.85%. Коэффициент корреляции между значениями R, получаемыми методом Монте-Карло и по формуле (10), равен 0.9998.

Таким образом, алгоритм восстановления модельных параметров из спектра ДО кожи, измеряемого на расстоянии от области посылки возбуждающего излучения, основан на подборе результатов расчета спектра ДО кожи по формулам (4)-(10) под экспериментальные данные методом минимизации невязки (1). Точность восстановления важных для ФДТ модельных параметров (fbl, S, CMetHb, Cps) оценивалась на основе результатов численного расчета спектров ДО кожи методом МК. Расчет выполнялся для 70 значений λ, равномерно распределенных на отрезке [450 нм, 800 нм], при следующем разбросе модельных параметров: fm=1-10%, fbl=0.4-14%, dv=5-90 мкм, S=20-98%, CMetHb=1-60%, Cβ=0.2-5.0 мкМ, Cps=0.2-2.0 мкМ, Bsca=4-11 мм-1, ρMie=0.1-0.6, x=0.5-1.0, nsk=1.4-1.5.

Табл.1.
Коэффициенты формулы (10) для расчета ОС кожи
(i, m) a i,m (i, m) a i,m (i, m) a i,m
(1, 1) -0.5845 (5, 1) -10.785 (9, 1) -1.1647
(1, 2) 0.1205 (5, 2) 26.881 (9, 2) 0.2458
(1, 3) -0.0074 (5, 3) -19.757 (9, 3) -0.0162
(2, 1) -0.0193 (6, 1) 0.2185 (10, 1) -2.4387
(2, 2) 0.0037 (6, 2) -0.0150 (10, 2) 1.0495
(2, 3) -0.0002 (6, 3) 0.0019 (10, 3) -0.1722
(3, 1) 1.3624 (7, 1) 5.8379 (11, 1) 3.7004
(3, 2) -0.3327 (7, 2) -1.8591 (11, 2) -5.1912
(3, 3) 0.0410 (7, 3) 1.1101 (11, 3) 2.0525
(4, 1) 10.512 (8, 1) 9.3417 (12, 1) -8.8913
(4, 2) -2.7548 (8, 2) -34.946 (12, 2) 23.444
(4, 3) -3.5737 (8, 3) 58.744 (12, 3) -27.775

Значения параметров fbl, S, CMetHb и Cps, полученные путем обращения 550 случайных реализации спектра ДО кожи, смоделированных методом МК, представлены на фиг.2-5 в зависимости от соответствующих им известных значений. Коэффициенты корреляции между точными и восстановленными значениями fbl, S, CMetHb, Cps составляют соответственно 0.996, 0.991, 0.994, 0.980. Среднеквадратические погрешности восстановления данных параметров - Δfbl=0.26%, ΔS=2.4%, ΔCMetHb=1.7%, ΔCps=0.1 мкМ. Таким образом, сигналы диффузного света, регистрируемые при рассматриваемой измерительной базе (0.83 мм), обладают достаточной для практики чувствительностью к содержанию метгемоглобина в крови и к дополнительному экзогенному хромофору ткани - фотосенсибилизатору.

Для расчета пространственной освещенности в многослойной среде используем следующий метод. Полагаем, что исследуемая среда состоит из плоскопараллельных однородных слоев конечной толщины, не ограниченных в горизонтальном направлении, причем показатель преломления слоев одинаков или меняется плавно от одного слоя к другому. Рассеивающие и поглощающие свойства слоев характеризуются оптической толщиной τi, альбедо однократного рассеяния ωi и индикатрисой рассеяния pi(µ) или ее средним косинусом gi. Разделим мысленно каждый физический слой среды на множество тонких (виртуальных) слоев с однократным рассеянием. Световой поток на нижней границе i-го виртуального слоя представим суперпозицией трех составляющих: падающего коллимированного Fi, падающего диффузного F i * и отраженного диффузного J i * . Граничные условия, связывающие световые потоки в соседних слоях с одинаковыми показателями преломления, имеют вид:

где ti - коэффициент коллимированного пропускания i-го слоя; fi и bi - коэффициенты рассеяния вперед и назад (по отношению к направлению падающего излучения) слоя при его освещении коллимированным излучением; r i * и t i * - коэффициенты отражения и пропускания слоя при его диффузном освещении. Выражение для коэффициента коллимированного пропускания тривиально:

где Δτi - оптическая толщина слоя; µ0 - направляющий косинус падающего излучения, отсчитываемый от оси z, направленной внутрь среды, µ0>0. Для расчета коэффициентов fi и bi воспользуемся формулами для интенсивности излучения, однократно рассеянного слоем вперед Ii и назад Si, при его освещении с направления µ0 единичным потоком [20]:

Здесь ωi - альбедо однократного рассеяния; µ - направляющий косинус рассеянного излучения (µ>0);

- азимутально-усредненная индикатриса рассеяния; φ - азимут, отсчитываемый от произвольного направления в горизонтальной плоскости.

Коэффициенты fi и bi представляют собой отношения полусферических рассеянных потоков (в переднюю и заднюю полусферы) к падающему на слой потоку и рассчитываются путем интегрирования функций (13), (14) по телесному углу:

Для коэффициентов диффузного пропускания t i * и отражения r i * слоя в работе [21] получены простые аналитические выражения:

где γ i = 3 ( 1 ω i ) ( 1 g i ) - безразмерный глубинный показатель ослабления; q i = 1 / [ 3 ( 1 g i ) ] ; gi - средний косинус индикатрисы рассеяния.

При известных коэффициентах ti, fi, bi, t i * , r i * система уравнений (11) позволяет выразить световые потоки Fi, F i * и J i * через аналогичные величины для слоя i-1. Это преобразование удобно представить в матричной форме:

где ; i=1, …, n; p, g=1, 2, 3. Пересчитывая матрицу Di от слоя к слою как Di=TiDi-1, можно связать характеристики поля излучения внутри среды и на ее поверхности:

Поток излучения от внешнего источника (F0 или F 0 * в зависимости от условий освещения) можно, без потери общности, положить равным единице. Для нахождения потока излучения, отраженного средой J 0 * , рассмотрим уравнение (23), соответствующее самому глубокому слою среды i=n. Поскольку для данного слоя J n * = 0 , то из (23) следует, что J 0 * = ( d n , 31 F 0 + d n , 32 F 0 * ) d n , 33 1 = R 0 F 0 + R 0 * F 0 * , где R 0 = J 0 * / F 0 = d n , 31 / d n , 33 и R 0 * = J 0 * / F 0 * = d n , 32 / d n , 33 - КДО среды при ее коллимированном ( F 0 * = 0 ) и диффузном (F0=0) освещении соответственно. Определив, таким образом, коэффициенты R0 и R 0 * , можно из уравнений (4.20) и (4.21) найти значения полной освещенности элементарной площадки (с двух сторон) в каждом слое как:

Учтем теперь отражение света от поверхности среды. Пусть rs и r s * - коэффициенты отражения поверхностью коллимированного излучения, падающего на нее извне, и диффузного излучения, падающего на нее изнутри. Для гладкой поверхности среды с известным показателем преломления η эти коэффициенты рассчитываются по известным формулам Френеля. При освещении среды коллимированным потоком излучением доля его, равная rs, отражается поверхностью. Остальное излучение проникает во внутренние слои среды, где за счет многократного рассеяния становится диффузным. Диффузный свет многократно переотражается между внутренними слоями среды и ее поверхностью. При этом световые потоки, отраженные от поверхности среды, образуют бесконечно убывающую геометрическую прогрессию со знаменателем r s * R 0 * .

Согласно (24) внешнее коллимированное излучение создает в слое i среды освещенность Фi0=F0Ki, где K i = j = 1 3 ( d i , j 1 + R 0 d i , j 3 ) ; F0=F(1-rs), F - поток излучения, падающего на поверхность среды. Потоки диффузного излучения ( F 01 * , F 02 * , …), отраженного от внутренней границы среды, дополнительно создают освещенность:

где K i * = j = 1 3 ( d i , j 2 + R 0 * d i , j 3 ) .

Таким образом, выражение для полной освещенности слоя имеет вид:

Таким образом, предлагаемый метод позволяет сравнительно просто и быстро рассчитывать пространственную освещенность в многослойной среде. Последовательность выполняемых при этом операций включает: 1) виртуальное разбиение среды на тонкие слои с оптической толщиной Δτ; 2) нахождение матриц Ti (i=1, …, n), связывающих световые потоки в соседних тонких слоях, по формулам (12)-(20) (количество вычисляемых матриц Ti равно количеству физических слоев среды); 3) последовательное перемножение матриц Ti для всех тонких слоев, начиная с самого верхнего слоя, с попутным вычислением коэффициентов α i = j = 1 3 d i , j 1 , β i = j = 1 3 d i , j 2 и γ i = j = 1 3 d i , j 3 ; 4) вычисление пространственной освещенности Фi по формуле (25), в которой R 0 = d n , 31 / d n , 33 , R 0 * = d n , 32 / d n , 33 , KiiiR0, K i * = β i + γ i R 0 * . При практической реализации данного метода в качестве тонких слоев с однократным рассеянием оптимально брать слои с Δτ=0,04-0,05, обеспечивающие разумный компромисс между точностью и временем вычислений.

Зная концентрации хромофоров ткани и распределение освещенности по ее глубине, можно определить и световые мощности, поглощаемые хромофорами ткани в ее слоях с различной глубиной залегания. Рассмотрим пример определения эффективности поглощения света фотосенсибилизатором Kps(z,λ) и эффективности фотодиссоциации оксигемоглобина n(z,λ). Функция Kps(z,λ) представляет собой суммарную мощность излучения, поглощенную ФС в единичном объеме среды, при единичной освещенности ее поверхности:

где Cps и εps - молярная концентрация и коэффициент поглощения ФС; Ф(z,λ) - распределение плотности излучения с длиной волны λ по глубине z ткани (пространственная освещенность), Вт/м2. Под функцией n(z,λ), см-3/с понимается количество молекул кислорода, образующихся в единицу времени в единице объема ткани на глубине z, при единичной освещенности поверхности ткани монохроматическим светом:

где h - постоянная Планка; c - скорость света в среде; q - квантовый выход фотодиссоциации, который при возбуждении HbO2 светом с λ=300-650 нм составляет примерно 3-5% [22].

Пусть сигнал диффузного света измеряют при диаметрах круговых осветительной и приемной площадок на поверхности среды 0.8 мм и расстоянии между их центрами 0.83 мм. Спектр ДО кожной ткани ω(λ)=R(λ)/R(800 нм), отвечающий такой геометрии измерений, представлен на фиг.6. Данный спектр рассчитан методом Монте-Карло для случайной комбинации модельных параметров (xp): fm=1,85%, fbl=3.84%, dv=32.2 мкм, S=82.5%, CMetHb=11.4%, Cβ=0.47 мкМ, Cps=1.04 мкМ, Bsca=6.46 мм-1, ρMie=0.19, x=0.94, nsk=1.45. Модельные параметры ( x p * ), подобранные в результате минимизации невязки между данным спектром и спектром, рассчитанным на основе аппроксимационной формулы (10), имеют следующие значения: f m * =0,74%, f b l * =3,80%, d v * =43,9 мкм, S*=83,3%, C M e t H b * =11,4%, C β * =0,25 мкМ, C p s * =1,02 мкМ, C s c a * =8,14 мм-1, ρ M i e * =0,12, x*=0,56, n s k * =1,44. Видно, что параметры fbl, S, CMetHb и Cps восстанавливаются с достаточно высокой точностью, что согласуется с результатами анализа диагностических возможностей рассматриваемых измерений. Между тем, погрешности восстановления других параметров среды более чем существенны. Причиной этому является неоднозначная зависимость спектра ДО среды, моделирующей кожную ткань, от указанных выше параметров. Существует бесконечное количество решений обратной задачи, одинаково хорошо воспроизводящих спектр ω(λ) в приближении используемой модели. Диапазоны значений параметров fbl, S, CMetHb и Cps, отвечающих одному и тому же спектру ω(λ), являются достаточно узкими (см. разброс точек на фиг.2-5 относительно прямых x p = x p * ), что позволяет получать удовлетворительные оценки данных параметров по измерениям ω(λ). Аналогичные диапазоны для других модельных параметров сравнимы с априорной неопределенностью последних. Тем не менее все комбинации модельных параметров, приводящие к одному и тому же расчетному спектру ω(λ), соответствуют примерно одинаковому световому режиму внутри среды. В качестве подтверждения этому на фиг.7 изображены распределения освещенности по глубине среды Ф(z,λ) на λ=575 и 675 нм, рассчитанные аналитически при восстановленных значениях модельных параметров (описанным выше методом). Действительно, несмотря на существенные различия между точными и восстановленными параметрами среды, и те и другие обуславливают практически одинаковую пространственную освещенность в среде. Восстановленные профили Ф(z,λ) отличаются от истинных распределений освещенности в среде в пределах погрешности разработанного метода расчета Ф(z,λ). Функции Kps(z,λ) и n(z,λ), полученные по восстановленным параметрам fbl, S, Cps и распределениям Ф(z,λ), также достаточно хорошо воспроизводят истинные спектры действия света на ФС и эффективности фотодиссоциации HbO2. В качестве примера на фиг.8 и 9 представлены функции K p s ( λ ) = z 1 z 2 K p s ( z , λ ) d z и n ( λ ) = z 1 z 2 n ( z , λ ) d z , рассчитанные для трех слоев среды [z1, z2] с различной глубиной залегания. Видно, что несущественные количественные отличия между точными и восстановленными профилями Kps(λ) и n(λ) имеют место лишь для глубоких слоев.

Аналогичные численные эксперименты проведены для 550 реализации модельных параметров. Спектры Kps(λ) и n(λ), восстановленные из ω(λ), сравнивались с аналогичными известными спектрами, отвечающими реальному световому режиму в среде. Коэффициенты корреляции между истинными и восстановленными спектрами Kps(λ) и n(λ) приведены на фиг.10 и 11. Видно, что предлагаемый способ позволяет с высокой степенью достоверности определять спектры Kps(λ) и n(λ) в слоях ткани с глубиной залегания до 2.0-2.5 мм при всем разбросе оптических параметров ткани. Для более глубоких слоев можно получать корректные оценки спектральных особенностей поглощения света ФС и HbO2 (например, положение максимума поглощения), однако абсолютные величины Kps(λ) и n(λ) в ряде случаев (например, при высокой пигментации кожи) могут определяться с большими погрешностями. Это обстоятельство не является ограничением предлагаемого метода, а связано с конечной глубиной проникновения света в ткань. Для получения информации о глубоких слоях ткани следует дополнить рассматриваемые измерения ω(λ) ближним ИК диапазоном. При этом придется учесть дополнительные хромофоры ткани - воду и липиды, поглощающие излучение с λ>900 нм. В остальном алгоритм обработки ω(λ) остается без изменений.

Представленные выше результаты получены в приближении модели кожной ткани с тонким верхним слоем (эпидермис) и полубесконечным однородным нижним слоем (дерма). Такая модель, несмотря на свою простоту, хорошо описывает экспериментальные спектры ДО кожи и позволяет выполнять оценки некоторых среднеобъемных параметров эпидермиса и дермы. Однако реальное строение кожи намного сложнее, чем это предполагается в используемой модели. В составе дермы выделяют несколько анатомических областей (слоев) с различным содержанием кровеносных сосудов. В связи с этим возникает вопрос - насколько корректно связь спектра ДО кожи с характеристиками светового поля в ее многослойной дерме воспроизводится в рамках используемой модели? Для ответа на поставленный вопрос рассмотрим более реалистичную модель кожи человека, предложенную в работе [23]. В исходном варианте модель представлена в виде геометрических толщин L слоев кожи и их оптических параметров (коэффициента поглощения k, коэффициента рассеяния β, фактора анизотропии рассеяния g) на λ1=337 нм и λ2=633 нм. Предполагая, что основными поглотителями света в коже являются меланин, Hb и HbO2, по заданным коэффициентам поглощения каждого слоя на λ1 (изобестическая точка спектров поглощения Hb и HbO2) несложно получить концентрации меланина fm и капилляров fbl в соответствующих слоях (см. табл.2). Степень оксигенации крови S во всех слоях дермы положим равной 70%, концентрацию общего гемоглобина в крови CtHb - 150 г/л, диаметр капилляров dv - 10 мкм. Фоновое поглощение ткани соответствует экспериментальным данным [17]. Суммарный коэффициент поглощения каждого из слоев рассчитывается по формулам (7), (8) при Cβ=0, Cps=0 и CMetHb=0. Для расчета β(λ) и g(λ) в диапазоне λ=450-800 нм используем соответственно степенную А(λ2/λ)v и линейную B+Cλ функции с коэффициентами A, v, B и C, полученными для каждого слоя ткани по соответствующим им значениям β и g на λ1 и λ2 (табл.2). Показатель преломления всех слоев кожи полагаем одинаковым - 1,45.

Табл.2.
Параметры слоев кожи, используемые при моделировании
Слой L, мм fm, % fbl, % A, мм-1 v B C·104, нм-1
1 0,1 1,3 0 10,7 0,687 0,64 2,36
2 0,2 0 4 18,7 0,307 0,61 3,38
3 0,2 0 7 19,2 0,393 0,61 3,38
4 0,9 0 4 18,7 0,687 0,61 3,38
5 0,6 0 8 19,4 0,421 0,61 3,38

Спектр ДО кожи с многослойной дермой ωm(λ), рассчитанный методом МК, приведен на фиг.12. Интерпретация этого спектра выполнялась в приближении модели кожи с однородной дермой. Параметры данной модели, восстановленные из спектра ωm(λ), имеют следующие значения: fmDe=0,84 мкм, fbl=5,13%, dv=12,5 мкм, S=68%, β′(λ0))=7,59 мм-1, ρMie=0,95, x=1,97, nsk=1,37. Видно, что восстановленные значения содержания меланина в эпидермисе, степени оксигенации крови и диаметра капилляров достаточно близки к соответствующим значениям для 5-слойной модели кожи. Восстановленный параметр fbl примерно равен средней по глубине многослойной дермы концентрации капилляров - i = 2 5 L i f b l , i / i = 1 5 L i = 5 , 58 % . Спектр ДО кожи ω1(λ), рассчитанный по формуле (10) при восстановленных модельных параметрах, практически не отличим от спектра ωm(λ).

Рассмотрим результаты восстановления характеристик светового поля внутри многослойной ткани по спектру диффузно-отражаемого ею света. Физической основой такого восстановления является зависимость глубины проникновения света в ткань от λ. Зондирующее излучение с различной λ проникает в различные слои ткани и поэтому содержит информацию о данных слоях. Спектры эффективности фотодиссоциации оксигемоглобина nm(λ) на различных глубинах в ткани, рассчитанные методом МК при значениях параметров ткани из табл.2, приведены на фиг.13. Аналогичные спектры n1(λ), рассчитанные в рамках 2-слойной модели кожи, также приведены на фиг.13. Расчет n1(λ) выполнялся при значениях модельных параметров, восстановленных из ωm(λ). Различие между спектрами n1(λ) и nm(λ) не превышает погрешности восстановления n1(λ), предсказанной на основе модели кожи с однородной дермой, и не является принципиальным для практики.

Таким образом, можно заключить, что для определения пространственной освещенности в многослойной дерме и спектров действия света на ее хромофоры можно с успехом использовать модель кожной ткани с однородной дермой. Причиной этому является оптическая эквивалентность данных сред, т.е. спектрально-пространственные характеристики светового поля внутри и вне многослойной среды можно в точности воспроизвести в рамках модели однородной среды.

Разработанный способ определения эффективности фотодиссоциации HbO2 в тканях in vivo опробован на коже нескольких добровольцев. В экспериментах использовался оптоволоконный спектрофотометр Avantes с диаметрами светоподводящего и светопринимающего волокон 0.4 мм. Структурно-морфологические параметры кожи, найденные по спектру ее ДО в приближении двухслойной среды, использовались для расчета оптических параметров среды и глубинного распределения в ней освещенности Ф(z,λ). Спектр эффективности фотодиссоциации HbO2 рассчитывался по формуле (27) в соответствии с восстановленными значениями модельных параметров (fbl, S) и пространственной освещенности Ф(z,λ).

В качестве примера на фиг.14 представлены экспериментальные ωexp(λ) и подобранные в рамках модели ω(λ) спектры ДО безымянного пальца трех добровольцев. Спектры эффективности фотодиссоциации HbO2 во всей толще дермы, восстановленные из ωexp(λ), представлены на фиг.15. Видно, что количество молекулярного кислорода O2, высвобождаемое из кровеносных сосудов дермы в окружающую ткань, зависит от СМП ткани и при одной и той же дозе облучения может различаться в несколько раз. В целом эффективность генерации O2 на длине волны максимального поглощения света HbO2max=577 нм) для одного и того же анатомического участка кожи разных добровольцев различается в 2-3 раза. Для различных анатомических участков вариации n(λmax) еще более существенны - значения n(λmax) для кожи пальца, ладони и переносицы добровольцев различаются в 10 и более раз. Очевидно, что это обстоятельство необходимо учитывать при проведении сеансов лазерной терапии для того, чтобы повысить эффективность генерации O2 и избежать нежелательных последствий лазерного воздействия, связанных с излишним нагревом ткани пациента и ее необратимыми изменениями (коагуляция ткани, разрушение капилляров и т.д.).

Таким образом, предлагаемый способ позволяет контролировать концентрации эндогенных и экзогенных хромофоров ткани (капилляров, оксигемоглобина, метгемоглобина, фотосенсибилизатора) и эффективности поглощения ими света в слоях ткани с различной глубиной залегания. Это, в свою очередь, позволяют учитывать индивидуальные особенности ткани пациента и выбирать оптимальные для него лазерные источники и индивидуальную дозу облучения при ФДТ, обеспечивающие наибольшее поглощение света фотосенсибилизатором и наилучшую генерацию кислорода на глубине залегания патологического участка ткани или во всей ее толще при минимальном воздействии лазерного излучения на здоровую ткань. Таким образом, можно повысить эффективность и снизить продолжительность сеансов лазерной терапии, избежать побочных неблагоприятных эффектов и стандартизовать методы лечения больных с одинаковой патологией.

Литература

1. Асимов P.M., Асимов М.М., Рубинов А.Н. Лазерно-индуцированная оксигенация биотканей: новая технология устранения тканевой гипоксии в раковых опухолях // Лазерная медицина. 2008. Т. 12, №1. С.9-14.

2. Simultaneous measurement of photosensitizer absorption and fluorescence in patient undergoing photodynamic therapy / A.A. Stratonnikov [et. al.] // Proc. SPIE. 2002. V.4613. P.162-173.

3. Использование спектроскопии обратного диффузного отражения света для мониторинга состояния тканей при фотодинамической терапии / Стратонников A.A. [и др.] // Квантовая электроника. 2006. Т.36, №12. С.1103-1110.

4. Патент № US 2011/0270056 A1, A61B 6/00, A61M 37/00, 03.11.2011.

5. Optical measurement of photosensitizer concentration in vivo / M.R. Austwick [et. al.] // J. Innovat. Opt. Health. Sci. 2011. V.4, №.2. P.97-111.

6. The control of photosensitizer in tissue during photodynamic therapy by means of absorption spectroscopy / A.A. Stratonnikov [et. al.] // Proc. SPIE. 1996. V.2924. P.49-60.

7. Loschenov V.В., Konov V.I., Prokhorov A.M. Photodynamic therapy and fluorescence diagnostics // Laser Physics. 2000. V.10, №6. P.1188-1207.

8. Broadband reflectance measurements of light penetration, blood oxygenation, hemoglobin concentration, and drug concentration in human intraperitoneal tissues before and after photodynamic therapy / H.W. Wang [et. al.] // J. Biomed. Opt. 2005. V.10, №1. P.014004-1-13.

9. Noninvasive measurement of fluorophore concentration in turbid media with a simple fluorescence/reflectance ratio technique / R. Weersink [et. al.] // Appl. Opt. 2001. V.40, №34. P.6389-6395.

10. Асимов M.M., Королевич А.Н., Константинова Е.Э. Кинетика оксигенации кожной ткани под воздействием низкоинтенсивного лазерного излучения // Журн. прикл. спектр. 2007. Т.74, №1. С.120-125.

11. Патент RU 2438733 С1, A61N 5/06, 10.01.2012.

12. Патент RU 2484861 C2, A61N 5/06, 20.06.2013.

13. Methemoglobin formation during laser induced photothermolysis of vascular skin lesions / L.L. Randeberg [et. al.] // Lasers Surg. Med. 2004. V.34, №5. P.414-419.

14. Флуоресценция фотосенсибилизатора на основе индотрикарбоцианинового красителя при фотохимиотерапии / M.П. Самцов [и др.] // Журн. прикл. спектр. 2011. Т.78, №1. С.121-127.

15. Laser treatment of port wine stains: therapeutic outcome in relation to morphological parameters / E.I. Fiskerstrand [et. al.] // British J. Dermatol. 1996. V.134, №6. P.1039-1043.

16. Б.М. Джагаров, Э.А. Жаврид, Ю.П. Истомин, В.Н. Чалов. Двухцветная лазерная фотодинамическая терапия // Журнал прикладной спектроскопии. 2001. Т.68. С.151-153.

17. Jacques S.L. Origins of tissue optical properties in the UVA, visible, and NIR // Advances in Optical Imaging and Photon Migration. 1996. V.2. P.364-369.

18. Барун В.В., Иванов А.П. Оценка вклада локализованного поглощения света кровеносными сосудами в оптические свойства биологической ткани // Оптика и спектр. 2004. V.96, №6. Р.1019-1024.

19. Model S.S., Savelieva T.A., Linkov K.G. System for determining the concentration and visualization of the spatial distribution of photosensitizers based on tetrapyrrole compounds in the tissues of the human ocular fundus // Proc. SPIE. 2013. V.8699. P.86990 E-1-6.

20. Liou K.N. An introduction to atmospheric radiation. Second edition. New York, London: Academic Press, 2002. P.290-292.

21. Отражение и пропускание света слоем большой оптической толщины / Э.П. Зеге [и др.] // Журн. прикл. спектроск. 1979. Т.30, №5. С.900-907.

22. Лепешкевич С.В., Коновалова Н.В., Джагаров Б.М. Исследование методом лазерной кинетической спектроскопии бимолекулярных стадий реакции оксигенации α- и β-субъединиц гемоглобина человека в R-состоянии // Биохимия. 2003. Т.68, №5. С.676-685.

23. Тучин В.В. Исследование биотканей методами светорассеяния // Усп. физ. наук. 1997. Т.167, №5. С.517-539.

Способ фотодинамической терапии онкологических заболеваний, включающий введение фотосенсибилизатора в зону опухолевой ткани и воздействие на нее лазерным излучением одновременно на двух длинах волн, обеспечивающих воздействие на фотосенсибилизатор и оксигемоглобин, отличающийся тем, что дополнительно облучают ткань широкополосным излучением из видимого и ближнего ИК диапазонов спектра; измеряют спектр диффузного отражения ткани; по спектру диффузного отражения ткани определяют ее структурно-морфологические параметры, в числе которых концентрации кровеносных сосудов fbl и фотосенсибилизатора Cps в ткани, а также относительные содержания оксигемоглобина S и метгемоглобина CMetHb в крови; устанавливают спектр пространственной освещенности в ткани Ф(z, λ) с использованием модели переноса оптического излучения в ткани и найденных значений ее структурно-морфологических параметров; а длины волн и мощности лазерных источников, а также время лазерного воздействия на ткань, обеспечивающие наибольшее поглощение света фотосенсибилизатором и наилучшую генерацию кислорода на глубине залегания патологического участка ткани или во всей ее толще при минимальном воздействии лазерного излучения на здоровую ткань, определяют на основе распределений эффективностей поглощения света фотосенсибилизатором Kps(z, λ) и эффективности фотодиссоциации оксигемоглобина n(z, λ) по длине волны света λ и глубине ткани z, рассчитываемых на основе выражений:
Kps(z, λ)=Cpsεps(λ)Ф(z, λ),
,
где εps и - молярные коэффициенты поглощения фотосенсибилизатора и оксигемоглобина, CtHb=150 г/л - средняя концентрация гемоглобина в крови, µtHb=64500 г/моль - молярная масса гемоглобина, h - постоянная Планка; c - скорость света в среде; q - квантовый выход фотодиссоциации оксигемоглобина.



 

Похожие патенты:
Изобретение относится к медицине, в частности к терапевтической стоматологии, и касается лечения хронического гингивита и пародонтита у лиц молодого возраста. Для этого предварительно определяют количественное содержание дрожжевой формы гриба рода Candida.

Изобретение относится к медицине, а именно к ревматологии, и может быть использовано в лечении больных ревматоидным артритом. Осуществляют одновременное комплексное применение лекарственных препаратов и лазерной терапии.

Изобретение относится к медицине, а именно к онкологии, и может быть использовано для фотодинамической терапии онкологических заболеваний. Для этого в зону опухолевой ткани в качестве фотосенсибилизатора вводят композицию из 5,10,15,20-тетракис(N-метил-3′-пиридил)хлорин и 5,10,15,20-тетракис(N-метил-3′-пиридил)бактериохлорин в объёме 0,5-10 мг на 1 г опухолевой ткани в зависимости от степени дифференцировки опухоли.

Изобретение относится к медицине, а именно к фотосенсибилизатору для фотодинамической терапии. Заявлен метиловый эфир 13,17-бис(N-метил-N,N-диэтиламмониоэтиламид) хлорина e6 дитозилат в качестве фотосенсибилизатора, имеющий формулу: Заявленное соединение стабильно, обладает высокой фотобактерицидной активностью in vitro и высокой фотодинамической эффективностью.

Изобретение относится к медицине, а именно к фотосенсибилизатору для фотодинамической терапии. Заявлен метиловый эфир 13,17-бис(N-метил-N,N-диэтиламмониоэтиламид) хлорина e6 дитозилат в качестве фотосенсибилизатора, имеющий формулу: Заявленное соединение стабильно, обладает высокой фотобактерицидной активностью in vitro и высокой фотодинамической эффективностью.
Изобретение относится к медицине, а именно к торакальной хирургии, и может быть использовано для лечения бронхоэзофагеальных свищей. Для этого под эндоскопическим контролем в область свищевого хода со стороны пищевода вводят гель «Колетекс-Д» до полного его заполнения.
Изобретение относится к медицине, офтальмологии и предназначено для восстановления бинокулярного зрения при содружественном косоглазии. Проводят стимуляцию сетчатки путем наблюдения пациентом четырехточечного лазерного спекла при поляроидном разделении полей зрения на диплоптическом аппарате, при релаксации и нагрузке соответственно положительными, а затем отрицательными сферическими линзами с шагом в 0,5 диоптрий до сохранения бинокулярного слияния.
Изобретение относится к медицине, а именно к офтальмологии и офтальмоонкологии, и может быть использовано для профилактики геморрагических осложнений во время проведения эндорезекции внутриглазных новообразований.
Изобретение относится к медицине, а именно к офтальмологии и офтальмоонкологии, и может быть использовано для фотодинамической обработки склерального ложа после эндорезекции внутриглазного новообразования.
Изобретение относится к медицине, а именно к офтальмологии и офтальмоонкологии для обработки склерального ложа после эндорезекции внутриглазного новообразования.

Изобретение относится к биологии и медицине и может быть использовано в лазерной терапии для лечения длительно незаживающих и гнойных ран, переломов, заболеваний суставов, а также в косметологии. Разработанный излучатель обеспечивает повышение эффективности биологически значимого действия низкоинтенсивного лазерного излучения, применяемого в лазерной терапии, за счет оптимизации расположения источников лазерного света и многочастотной модуляции. Предлагаемый матричный лазерный излучатель содержит лазерные диоды, расположенные в одной плоскости в два ряда, импульсный блок питания, выполненный с возможностью регулирования амплитуды напряжения, и контроллер, задающий одновременно три частоты повторения импульсов, базовая частота - 10000 Гц и частоты дополнительной модуляции - 1000 Гц и 1333 Гц. 3 з.п. ф-лы, 4 ил.

Изобретение относится к медицине, а именно к пульмонологии, и может быть использовано для коррекции вторичной мукоцилиарной недостаточности (ВМЦН) верхних дыхательных путей (ВДП) у больных бронхолегочными заболеваниями. Воздействуют низкоинтенсивным лазерным излучением красного спектра длиной волны 0,633 мкм в постоянном режиме на слизистые оболочки полости носа с обеих сторон. Предварительно проводят диагностику и определение степеней ВМЦН. В случае вторичной мукоцилиарной недостаточности 1-й степени воздействуют лазерным излучением с суммарной плотностью потока энергии (ППЭ) 1,5 Дж/см2 в течение 1,0 мин курсом 5-6 процедур. При 2-й степени - с суммарной ППЭ 2,25 Дж/см2 в течение 1,5 мин курсом 7-8 процедур. При 3-й степени - с суммарной ППЭ 3,0 Дж/см2 в течение 2 мин курсом 9-10 процедур. Способ позволяет повысить эффективность лечения за счет дифференцированного применения НИЛИ в зависимости от степени вторичной МЦН и восстановления мукоцилиарного транспорта. 5 табл., 4 пр.

Изобретение относится к медицине, а именно к пульмонологии, и может быть использовано для коррекции вторичной мукоцилиарной недостаточности (МЦН) нижних дыхательных путей (НДП) у больных бронхолегочными заболеваниями. Воздействуют импульсным инфракрасным низкоинтенсивным лазерным излучением длиной волны 0,89 мкм на проекции бронхов и легких в подключичной зоне, в межлопаточном пространстве и в аксиллярной области с обеих сторон. Предварительно определяют степень мукоцилиарной недостаточности. Воздействуют лазерным излучением средней мощности 3,75 мВт с частотой следования импульсов 500 Гц. При вторичной мукоцилиарной недостаточности нижних дыхательных путей 1-й степени воздействуют лазерным излучением в течение 6 минут курсом 7-8 процедур. При 2-й степени - в течение 7,5 минут курсом 9-10 процедур. При 3-й степени - в течение 9 минут курсом 11-12 процедур ежедневно. Способ позволяет повысит эффективность лечения бронхолегочных заболеваний за счет дифференцированного режима лазерной коррекции МЦН в зависимости от степени ее выраженности, что позволяет восстановить мукоцилиарный транспорт. 5 табл., 3 пр.

Изобретение относится к медицинской технике. Устройство для облучения тела человека когерентным излучением с терапевтическим эффектом предназначено для стимулирования благотворного терапевтического воздействия на тело человека когерентным электромагнитным, оптическим и акустическим излучением посредством одного устройства. Излучатели используются одновременно в определенных координированных электрических и геометрических конфигурациях для получения высоких терапевтических результатов. Электронное управление излучателей излучения по мощности, частоте, модуляции и пространственной геометрии обеспечивает согласованность видов излучения, оказывающих благотворное воздействие на клеточную ткань тела человека. В предпочтительном варианте устройство удерживается в руке с использованием набора определенных сменных насадок для наружного и внутреннего применения в различных частях тела человека. Новизна изобретения и улучшенные терапевтические результаты настоящего устройства обеспечиваются управляемым сочетанием и одновременным воздействием описываемых выше видов излучения в определенных согласованных конфигурациях. 5 з.п. ф-лы, 4 ил.
Изобретение относится к медицине, а именно к стоматологии, и может быть использовано для лечения патологических состояний ротовой полости, вызванных микроорганизмами. Для этого наносят композицию для ухода за полостью рта на участок ротовой полости, подозрительный на наличие микроорганизмов. Указанная композиция содержит фотосенсибилизирующий краситель. Краситель выбирают из группы, состоящей из рибофлавина, аллюра красного, тартразина, проточного зеленого и лиссаминового зеленого. Затем облучают этот участок светом с длиной волны, поглощаемой фотосенсибилизирующим красителем. Причем испускаемый свет характеризуется следующими параметрами: длина волны составляет от 400 до 780 нм, доза от 15 до 45 Дж/см2, плотность мощности от 175 до 250 мВт/см2. Воздействие проводят в течение периода времени от 2 до 15 мин. Изобретение обеспечивает эффективное и безопасное лечение состояний, вызванных микрорганизмами, за счет отсутствия токсического воздействия на ткани ротовой полости указанными фотосенсибилизаторами при обеспечении выраженного антибактериального и противовоспалительного эффекта. 5 з.п. ф-лы, 16 табл., 3 пр.
Изобретение относится к медицине, офтальмологии и может быть использовано для лечения кератоконуса роговицы. Способ включает пропитывание роговицы глаза 0,1%-ным раствором рибофлавина и последующее ее облучение ультрафиолетовым светом с длиной волны 365-375 нм в течение 30 мин. При этом перед пропитыванием роговицы рибофлавином на нее наносят 40%-ный раствор глюкозы, выдерживают его на поверхности роговицы в течение 9-11 мин, затем остатки раствора глюкозы удаляют, а на обработанную глюкозой поверхность роговицы наносят 0,1%-ный раствор рибофлавина на 30 мин. Способ обеспечивает устранение послеоперационных осложнений, сокращение сроков реабилитации пациентов, достижение высоких функциональных результатов операции. 5 пр.
Изобретение относится к медицине, в частности к хирургической стоматологии, и может быть использовано при лечении радикулярных кист. Препарируют кариозную полость. Проводят ее инструментальную и антисептическую обработку. Расширяют отверстие апикального канала «причинного зуба». В область кисты через корневой канал вводят на 7-10 мин фотосенсибилизатор метиленовый синий. Через корневой канал диодным лазером облучают оболочку кисты в течение 30-60 сек посредством игольчатого световода. Продолжают облучение с вестибулярной или оральной поверхности в течение 60,0-120,0 сек посредством пластинчатого световода с мощностью 0,5-1 Вт, длиной волны 625-630 нм, в импульсном режиме. Вводят в полость кисты 1.0-1.5 мл «Коллап-Ан» геля с метрогилом перед герметичным пломбированием корневых каналов «причинного» зуба. Способ позволяет повысить эффективность лечения, исключить возможность возникновения осложнений за счет полного удаления оболочки кисты, что позволяет добиться восстановления структуры костного дефекта в полном объеме. 2 пр.

Изобретение относится к экспериментальной медицине и может быть использовано для снижения летального действия бактериального липополисахарида in vitro. Для этого раствор липополисахарида однократно облучают электромагнитными волнами с частотой 1 ГГц, плотностью мощности 0,0001 мВт/см2 в течение 10 минут. Изобретение обеспечивает эффективное снижение летального действия бактериального липополисахарида. 1 табл.
Изобретение относится к медицине, а именно к хирургической стоматологии, и может быть использовано для лечения неврита нижнего альвеолярного нерва при попадании пломбировочного материала в нижнечелюстной канал. Для этого до операции вводят антибактериальные средства и проводят электростимуляцию (ЭС) в проекции нижнечелюстного и ментального отверстий. ЭС проводят аппаратом «Миоволна» с амплитудой напряжения 20-30 В, частотой тока 4-7 Гц, длительностью 10 минут, курсом 10 ежедневных процедур. Затем осуществляют хирургическое удаление пломбировочного материала из нижнечелюстного канала. После операции вводят антибактериальные, иммунокорригирующие, десенсибилизирующие средства. Дополнительно проводят ежедневное проекционное облучение оперированной области нижней челюсти длительностью 10 мин сканирующим лазерным излучателем от аппарата «Интрадонт» в течение 12 дней. Воздействие осуществляют в последовательном режиме сканирования с частотой 10 Гц с увеличением в последние 2 дня до 60 Гц, с импульсной мощностью лазерного излучения 20 Вт с увеличением в последние 2 дня до 40 Вт в стохастическом режиме сканирования. Способ обеспечивает купирование болевого синдрома и онемения соответствующих зон кожи лица в дооперационном периоде и оптимизацию мероприятий, направленных на восстановление кровообращения в бассейне нижней альвеолярной артерии в послеоперационном периоде в амбулаторных условиях, а также ускорение сроков реабилитации и выздоровления пациентов. 3 пр.

Изобретение относится к области медицины и биологии и может быть использовано для получения сверхвысокочастотного электромагнитного излучения. Излучатель содержит отражатель, проводники и замкнутые контуры, проходящие через ферритовые кольца. Плоскость отражателя имеет выемки цилиндрообразной формы. Проводники и замкнутые контуры, проходящие через ферритовые кольца, расположены на одной плоскости и размещаются над всей поверхностью отражателя. Плоскость параллельна плоскости отражателя и расположена на расстоянии от радиуса цилиндрообразной выемки до половины радиуса цилиндрообразной выемки. Устройство позволяет генерировать широкодиапазонное электромагнитное излучение, которое имеет большую площадь воздействия, а также создает в зоне воздействия электромагнитное поле высокой плотности, что позволяет вызвать разрушение и капсулизацию опухолевых клеток. 1 ил.
Наверх