Использование мемисторных устройств для радиочастотных катушек при магнитно-резонансной томографии

Изобретение относится к измерительной технике и представляет собой сборочный узел радиочастотных катушек для использования в магнитно-резонансной системе. Узел содержит радиочастотную катушку и схемы расстройки, запирания, смещения, мультиплексирования. Указанные схемы содержат резистивные элементы памяти, для каждого из которых возможно выбрать резистивное состояние и которые сохраняют выбранные резистивные состояния после отключения сигнала управления. Схема расстройки содержит резистивный элемент памяти, переключающий радиочастотную катушку между настроенным и расстроенным состояниями. Схема запирания, подключенная между радиочастотной катушкой и предварительным усилителем, содержит резистивный элемент памяти, чтобы закорачивать вход предварительного усилителя. Схема смещения создает сигнал управления, чтобы устанавливать резистивные элементы памяти схем расстройки и запирания в первое резистивное состояние во время режима передачи и во второе резистивное состояние во время режима приема магнитно-резонансной системы. Схема мультиплексирования содержит множество резистивных элементов памяти, чтобы избирательно соединять выбранные выходы радиочастотных катушек с приемником. 3 н. и 12 з.п. ф-лы, 2 ил.

 

Область техники, к которой относится изобретение

Настоящая заявка относится к магнитно-резонансной (MR) томографии. Она находит конкретное применение в сочетании со встроенными схемами для радиочастотных катушек в сканерах магнитно-резонансной томографии.

Уровень техники

Система магнитно-резонансной томографии (MRI) и спектроскопии (MRS) часто используется для исследования и лечения пациентов. С помощью такой системы ядерные спины ткани тела, которая должна исследоваться, выравниваются статическим основным магнитным полем B0 и возбуждаются поперечными магнитными полями B1, колеблющимися в радиочастотном диапазоне. При получении изображений релаксационные сигналы подвергаются воздействию градиентных магнитных полей, чтобы определить местоположение результирующего резонанса. Релаксационные сигналы принимаются, чтобы сформировать известным образом одномерное или многомерное изображение. В спектроскопии информацию о составе ткани несет частотная составляющая резонансных сигналов.

Двумя типами MR-систем, которые широко используются, являются "открытые" MR-системы (вертикальная система) и системы "сквозного типа". В первых системах пациент помещается в зону исследования, которая располагается между двумя магнитными полюсами, соединенными блоком C-образной формы. Во время исследования или лечения пациент доступен фактически со всех сторон. Вторые системы содержат цилиндрическое пространство исследования (осевая система), в которое помещается пациент.

Система радиочастотных катушек обеспечивает передачу радиочастотных сигналов и прием резонансных сигналов. В дополнение к системе радиочастотных катушек, которая наглухо встраивается в устройство получения изображения, вокруг или внутри конкретной области, которая должна обследоваться, могут гибко устанавливаться катушки специального назначения. Катушки специального назначения проектируются таким образом, чтобы оптимизировать отношение "сигнал-шум" (SNR), особенно в ситуациях, где требуются однородное возбуждение и высокая чувствительность обнаружения. Дополнительно специальные последовательности радиочастотных сигналов, повышенные напряженности поля, высокие углы переворота или последовательности в реальном времени могут применяться и создаваться многоканальными антенными устройствами и многомерные возбуждения могут ускоряться.

Во время этапа передачи процедуры магнитно-резонансной томографии радиочастотные сигналы передачи имеют величину, на несколько порядков большую, чем резонансный сигнал, создаваемый возбужденными ядрами. Для сохранения безопасности пациента и защиты чувствительной схемы приемника вместе с катушками, как известно, используются полупроводниковые переключатели, в частности pin-диоды, в сочетании со схемой защиты оборудования приемника. Например, отключение или расстройка приемных катушек достигается, соединяя LC-цепь с приемной катушкой через pin-диод, чтобы изменять ее резонансную частоту и блокировать наведение в катушке тока сигналами передачи. Запирание предварительных усилителей, которое осуществляется pin-диодом, создающим короткое замыкание на входе предварительного усилителя, обеспечивает дополнительную защиту цепей предварительного усилителя. Pin-диоды также используются в схемах выбора и переключения катушек, например, мультиплексор содержит матрицу pin-диодов, в которой сигнал управления включает/выключает выбранные элементы катушек, которые должны соединяться с MR-системой.

Pin-диоды обычно используются для многочисленных реализаций переключающих схем из-за их быстродействия, компактности и немагнитного корпуса. К сожалению, по мере улучшения технологии напряженность поля и количество элементов катушек в радиочастотных матрицах увеличились. Это приводит к большему количеству схем перестройки в матрицах катушек. Так как каждая схема перестройки для правильного функционирования требует ток смещения определенной величины, общая величина мощности для работы схем перестройки также увеличилась. Поэтому желательно найти решения для схем перестройки, которые требуют меньшей мощности для их работы.

Настоящая заявка обеспечивает новые и улучшенные схемы переключения, которые решают упомянутые выше и другие проблемы.

Раскрытие изобретения

В соответствии с одним вариантом, сборочный узел радиочастотных катушек содержит радиочастотную катушку и множество резистивных элементов памяти. Каждый резистивный элемент памяти сохраняет выбранное резистивное состояние после того, как сигнал управления отключается.

В соответствии с другим вариантом, способ магнитно-резонансной томографии содержит радиочастотные сигналы передачи для наведения резонансных сигналов и приема резонансных сигналов. Резистивное состояние памяти устанавливается так, чтобы расстраивать радиочастотную катушку во время передачи радиочастотных сигналов, закорачивать вход предварительного усилителя во время передачи радиочастотных сигналов, избирательно соединять один из множества выходов с последующей схемой обработки и хранить информацию.

Одно из преимуществ состоит в повышенной безопасности пациента и оборудования.

Другое преимущество состоит в улучшенном отношении "сигнал-шум" (SNR).

Другое преимущество состоит в снижении сложности системы.

Другое преимущество состоит в снижении стоимости.

Другое преимущество состоит в снижении потребления мощности.

Другое преимущество состоит в эффективном использовании пространства.

Другие дополнительные преимущества настоящего изобретения станут понятны специалистам в данной области техники после прочтения и понимания нижеследующего подробного описания.

Краткое описание чертежей

Изобретение может принимать форму различных компонент и сочетаний компонент и различных этапов и сочетаний этапов. Чертежи приводятся только для целей иллюстрирования предпочтительных вариантов осуществления и не должны рассматриваться как ограничение изобретения.

Фиг. 1 - схематичное представление системы магнитно-резонансной томографии; и

Фиг. 2 - схематичное представление MR-катушки с использованием мемисторных устройств.

Осуществление изобретения

Со ссылкой на Фиг. 1, система 10 магнитно-резонансной (MR) томографии содержит основной магнит 12, создающий однородное во времени поле B0, пересекающее область 14 исследования. Основной магнит может быть кольцевым магнитом или магнитом с отверстием, C-образным незамкнутым магнитом, иметь другие конструкции разомкнутых магнитов и т.п. Катушки 16 градиентного магнитного поля, расположенные рядом с основным магнитом, служат для создания градиентов магнитного поля вдоль выбранных осей относительно магнитного поля B0 для пространственного кодирования сигналов магнитного резонанса, чтобы создавать градиенты поля намагничивания-модуляции добротности и т.п. Катушка 16 градиента магнитного поля может содержать сегменты катушек, выполненные с возможностью создания градиентов магнитного поля в трех ортогональных направления, обычно продольном или z-, поперечном или x- и вертикальном или y-направлениях.

Сборочный узел 18 радиочастотных (RF) катушек, таких как радиочастотная катушка, предназначенная для всего тела, располагается рядом с областью исследования. Сборочный узел радиочастотных катушек создает радиочастотные импульсы для возбуждения магнитного резонанса в диполях объекта. Сборочный узел 18 радиочастотных катушек также служит для обнаружения сигналов магнитного резонанса, исходящих из области получения изображения. Как вариант, локальные, поверхностные или находящиеся в живом организме радиочастотные катушки 18' обеспечиваются в дополнение или вместо радиочастотной катушки 18, предназначенной для всего тела, для более чувствительного локализованного пространственного кодирования, возбуждения и приема сигналов магнитного резонанса.

Чтобы собрать данные магнитного резонанса об объекте, объект помещается внутрь области 14 исследования, предпочтительно в изоцентр или вблизи изоцентра основного магнитного поля. Контроллер 20 сканирования управляет контроллером 22 градиента, который заставляет градиентные катушки прикладывать выборочные импульсы градиентного магнитного поля к области получения изображения, как может потребоваться в выбранной последовательности магнитно-резонансной томографии или спектроскопии. Контроллер 20 сканирования также управляет радиочастотным передатчиком 24, который заставляет сборочный узел радиочастотных катушек формировать импульсы возбуждения магнитного резонанса и манипулирования В1. Контроллер сканирования также управляет радиочастотным приемником 26, который соединяется со сборочным узлом радиочастотных катушек, чтобы принимать от него сформированные сигналы магнитного резонанса. Контроллер 20 сканирования также содержит или управляет источником 27 напряжения постоянного тока, который обеспечивает подачу положительных или отрицательных постоянных напряжений для управления, чтобы увеличивать или уменьшать сопротивление резистивные элементов памяти (мемисторов) (не показаны на Фиг. 1) в приемной катушке 18, 18', как объясняется ниже более подробно. Одновременно с источником 27 напряжения постоянного тока имеется резистивный блок 28, измеряющий сопротивление резистивных элементов памяти.

Принятые данные от приемников 26 временно хранятся в буфере 29 данных и обрабатываются процессором 30 данных магнитного резонанса. Процессор данных магнитного резонанса может выполнять различные функции, как известно в технике, в том числе реконструкцию изображения (MRI), магнитно-резонансную спектроскопию (MRS), определение местоположения катетера или хирургического инструмента и т.п. Реконструированные изображения магнитного резонанса, результаты считывания спектроскопии, информация о местоположении хирургического инструмента и другие обработанные MR-данные хранятся в устройстве памяти, таком как архив пациентов медицинского учреждения. Графический интерфейс пользователя или устройство 34 отображения содержит устройство ввода данных пользователем, которое клинический врач может использовать для управления контроллером 20 сканирования, чтобы выбирать последовательности и протоколы сканирования, MR-данные для отображения и т.п.

Сборочный узел 18, 18' радиочастотных катушек содержит несколько специализированных передающих катушек и приемных катушек, каждая из которых, соответственно, соединена с радиочастотным передатчиком 24 и радиочастотным приемником 26. Радиочастотный передатчик содержит многочисленные каналы, каждый из которых соединяется, по меньшей мере, с одной передающей катушкой, которые совместно формируют в передающих катушках импульсы В1 для возбуждения резонанса и манипулирования. Аналогично, радиочастотный приемник содержит многочисленные каналы, каждый из которых соединяется, по меньшей мере, с одной приемной катушкой, которые принимают сформированные сигналы магнитного резонанса. Следует понимать, что также предполагается единая приемо-передающая катушка. В идеале, передающая и приемная катушки должен быть полностью изолированы; однако, во время этапа передачи в приемных катушках наводится ток, который, в свою очередь, формирует радиочастотные поля, которые противоположны желаемым импульсам В1 манипуляций при передаче локально вблизи приемных катушек. Дополнительно, наведенные токи могут не только повредить чувствительные приемные катушки, но также создать угрозу безопасности объекта.

Со ссылкой на Фиг. 2, сборочный узел 18, 18' радиочастотных катушек содержит множество приемных катушек 401, 402..., 40N, показанных схематично. Каждая приемная катушка содержит сегмент 42 катушки, который последовательно соединяется со схемой 44 расстройки. Схема расстройки отключает приемную катушку во время этапа передачи процедуры получения изображения. Схема содержит резистивный элемент памяти или переключатель 46 или переключающий мемистор, соединенные последовательно с сегментом катушки. Резистивный переключатель памяти является переключателем на основе мемисторов, который обеспечивает управляемое сопротивление в соответствии с проходящим через него сигналом управления и помнит резистивное состояние после отключения сигнала управления. Традиционные схемы расстройки используют pin-диодный переключатель; однако, pin-диоды требуют непрерывного сигнала управления, который может вызывать искажения поля вдоль линии передачи сигнала управления, если она не экранирована должным образом. Соответственно, при радиочастотных импульсах передачи повышенной мощности требуется все более и более мощный сигнал управления, чтобы обеспечить смещение pin-диода, гарантирующее, что сегмент катушки остается отсоединенным.

Перед этапом передачи сигнал управления, формируемый контроллером 20 сканирования, в одном варианте осуществления активно создает смещение резистивного переключателя памяти в проводящее состояние, чтобы оперативно присоединить параллельный резонансный режекторный фильтр 48, симметрирующий трансформатор и т.п. к соответствующему сегменту катушки. Резонансный режекторный фильтр действует как большое сопротивление, чтобы, по существу, блокировать прохождение тока в сегменте катушки. Соответственно, резонансный режекторный фильтр настраивается на частоту магнитного резонанса или ларморову частоту. В многоядерных системах магнитного резонанса может использоваться более чем одна схема расстройки, в которой каждый резонансный режекторный фильтр настраивается на желаемые виды ядер, например 1H, 31P, 19F и т.п. В другом варианте осуществления схема 44 расстройки содержит одиночный резистивный переключатель памяти, соединенный последовательно с сегментом катушки, который действует как большое сопротивление, чтобы отключить приемную катушку. В таком устройстве схема расстройки является, по существу, широкополосной и не требует настройки, что предпочтительно в многоядерных системах магнитного резонанса. Дополнительно, настройка резонансного режекторного фильтра имеет сопутствующую стоимость и коэффициент надежности. Следует также понимать, что для использования в многоядерных системах магнитного резонанса также предполагается больше, чем один резонансный режекторный фильтр.

В другом варианте осуществления импульс передачи используется для наведения постоянного напряжение смещения для создания смещения резистивного переключателя 46 памяти в состояние с большим сопротивлением (или малым сопротивлением) в отсутствие сигнала управления. Это устройство может быть реализовано добавлением пассивной схемы управления к резистивному переключателю памяти. Пассивная схема управления создает необходимый сигнал управления непосредственно из радиочастотного сигнала, см., например, публикацию общего пользования WO/2008/078270 A1. Это позволяет иметь высокие значения токов, но не низкие значения токов, чтобы параллельный резонансный контур отсоединил сегмент катушки. Следует также понимать, что может использоваться как активное, так и пассивное отсоединение.

Продолжая ссылаться на Фиг. 2, приемные катушки 402…, 40N содержат согласующие цепи 50, чтобы согласовать характеристическое сопротивление соответствующего сегмента 42 катушки с одноканальным радиочастотным предварительным усилителем 52. Согласующая цепь может быть настраиваемой согласующей цепью, которая позволяет настраивать согласующее сопротивление, чтобы приспособиться к размеру объекта и, следовательно, компенсировать изменение добротности Q приемной катушки. Например, больший размер объекта будет снижать значение Q, приводя в результате к рассогласованию сопротивлений, влияя, таким образом, на качество изображения. Схема 54 запирания присоединяется параллельно между сегментом 42 катушки и предварительным усилителем 52. В ответ на сигнал смещения постоянного тока, созданный контроллером 20 сканирования до этапа передачи, резистивный переключатель 56 памяти, присутствующий в схеме запирания, смещается в состояние проводимости, которое создает короткое замыкание входа предварительного усилителя. Схема 54 запирания действует для защиты предварительного усилителя 52 и других последующих электронных устройств от чрезмерных радиочастотных токов, наведенных во время этапа передачи при выполнении последовательности получения изображения. Дополнительно, схема запирания содержит схему 58 смещения для контроля наведенного тока. Если обнаруживается частный максимальный уровень мощности, схема смещения создает сигнал управления для смещения резистивного переключателя памяти, закорачивая, таким образом, вход предварительного усилителя.

В одном варианте осуществления выход предварительного усилителя 52 соединяется со схемой 60 многоканального (или с многочисленными одиночными каналами) мультиплексора 60, причем каждый канал мультиплексора соответствует выходу приемной катушки 401, 402…, 40N. Мультиплексор содержит множество резистивных элементов памяти или переключателей 621, 622…, 62N, каждый из которых соответствует каналу мультиплексора и, в свою очередь, приемной катушке. Сигнал управления, подаваемый контроллером 20 сканирования, смещает один или субнабор резистивных переключателей памяти в состояние проводимости, чтобы присоединить одну или более приемных катушек к последующей схеме обработки. Таким образом, приемная катушка может иметь больше каналов, чем последующая схема обработки, например радиочастотный приемник 26.

Резистивные элементы памяти приемной катушки могут также выполнять функцию устройства памяти. Как пример, сборочный узел катушек содержит устройство 70 памяти, которая содержит множество резистивных элементов 72 памяти. В двоичном варианте осуществления каждый элемент смещается в состояние высокого сопротивления или в состояние низкого сопротивления, чтобы хранить информацию, такую как идентификатор катушки, характеристики, статистику использования и т.п., в виде двоичных единиц "1" и нулей "0". Поскольку мемисторы могут быть установлены на разные значения сопротивления, память может отличаться от двоичной памяти, например, иметь основание 8, основание 10, основание 32 и т.п.

В более сложном варианте осуществления каналы приемных катушек, которые мультиплексор 60 не присоединяет к радиочастотному приемнику 26, могут присоединяться другой группой резистивных переключателей памяти мультиплексора к устройству 70 памяти. Информация приемного канала оцифровывается и хранится в резистивном состоянии резистивных элементов 72 памяти, в то время как приемник демодулирует другие каналы резонансных сигналов, поступающих от мультиплексора 60. Затем мультиплексор передает сигналы приемных каналов, хранящиеся в устройстве 70 памяти, на радиочастотный приемник 26.

Продолжая ссылку на Фиг. 1, принятые данные от приемников 26 временно сохраняются в буфере 29 данных и обрабатываются процессором 30 данных магнитного резонанса. Следует понимать, что также предполагается буфер данных, содержащий множество резистивных элементов памяти. Процессор данных магнитного резонанса может выполнять различные функции, как известно в технике, в том числе реконструкцию изображения (MRI), магнитно-резонансную спектроскопию (MRS), определение местоположения катетера или хирургического инструмента и т.п. Реконструированные магнитно-резонансные изображения, данные считывания спектроскопии, информация о местоположении хирургического инструмента и другие обработанные MR-данные хранятся в устройстве памяти, таком как архив пациентов медицинского учреждения. Графический интерфейс пользователя или устройство 34 отображения содержит устройство ввода данных пользователем, которое клинический врач может использовать для управления контроллером 20 сканирования, чтобы выбирать последовательности и протоколы сканирования, MR-данные для устройства отображения и т.п.

Изобретение было описано со ссылкой на предпочтительные варианты осуществления. Модификации и изменения могут вноситься другими лицами после прочтения и понимания предшествующего подробного описания. Предполагается, что изобретение создается так, чтобы содержать в себе все такие модификации и изменения настолько, насколько они попадают в пределы объема прилагаемой формулы изобретения или ее эквивалентов.

1. Сборочный узел (18, 18′) радиочастотных катушек для использования при магнитном резонансе, содержащий:
радиочастотную катушку (42); и
множество резистивных элементов (46, 56, 62, 72) памяти, каждый из которых сохраняет выбранное резистивное состояние после отключения сигнала управления.

2. Сборочный узел (18, 18′) радиочастотных катушек по п.1, дополнительно содержащий:
схему (20, 27) смещения, создающую сигнал управления для установки резистивного элемента памяти в одно из множества резистивных состояний; и
в котором по меньшей мере один резистивный элемент (46, 56, 62, 72) памяти является частью схемы (44) расстройки, которая переключает радиочастотную катушку (42) между настроенным состоянием, настроенным на резонансную частоту и расстроенным состоянием.

3. Сборочный узел (18, 18′) радиочастотных катушек по п.2, в котором схема (44) расстройки содержит:
резонансный режекторный фильтр (48), резистивный элемент (46) памяти, переключаемый сигналом управления, чтобы соединить резонансный режекторный фильтр последовательно с радиочастотной катушкой (42).

4. Сборочный узел (18, 18′) радиочастотных катушек по любому из пп.1-3, дополнительно содержащий:
соединенную с радиочастотной катушкой (42) и предварительным усилителем (52) схему (54) запирания, которая содержит резистивный элемент (56) памяти, выполненный с возможностью закорачивания входа предварительного усилителя, соединенного с радиочастотной катушкой, при смещении в проводящее состояние.

5. Сборочный узел (18, 18′) радиочастотных катушек по п.1, дополнительно содержащий:
схему мультиплексирования, содержащую множество резистивных элементов (621, 622,…, 62N) памяти, выполненных с возможностью связывания выхода выбранной радиочастотной катушки (42) сборочного узла радиочастотных катушек к приемнику (26).

6. Сборочный узел (18, 18′) радиочастотных катушек по п.1, дополнительно содержащий:
устройство (70) памяти с множеством резистивных переключателей (72) памяти, выполненное с возможностью хранения информации.

7. Сборочный узел (18, 18′) радиочастотных катушек по п.1, дополнительно содержащий по меньшей мере одно из следующего:
схему (44) расстройки, выполненную с возможностью блокировки посредством по меньшей мере одного из резистивных элементов (46) памяти сигнала на выбранной радиочастоте, наведенного на радиочастотной катушке (42);
схему (54) запирания, выполненную с возможностью избирательного короткого замыкания входа предварительного усилителя (52) посредством по меньшей мере одного из резистивных элементов (56) памяти; и
схему (60) мультиплексирования, выполненную с возможностью избирательного связывания выбранных выходов радиочастотных катушек к последующей схеме обработки посредством множества резистивных элементов (62) памяти.

8. Сборочный узел (18, 18′) радиочастотных катушек по п.1, в котором резистивные элементы (46, 56, 62, 72) памяти содержат мемистор, который смещается в резистивное состояние смещением по постоянному току и сохраняет упомянутое резистивное состояние при отключении упомянутого смещения по постоянному току.

9. Магнитно-резонансная система (10), содержащая:
магнит (12), создающий статическое магнитное поле в области исследования;
по меньшей мере один сборочный узел (18, 18′) радиочастотных катушек по любому из пп.1-8, выполненный с возможностью сбора данных магнитного резонанса из области исследования;
передатчик (24), соединенный по меньшей мере с одним сборочным узлом радиочастотных катушек;
радиочастотный приемник (26), соединенный по меньшей мере с одним сборочным узлом (18, 18′) радиочастотных катушек;
контроллер (20) сканирования, выполненный с возможностью управления радиочастотным передатчиком и радиочастотным приемником и схемой (27) управления для создания сигнала управления, чтобы регулировать резистивное состояние по меньшей мере одного из резистивных элементов памяти;
процессор (30) обработки данных, который обрабатывает данные резонанса, полученные от радиочастотного приемника (26), чтобы создавать данные магнитно-резонансной томографии или данные магнитно-резонансной спектроскопии; и
устройство (32) отображения для отображения результатов обработки резонансных сигналов.

10. Способ магнитного резонанса, содержащий этапы, на которых:
передают радиочастотные сигналы для наведения резонансных сигналов в области (14) исследования;
принимают резонансные сигналы; и
устанавливают резистивное состояние по меньшей мере одного резистивного элемента (46, 56, 62, 72) памяти для выполнения по меньшей мере одного из следующего:
расстраивания радиочастотной катушки (42), которая принимает резонансные сигналы во время передачи радиочастотных сигналов, и
закорачивания входа предварительного усилителя (52), который усиливает принятые резонансные сигналы, во время передачи радиочастотных сигналов.

11. Способ по п.10, в котором этап установки резистивного состояния по меньшей мере одного резистивного элемента (46, 45, 62, 72) памяти содержит этапы, на которых:
прикладывают напряжение смещения первой полярности к резистивному элементу памяти, чтобы увеличить его сопротивление;
прекращают прикладывать напряжение смещения первой полярности при первом выбранном сопротивлении, причем резистивный элемент памяти сохраняет первое выбранное сопротивление после того, как приложение напряжения смещения прекращено;
прикладывают напряжение смещения второй полярности к резистивному элементу памяти, чтобы уменьшить его сопротивление; и
прекращают прикладывать напряжение смещения второй полярности при втором выбранном сопротивлении, причем резистивный элемент памяти сохраняет второе выбранное сопротивление после того, как приложение напряжения смещения прекращено.

12. Способ по любому из пп.10 и 11, в котором по меньшей мере один резистивный элемент (46) соединяется последовательно с радиочастотной катушкой (42) и соединяет радиочастотную катушку с резонансным режекторным фильтром (56), причем этапы установки резистивного состояния содержат этапы, на которых:
перед передачей радиочастотных сигналов прикладывают напряжение смещения первой полярности к резистивному элементу памяти, которое смещает резистивный элемент памяти в первое резистивное состояние, и прекращают прикладывать напряжение смещения первой полярности, так что резистивный элемент памяти сохраняет первое резистивное состояние; и
перед приемом резонансных сигналов прикладывают напряжение смещения второй полярности к резистивному элементу памяти, чтобы сместить резистивный элемент памяти во второе резистивное состояние, и прекращают прикладывать напряжение смещения второй полярности, так что резистивный элемент памяти сохраняет второе резистивное состояние.

13. Способ по п.10, в котором по меньшей мере один резистивный элемент (56) присоединяется к входам предварительного усилителя (52), соединенного с радиочастотной катушкой (42), причем этапы установки резистивного состояния содержат этапы, на которых:
перед передачей радиочастотных сигналов прикладывают напряжение смещения первой полярности к резистивному элементу памяти, которое смещает резистивный элемент памяти в состояние высокой проводимости, и прекращают прикладывать напряжение смещения первой полярности, так что резистивный элемент памяти сохраняет состояние высокого сопротивления; и
перед приемом резонансных сигналов прикладывают напряжение смещения второй полярности к резистивному элементу памяти, чтобы сместить резистивный элемент памяти в состояние высокого сопротивления, и прекращают прикладывать напряжение смещения второй полярности, так что резистивный элемент памяти сохраняет состояние высокого сопротивления.

14. Способ по п.10, в котором множество радиочастотных катушек (42) присоединяются к радиочастотному приемнику (26) посредством мультиплексора, содержащего множество резистивных элементов (621, 622,…, 62N) памяти, причем этапы установки резистивного состояния содержат этапы, на которых:
прикладывают напряжение смещения первой полярности по меньшей мере к первому из резистивных элементов памяти, которое смещает резистивные элементы памяти в состояние высокого сопротивления, и прекращают прикладывать напряжение смещения первой полярности, так что резистивные элементы памяти сохраняют состояние высокого сопротивления; и
прикладывают напряжение смещения второй полярности по меньшей мере ко второму из резистивных элементов памяти, чтобы сместить резистивный элемент памяти в состояние высокой проводимости, и прекращают прикладывать напряжение смещения второй полярности, так что резистивный элемент памяти сохраняет состояние высокой проводимости.

15. Способ по п.10, в котором устройство (70) памяти содержит множество резистивных элементов (72) памяти, причем этапы установки резистивного состояния содержат этапы, на которых:
прикладывают напряжение смещения первой полярности к резистивным элементам памяти, которое смещает резистивные элементы памяти в состояние высокого сопротивления, и прекращают прикладывать напряжение смещения первой полярности, так что резистивные элементы памяти сохраняют состояние высокого сопротивления; и
прикладывают напряжение смещения второй полярности к резистивным элементам памяти, чтобы сместить резистивные элементы памяти в состояние высокой проводимости, и прекращают прикладывать напряжение смещения второй полярности, так что резистивные элементы памяти сохраняют состояние высокой проводимости.



 

Похожие патенты:

Изобретение относится к антенной технике и предназначено для приема радиочастотных сигналов в радиосвязи, мобильной связи, радиолокации и радиоастрономии. Технический результат - повышение чувствительности приема радиочастотных сигналов.

Использование: для проведения измерений методом ядерного магнитного резонанса в многоядерной системе. Сущность изобретения заключается в том, что раскрывается многоядерное RF антенное устройство для использования в многоядерной системе MRI или MR сканере, для передачи RF сигналов возбуждения (поле B1) для возбуждения ядерных магнитных резонансов (NMR) и/или для приема сигналов релаксации NMR для многоядерного восстановления MR изображения (магнитного резонанса), при этом RF антенное устройство настраивается на ларморовские частоты, по меньшей мере, двух разных видов ядер, имеющих, по меньшей мере, два разных гиромагнитных отношения, таких как 1H, 14N, 31P, 13C, 23Na, 39K, 17O и гиперполяризованных газов, таких как 129Xe, или других изотопов, имеющих ядерный спин. Дополнительно раскрывается способ для восстановления многоядерного MR изображения, особенно посредством вышеописанного RF антенного устройства. Способ включает в себя уменьшение артефактов заворота видов, имеющих более высокое гиромагнитное отношение, посредством параллельного MRI восстановления. Технический результат: обеспечение возможности MR (магнитно-резонансного) измерения или восстановления MR изображения видов ядер, имеющих разные гиромагнитные отношения («многоядерность»), но предпочтительно с использованием одних и тех же градиентных магнитных полей для всех ядер, без вызова нежелательных артефактов заворота для какого-либо из рассматриваемых ядер или других возмущений в общем MR изображении. 3 н. и 10 з.п. ф-лы, 2 ил.

Изобретение относится к области магнитно-резонансной техники. Магнитно-резонансная система содержит матрицу усилителей радиочастоты (РЧ), в которой каждый усилитель радиочастоты (РЧ) генерирует сигнал B1 возбуждения для каждого из множества каналов (Тх) передачи; по меньшей мере один блок РЧ катушек в сборе, имеющий многочисленные элементы-катушки, которые передают сгенерированный сигнал возбуждения в область обследования и принимают из нее сигналы магнитного резонанса; множество соединительных панелей, каждая из которых соединяет усилитель РЧ с по меньшей мере одним блоком РЧ катушек в сборе через порты приемопередатчика, причем каждый порт приемопередатчика соединяет по меньшей мере один проводник с индивидуальным каналом передачи; маршрутизатор, который выборочно направляет сгенерированный сигнал возбуждения через соответствующий канал (Тх) передачи в по меньшей мере один порт приемопередатчика любой из множества соединительных панелей. Технический результат - повышение качества изображения. 4 н. и 14 з.п. ф-лы, 12 ил.

Изобретение относится вообще к магнитно-резонансной томографии и спектроскопии. Система для магнитно-резонансной томографии головы, содержащая асимметричный основной магнит, который содержит первый и второй наборы катушек из высокотемпературного сверхпроводника, скомпонованные таким образом, что они расположены коаксиально относительно общей продольной оси, при этом первый набор катушек содержит по меньшей мере две катушки, имеющие внутренний радиус и размещенные в первой зоне по длине вдоль общей продольной оси так, чтобы охватывать голову и шею человека, а второй набор катушек содержит по меньшей мере одну катушку, имеющую внутренний радиус и размещенную во второй зоне по длине вдоль общей продольной оси так, чтобы охватывать часть туловища человека, когда голова и шея расположены в указанной первой зоне по длине вдоль общей продольной оси, при этом внутренний радиус катушек второго набора больше, чем внутренний радиус катушек первого набора, причем катушки первого и второго наборов асимметричны вдоль указанной общей продольной оси и сконфигурированы с возможностью создания однородного основного магнитного поля, имеющего однородность 1-10·10-6 в чувствительном объеме, определяемом диаметром, в пределах первой зоны, для получения магнитного резонансного изображения исследуемой области головы, размещенной в пределах первой зоны. Технический результат - повышение пространственной и временной разрешающей способности. 15 з.п. ф-лы, 1 табл., 12 ил.

Использование: для магнитно-резонансной визуализации. Сущность изобретения заключается в том, что предложена система RF объемного резонатора, содержащая многопортовый RF объемный резонатор (40, 50, 60), подобный, например, объемной катушке типа TEM или резонатору типа TEM, или катушке типа «птичьей клетки», из которых все, в частности, в форме локальной катушки, подобной катушке для головы или катушке для всего тела, и множество каналов (T/RCh1, …, T/RCh8) передачи и/или приема для управления работой многопортового RF объемного резонатора для передачи RF сигналов возбуждения и/или для приема MR сигналов релаксации в/из объекта обследования или его части. Посредством выбора по отдельности каждого порта (P1, …, P8) и соответствующей амплитуды, и/или частоты, и/или фазы, и/или форм импульсов RF сигналов передачи в соответствии с физическими свойствами объекта обследования внутри объекта обследования можно возбуждать резонансную RF моду с высокой однородностью посредством RF резонатора. Технический результат: обеспечение возможности формирования требуемого распределения суммарного магнитного поля внутри пространства для исследования. 4 н. и 10 з.п. ф-лы, 12 ил.

Использование: для подачи радиочастотного (RF) сигнала на множество катушечных элементов магнитно-резонансной (MR) системы катушек. Сущность изобретения заключается в том, что конструкция схемы содержит главную линию для присоединения источника радиочастотного сигнала; множество питающих линий, каждая питающая линия для присоединения соответствующего катушечного элемента системы катушек; делитель мощности, расположенный между главной линией и множеством питающих линий для распределения сигнала на главной линии по каждой из питающих линий, причем по меньшей мере одна из питающих линий содержит управляемую переключающую схему с переключающим элементом для соединения/разъединения двух образующихся линейных секций питающей линии, первая линейная секция на стороне разделителя и вторая линейная секция на стороне, присоединяемой к катушечному элементу, и причем переключающая схема дополнительно содержит по меньшей мере один присоединяемый элемент оконечной нагрузки для линейной оконечной нагрузки первой линейной секции, или главная линия содержит циркуляторное устройство, соединяемое со средством оконечной нагрузки. Изобретение дополнительно относится к соответствующей параллельной приемопередающей системе. Технический результат: обеспечение возможности предоставления простой, но динамически переключаемой конструкции схемы питания для подачи радиочастотного сигнала на множество катушек магнитно-резонансной системы катушек, и параллельной приемопередающей системы для магнитно-резонансной системы с магнитно-резонансной системой катушек, содержащей множество катушечных элементов. 3 н. и 11 з.п. ф-лы, 10 ил.
Наверх