Стенд для испытания авиационных двигателей

Изобретение относится к области испытания авиационных двигателей по схеме «с присоединенным трубопроводом». Технический результат изобретения - повышение надежности и технологичности стенда путем создания простой и универсальной конструкции, исключающей влияние тепловых изменений диаметра и длины присоединенного трубопровода (ПТ) на монтажное положение его оси, достижение универсальности конструкции опор ПТ. В стенде для испытания авиационных двигателей первый узел крепления подвижной опоры выполнен в виде вертикальной стойки с опорной поверхностью, размещенной в горизонтальной плоскости, проходящей через ось присоединенного трубопровода, и контактирующего с ней опорного элемента, жестко прикрепленного к присоединенному трубопроводу, а второй узел крепления подвижной опоры выполнен в виде вертикальной стойки с гильзой и цилиндрического опорного элемента, жестко прикрепленного к присоединенному трубопроводу и размещенного с возможностью осевого перемещения в гильзе, ось которой совмещена с горизонтальной плоскостью, проходящей через ось присоединенного трубопровода, и ориентирована параллельно оси присоединенного трубопровода. Подвижная опора ПТ имеет элементы регулировки и фиксации положения вертикальных стоек, а первый узел крепления снабжен кронштейном с прижимным винтом. 1 з.п. ф-лы, 4 ил.

 

Изобретение относится к области авиадвигателестроения и используется при испытаниях авиационных двигателей на стенде с присоединенным трубопроводом.

Схема испытаний на стенде с присоединенным трубопроводом широко применяется для определения характеристик авиационного двигателя. При проведении таких испытаний на вход в двигатель по присоединенному трубопроводу подается горячий или охлажденный воздух под давлением. Изменение температуры элементов стенда ведет к изменению их геометрических размеров. Такое изменение приводит к нарушению соосности элементов стенда, их смещению относительно первоначального монтажного положения и появлению ступенек и зазоров в местах стыков. Увеличение утечек воздуха через возникающие зазоры невозможно учесть при планировании эксперимента, что повышает погрешность измерений тяги, удельного расхода топлива и высотных характеристик, снимаемых при испытании. Чтобы погрешность не выходила за допустимые пределы измерений, приходится ограничивать диапазон температур воздуха, подаваемого в двигатель, что приводит к ограничению возможностей стенда.

Известен стенд для испытания прямоточных воздушно-реактивных двигателей (патент RU 2261425, МПК G01М 15/00, опубл. 2005). Такой стенд содержит присоединенный трубопровод, ресивер, стендовое воздухозаборное устройство с патрубками и динамоплатформу с силоизмерительным устройством, мерное устройство и регулируемый дроссель. Этот стенд позволяет определять параметры прямоточного двигателя при имитации полета летательного аппарата с различными углами атаки.

Недостатком такого решения является отсутствие средств компенсации теплового расширения элементов стенда, что ведет к образованию ступенек и зазоров в местах крепления присоединенного трубопровода. Возрастающие вследствие этого утечки горячего воздуха не могут быть учтены с достаточной точностью, поэтому испытания проводятся только на ограниченном диапазоне температур входного воздуха. Невозможность надежного учета возникающих утечек приводит к высокой погрешности измерений характеристик двигателя при высоких температурах воздуха.

Наиболее близким к предлагаемому изобретению по технической сущности и достигаемому техническому результату является стенд с входным устройством для испытаний газотурбинных двигателей в термобарокамере (патент RU 2439526, МПК G01M 15/14, опубл. 2012).

Входное устройство для испытаний газотурбинных двигателей в термобарокамере содержит входной коллектор, узел лабиринтного уплотнения, присоединенный трубопровод, выполненный из набора патрубков, патрубок входа в двигатель, опоры для крепления входного коллектора к термобарокамере и опоры для крепления присоединенного трубопровода к динамометрической платформе, причем входной коллектор, узел лабиринтного уплотнения, присоединенный трубопровод и патрубок входа в двигатель последовательно соединены между собой герметичными шарнирами, один патрубок узла лабиринтного уплотнения со стороны входного коллектора прикреплен к термобарокамере, а другой патрубок со стороны двигателя прикреплен к динамометрической платформе. Герметичные шарниры выполнены в виде концентрического сальникового уплотнения.

Когда при продуве двигателя в результате температурной деформации происходит перемещение патрубков трубопровода, такая конструкция обеспечивает перемещение по сальнику в линейном и угловом направлениях. При радиальной деформации трубопровод перемещается по горизонтальной плоскости скольжения опор вдоль шпонки, которая предохраняет участки трубопровода, закрепленные на опорах от осевого перемещения.

Недостатком такого решения является большая сложность конструкции, из-за чего увеличиваются стоимость и время изготовления, монтажа и обслуживания.

Техническая задача, решаемая предлагаемым изобретением, состоит в повышении надежности и технологичности стенда путем создания простой и универсальной конструкции, исключающей влияние тепловых изменений диаметра и длины присоединенного трубопровода (ПТ) на монтажное положение его оси, достижении универсальности конструкции опор ПТ.

Технический результат достигается тем, что стенд для испытания авиационных двигателей содержит термобарокамеру, динамометрическую платформу с элементами крепления на ней испытываемого авиационного двигателя и устройство подвода воздуха с присоединенным трубопроводом, снабженным неподвижной и подвижной опорами, закрепленными на динамометрической платформе, причем подвижная опора выполнена с двумя узлами крепления. Новым в изобретении является то, что первый узел крепления подвижной опоры выполнен в виде вертикальной стойки с опорной поверхностью, размещенной в горизонтальной плоскости, проходящей через ось присоединенного трубопровода, и контактирующего с ней опорного элемента, жестко прикрепленного к присоединенному трубопроводу. Второй узел крепления подвижной опоры выполнен в виде вертикальной стойки с гильзой и цилиндрического опорного элемента, жестко прикрепленного к присоединенному трубопроводу и размещенного с возможностью осевого перемещения в гильзе, ось которой совмещена с горизонтальной плоскостью, проходящей через ось присоединенного трубопровода, и ориентирована параллельно оси присоединенного трубопровода. Кроме этого, подвижная опора присоединенного трубопровода снабжена элементами регулировки и фиксации пространственного положения вертикальных стоек, а первый узел крепления снабжен кронштейном с прижимным винтом, связанным с вертикальной стойкой и ограничивающим перемещение опорного элемента в вертикальной плоскости.

При увеличении температуры воздуха, подаваемого на вход в двигатель, происходит нагрев ПТ. Это приводит к увеличению длины и радиуса ПТ а также входных и уплотнительных устройств. Увеличение длины ПТ не приводит к нарушению соосности элементов и изменению общей геометрии стенда, так как компенсируется смещениями в узлах подвижной опоры. Наличие прижимного винта в подвижной опоре, регулирующего положение вертикальных стоек, предотвращает смещения, вызываемые вибрацией ПТ и пульсацией потока воздуха в ПТ. Введенные в конструкцию элементы исключают влияние тепловых изменений диаметра и длины ПТ на монтажное положение оси, исключают образование зазоров и вызванных ими утечек входящего воздуха, что существенно снижает погрешности измерений на стенде и повышает универсальность конструкции без ее усложнения. Аналогичный эффект достигается и для охлажденного воздуха.

Предлагаемый стенд для испытания авиационных двигателей показан на фиг.1-4. На фиг.1 изображен продольный разрез стенда. На фиг.2 изображено поперечное сечение стенда в месте расположения подвижной опоры ПТ. На фиг.3 изображен правый узел крепления подвижной опоры ПТ. На фиг.4 изображен разрез по левому узлу крепления подвижной опоры ПТ.

Стенд для испытания авиационных двигателей содержит термобарокамеру 1 (ТБК), динамометрическую платформу 4 (ДМП) с элементами 5 крепления на ней испытываемого авиационного двигателя 6, устройство подвода воздуха с присоединенным трубопроводом, состоящее из входной лемнискаты 2, подвижно-уплотнительного устройства 3 (ПУУ), телескопического уплотнительного узла 7 (ТУУ), присоединенного трубопровода 8 (ПТ) с неподвижной и подвижной опорами 9 и 10. Кроме этого, подвижная опора 10 имеет два узла крепления ПТ 8, один из которых состоит из неподвижной вертикальной стойки 11 с направляющей 12, по которой может перемещаться опорный элемент 13, выполненный в виде толстой пластины, прикрепленной к ПТ 8 с одной стороны, а другой узел имеет неподвижную вертикальную стойку 14, снабженную гильзой 15, опорная поверхность которой параллельна оси ПТ, а внутри гильзы - опорный элемент 16 цилиндрической формы, неподвижно соединенный с ПТ 8 с другой стороны. Направляющая 12 снабжена кронштейном 17 с прижимным винтом 18. ПТ 8 опирается на поверхность направляющей 12 при помощи опорного элемента 13. Винт 18 служит для обеспечения беззазорного контакта опорного элемента 13 и направляющей 12.

Стенд работает следующим образом. Перед испытанием авиационного двигателя 6 или в процессе испытания из ТБК 1 откачивается воздух для имитации условий работы авиационного двигателя 6 на высоте. На вход в двигатель 6 воздух под давлением подается через лемнискату 2, ПУУ 3, ПТ 8, ТУУ 7. При увеличении температуры воздуха, подаваемого на вход в двигатель 6, происходит нагрев ПТ 8. Это приводит к увеличению длины L и радиуса R ПТ 8, лемнискаты 2, ПУУ 3, ТУУ 7 (см. фиг.1). Увеличение длины ПТ 8 происходит от места его связи с неподвижной опорой 9 по направлению к подвижной опоре 10 и по направлению к двигателю 6. Увеличение длины ПТ 8 и других элементов воздушного тракта компенсируется уменьшением торцевых зазоров в ПУУ 3 и в ТУУ 7. Увеличение длины ПТ 8 приводит к перемещению опорного элемента 13 по направляющей 12 в одном узле и к перемещению опорного элемента 16 цилиндрической формы по опорной поверхности гильзы 15 в другом узле подвижной опоры 10. Для предотвращения возможных перемещений опорного элемента 13 вверх от вибраций ПТ 8 и пульсаций потока воздуха в ПТ 8 опорный элемент 13 слегка прижимается к направляющей 12 прижимным винтом 18.

Таким образом, узлы подвижной опоры ПТ обеспечивают увеличение размеров ПТ от нагрева без изменения монтажного положения его оси в вертикальной плоскости в любом интервале изменения температуры воздуха, подаваемого в двигатель, опоры ПТ могут применяться при любых величинах диаметров и длины ПТ без изменения конструкции и на разных стендах.

Предложенная конструкция позволяет расширить диапазон температур входного воздуха, подаваемого на вход испытываемого авиационного двигателя, уменьшая погрешность измерений характеристик двигателя. Кроме этого, предложенное решение является простым в исполнении и универсальным, подходящим к различным компоновкам испытательного стенда.

1. Стенд для испытания авиационных двигателей, содержащий термобарокамеру, динамометрическую платформу с элементами крепления на ней испытываемого авиационного двигателя и устройство подвода воздуха с присоединенным трубопроводом, снабженным неподвижной и подвижной опорами, закрепленными на динамометрической платформе, причем подвижная опора выполнена с двумя узлами крепления, отличающийся тем, первый узел крепления подвижной опоры выполнен в виде вертикальной стойки с опорной поверхностью, размещенной в горизонтальной плоскости, проходящей через ось присоединенного трубопровода, и контактирующего с ней опорного элемента, жестко прикрепленного к присоединенному трубопроводу, а второй узел крепления подвижной опоры выполнен в виде вертикальной стойки с гильзой и цилиндрического опорного элемента, жестко прикрепленного к присоединенному трубопроводу и размещенного с возможностью осевого перемещения в гильзе, ось которой совмещена с горизонтальной плоскостью, проходящей через ось присоединенного трубопровода, и ориентирована параллельно оси присоединенного трубопровода.

2. Стенд для испытания авиационных двигателей по п.1, отличающийся тем, что подвижная опора присоединенного трубопровода снабжена элементами регулировки и фиксации пространственного положения вертикальных стоек, а первый узел крепления снабжен кронштейном с прижимным винтом, связанным с вертикальной стойкой и ограничивающим перемещение опорного элемента в вертикальной плоскости.



 

Похожие патенты:

Изобретение относится к области диагностики повреждения деталей машин в процессе их непрерывной эксплуатации и может быть использовано для определения технического состояния машинных агрегатов и обеспечения их безопасной, ресурсосберегающей эксплуатации.

Способ наземного контроля нормальной работы установленного на самолете авиационного газотурбинного двигателя. Для этого производят испытание, которое содержит осуществление - на работающем газотурбинном двигателе и начиная от определенного режима - быстрого уменьшения расхода топлива по запрограммированному понижению с целью оценки стойкости к самогашению камеры сгорания упомянутого газотурбинного двигателя во время быстрого сброса его оборотов в полете.

Изобретение может быть использовано для диагностирования двигателей внутреннего сгорания (ДВС). Способ осуществляется путем контроля частоты вращения коленчатого вала двигателя при отключении части цилиндров и одновременном воздействии на топливоподачу.
Изобретение относится к способу комплексной диагностики технического состояния межроторных подшипников двухвальных авиационных и наземных газотурбинных двигателей методами вибродиагностики и может быть использовано в авиадвигателестроении.

Изобретение может быть использовано при обкатке двигателей внутреннего сгорания (ДВС). Способ создания нагрузки при испытаниях и обкатке заключается в том, что нагрузку создают тормозным моментом от собственной компрессии ДВС при закрытых впускном и выпускном коллекторах.

Изобретение относится к области испытания устройств на герметичность и может быть использовано для оценки герметичности корпуса сервопривода. Сущность: устройство (1) оценки герметичности корпуса (3) сервопривода (4) включает: сервопривод (4), имеющий электродвигатель (11), предназначенный для создания движения механической составляющей, устройство (12) определения положения механической составляющей, сменным образом присоединенное к соединителю (15), механическое устройство (13), сменным образом присоединенное к соединителю (16); средство (2) всасывания потока, соединенное с сервоприводом (4) через отверстие в корпусе (3), закрываемое посредством пробки (8); средство (6) предотвращения прохождения потока между средством (2) всасывания газа и корпусом (3) в направлении, обратном направлению всасывания; средство (7) измерения давления внутри корпуса.
Способ диагностирования ГТУ может быть использован при эксплуатации компрессорных станций. Разработчик ГТУ на месте эксплуатации проводит анализ изменения параметров двигателя ГТУ в процессе эксплуатации относительно полученных параметров при приемо-сдаточных испытаниях на заводе-изготовителе, затем выполняет оценку мощности, вырабатываемой на валу свободной турбины двигателя, на ее соответствие мощностной характеристике руководства по эксплуатации с учетом установки на двигателе регулировки ограничения максимальной температуры газа за свободной турбиной.

Изобретение относится к области редукторных установок для моторостроения, в частности, к стендовым редукторным установкам для испытания двигателей, содержащим зубчатые редукторы и нагрузочные устройства.

Изобретение относится к испытательной технике, в частности к установке для испытаний маслонасосов системы смазки авиационного газотурбинного двигателя. Установка дополнительно содержит изолированную сменную камеру с магистралью суфлирования, генератор воздушно-масляной сети, магистраль подключения к источнику сжатого воздуха, при этом вход насоса откачки масла сообщен с выходом изолированной сменной камеры, соответствующей по объему той масляной полости, которую на двигателе обслуживает этот насос, сменная камера снабжена мерным стеклом и магистралью суфлирования с устройством регулировки проходного сечения, вход сменной камеры сообщен с выходом генератора воздушно-масляной смеси, выполненного в виде смесительного устройства, генератор воздушно-масляной сети сообщен магистралями через дроссельные краны с выходом из насоса подачи масла и с источником сжатого воздуха.
Изобретение относится к способам сортировки элементов двигателей различного назначения, бывших или находящихся в эксплуатации, в частности к способам дефектации партий элементов в виде блоков сопловых лопаток турбин высокого давления для газотурбинного двигателя и их последующей сортировки на пригодные к эксплуатации и подлежащие восстановлению.

Изобретение относится к газотурбостроению и предназначено для определения рациональных параметров режимов влажной очистки проточного тракта газотурбинных двигателей (ГТД) на малоразмерной стендовой установке в заводских (цеховых) условиях. Способ включает обдувку струей сжатого воздуха и подачу жидкости-очистителя. Рациональные параметры определяют на малоразмерной стендовой установке, помещая реальные образцы в смесительную камеру, например, кассеты образцов в виде сектора лопаток, взятых из направляющего аппарата компрессора, с предварительным закреплением их на торце смесительной камеры, имитирующей проточную часть двигателя, при этом обдувку воздухом образцов осуществляют со скоростью, равной скорости воздушного потока в проточной части двигателя на режиме его работы, принятом для проведения очистки, с одновременной подачей в смесительную камеру жидкости-очистителя. Технический результат - упрощение способа, исключающего дорогостоящие опытно-промышленные испытания натурных двигателей. 2 з.п. ф-лы, 1 ил.

Изобретение может быть использовано при диагностировании технического состояния (ДТС) двигателей внутреннего сгорания (ДВС). ДТС осуществляется путем измерения с привязкой по углу поворота коленчатого вала (КВ), в том числе на рабочем такте каждого цилиндра (Ц), углового ускорения КВ и ротора турбокомпрессора (ТКР), давления наддува в стационарном режиме, в разгоне и выбеге, а также гармоник ускорения. Способ основан на определении автокорреляционных функций или энергетических спектров ускорений и давления наддува, а также взаимокорреляционных функций или взаимных энергетических спектров ускорений и давления наддува попарно между Ц и по их соотношению судят о степени неравномерности работы Ц, их герметичности. Устройство содержит датчики частоты вращения КВ ДВС и ротора ТКР, давления наддува, три селектора уровня, датчик синхронизации, блок формирования начала отсчета угловых меток (УМ), блок синхронизации начала отсчета УМ, задатчики УМ цикла, номеров УМ Ц и частоты измерения мощности, индикатор, дифференциаторы, преобразователь временного интервала в код, регистр временного хранения, блоки регистров сигнала и вычисления среднего значения частоты вращения за цикл, блоки вычисления коэффициента неравномерности, генератор тактовых импульсов и схему подготовки к работе, коррелометр, измеритель энергетического спектра, вычислители максимума, вычитающие устройства, задатчики уровня неуравновешенности, преобразователи временного интервала в код, двухпозиционные переключатели на два положения. Техническим результатом является снижение трудоемкости и повышение точности ДТС за счет улучшенной селекции сигналов работающих Ц. 2 н. и 23. з.п. ф-лы, 9 ил.

Изобретение относится к области ракетной и измерительной техники, а именно к способу диагностики предаварийных режимов работы РДТТ при огневых стендовых испытаниях, и может быть использовано для аварийного гашения ракетных двигателей твердого топлива (РДТТ) при отработке и наземных испытаниях. Способ включает измерение с помощью датчиков величины виброускорения, преобразование полученных данных в вейвлет-коэффициенты по алгоритму непрерывного преобразования, определение масштаба разложения, имеющего максимальную энергию вейвлет-коэффициентов, проведение анализа дисперсии коэффициентов на данном масштабе, выработку суждения о неисправности в работе РДТТ. При этом датчики размещают в точках корпуса РДТТ, информативных относительно продольных акустических колебаний, а измерительные оси датчиков ориентируют по продольной оси РДТТ. Способ обладает расширенными эксплуатационными возможностями, позволяет повысить надежность и достоверность диагностики при одновременном увеличении запаса времени для принятия упреждающего воздействия за счет создания условий, обеспечивающих возможность получения информации о локальных предвестниках неисправности и полного использования время-частотной информации. 3 ил.

Изобретение относится к прибору контроля усилия сжатия уплотнительных колец. Прибор содержит базовую плиту, механизм фиксации кольца на плите и элемент задания усилия сжатия кольца. Прибор оснащен устройством измерения величины замкового зазора кольца, выполненным в виде фотоэлектрического датчика, корпус которого выполнен скобообразным и установлен на базовой плите, на одном плече скобообразного корпуса установлены светодиод с коллиматором, а на другом - фоторезистор, соединенный с устройством измерения тока, механизм фиксации кольца выполнен в виде ползуна, установленного с возможностью перемещения в базовой плите, и штока, установленного в ползуне с возможностью поворота и осевого перемещения и подпружиненного относительно него, причем на конце штока установлен прижим, имеющий возможность взаимодействия с кольцом, при этом в базовой плите с возможностью перемещения и фиксации в заданном положении размещены установочный и упорный элементы, предназначенные для выставки кольца в заданное положение на базовой плите. Техническим результатом является расширение функциональных возможностей прибора за счет обеспечения возможности замера упругих свойств широкой гаммы колец уплотнительных, а также повышение точности измерений. 3 з.п. ф-лы, 7 ил.
Изобретение может быть использовано для оценки моющей способности бензина и дизельного топлива и влияния их моющей способности на технико-экономические и экологические (ТЭ) характеристики двигателя (Д). Способ заключается в предварительном «загрязнении» Д эталонной загрязняющей смесью (ЭЗС) топлива и масла, обеспечивая его работу на фиксированном режиме. После выработки 20-40 л ЭЗС Д останавливают, охлаждают, разбирают и фиксируют загрязнения (З). Затем Д работает на испытуемом топливе на стандартных режимах (СР). При этом измеряют его ТЭ характеристики. Далее повторно фиксируют З. Приведены параметры СР. Технический результат - повышение степени надежности и объективности определения моющей способности бензина и дизельного топлива. 8 з.п. ф-лы, 4 табл.

Изобретение может быть использовано при диагностике технического состояния дизеля в условиях эксплуатации судна. В предлагаемом способе определяют скорости воздушного потока в сечениях патрубка путем пошагового введения комбинированного зонда (КЗ) и измерения разности полного и статического давлений воздушного потока (ВП). КЗ вводят перпендикулярно направлению ВП с шагом 5-15 мм. Пошагово измеряют разность полного и статического давлений воздушного потока в точках, соответствующих положениям отверстий в КЗ. Вычисляют скорость ВП в конкретных точках поперечного сечения патрубка, затем их усредняют и математически обрабатывают для определения расхода воздуха. КЗ ориентируют так, что ось одного отверстия располагается вдоль воздушного потока, а расстояние между точками по оси патрубка соответствует расстоянию между отверстиями КЗ и составляет 3-5 мм. Технический результат заключается в упрощении контроля расхода воздуха. 2 з.п. ф-лы. 2 ил.

Изобретение может быть использовано для определения угла опережения впрыска топлива (УОВТ) двигателей внутреннего сгорания (ДВС) в эксплуатационных условиях. Способ основан на измерении частоты вращения Д при появлении максимума производных по частоте вращения (ЧВ) автокорреляционной функции (АКФ) или энергетического спектра средних за цикл ускорений (Уск) разгона (Р), смещения по времени максимума взаимокорреляционной функции (ВКФ) этих Уск Р и выбега (В) относительно максимума АКФ выбега, наклона фазочастотной характеристики (ФЧХ) взаимного энергетического спектра этих Уск. При определении УОВТ по отдельным цилиндрам способ основан на измерении ЧВ при появлении максимумов производных по ЧВ средних за рабочие такты Уск Р, смещения по времени максимумов АКФ Уск Р или полной нагрузки на рабочем такте каждого цилиндра относительно верхней мертвой точки (ВМТ), максимумов ВКФ Уск Р и В на рабочем такте относительно максимумов АКФ В, наклона ФЧХ взаимных энергетических спектров Уск Р и В, а также прокрутки и полной нагрузки. Для ДВС с неуравновешенной гармоникой используют аналогично смещение относительно неуравновешенной гармоники Уск. Устройство содержит датчики ЧВ и ВМТ первого цилиндра, дифференциаторы, блоки регистров сигналов и максимумов, блок синхронизации начала отсчета угловых меток (УМ), задатчики частоты измерения, УМ цикла и их номеров, усреднители ЧВ и Уск, селектор уровня, коррелометр, измеритель энергетического спектра, два измерителя максимумов, два определителя УОВТ, измеритель ФЧХ. Техническим результатом является упрощение, снижение трудоемкости и повышение точности определения УОВТ. 2 н. и 7 з. п. ф-лы, 11 ил.

Изобретение относится к области авиадвигателестроения, а именно к авиационным турбореактивным двигателям. В способе серийного производства турбореактивного двигателя изготавливают детали и комплектуют сборочные единицы, элементы и узлы модулей и систем двигателя. Собирают модули в количестве не менее восьми - от компрессора низкого давления до всережимного регулируемого реактивного сопла. Помодульно собирают двигатель, который выполняют двухконтурным, двухвальным. После сборки производят испытания двигателя на газодинамическую устойчивость работы компрессора. Конкретный или идентичные для статистической репрезентативности результатов три-пять экземпляров из партии серийно произведенных двигателей испытаны на стенде. Стенд снабжен входным аэродинамическим устройством с регулируемо пересекающим воздушный поток, преимущественно, дистанционно управляемым выдвижным интерцептором. Интерцептор включает отградуированную шкалу положений интерцептора, имеющую фиксированную критическую точку, отделяющую двигатель на 2-5% от перехода в помпаж. При необходимости осуществляют повтор испытаний на определенном по регламенту наборе режимов, соответствующих режимам реальной работы ТРД в полетных условиях. Технический результат состоит в упрощении технологии и сокращении трудозатрат и энергоемкости процесса испытания ТРД на этапе серийного промышленного производства при повышении достоверности определения границ допустимого диапазона варьирования тяги. 2 н. и 9 з.п. ф-лы, 4 ил.

Изобретение относится к области авиадвигателестроения, а именно к авиационным турбореактивным двигателям. В способе серийного производства турбореактивного двигателя изготавливают детали и комплектуют сборочные единицы, элементы и узлы модулей и систем двигателя. Собирают модули в количестве не менее восьми - от компрессора низкого давления до всережимного регулируемого реактивного сопла. Помодульно собирают двигатель, который выполняют двухконтурным, двухвальным. После сборки производят испытания двигателя на влияние климатических условий на основные характеристики работы компрессора. Испытания проведены с измерением параметров работы двигателя на различных режимах в пределах запрограммированного диапазона полетных режимов для конкретной серии двигателей, и осуществляют приведение полученных параметров к стандартным атмосферным условиям с учетом изменения свойств рабочего тела и геометрических характеристик проточной части двигателя при изменении атмосферных условий. Технический результат состоит в повышении эксплуатационных характеристик ТРД, а именно тяги, экспериментально проверенным ресурсом и надежности двигателя в процессе эксплуатации в полном диапазоне полетных циклов в различных климатических условиях, а также в упрощении технологии и сокращении трудозатрат и энергоемкости процесса испытания ТРД на этапе серийного промышленного производства 2 н. и 8 з.п. ф-лы, 2 ил., 4 табл.

Изобретение относится к области авиадвигателестроения, а именно к авиационным турбореактивным двигателям. В способе серийного производства турбореактивного двигателя изготавливают детали и комплектуют сборочные единицы, элементы и узлы модулей и систем двигателя. Собирают модули в количестве не менее восьми - от компрессора низкого давления до всережимного регулируемого реактивного сопла. Помодульно собирают двигатель, который выполняют двухконтурным, двухвальным. После сборки производят испытания двигателя по многоцикловой программе. При выполнении этапов испытания проводят чередование режимов, которые по длительности превышают программное время полета. Формируют типовые полетные циклы, на основании которых по программе определяют повреждаемость наиболее загруженных деталей. Исходя из этого определяют необходимое количество циклов нагружения при испытании. Формируют полный объем испытаний, включая быструю смену циклов в полном регистре от быстрого выхода на максимальный либо полный форсированный режим до полного останова двигателя и затем репрезентативный цикл длительной работы с многократным чередованием режимов во всем рабочем спектре с различным размахом диапазона изменения режимов, превышающем время полета не менее чем в 5 раз. Быстрый выход на максимальный или форсированный режим на части испытательного цикла осуществляют в темпе приемистости и сброса. Технический результат состоит в повышении достоверности результатов испытаний на этапе серийного производства и расширении репрезентативности оценки ресурса и надежности работы турбореактивного двигателя в широком диапазоне региональных и сезонных условий последующей летной эксплуатации двигателей. 2 н. и 10 з.п. ф-лы, 2 ил.
Наверх