Самонастраивающийся электропривод

Изобретение относится к электроприводам и может быть использовано при создании систем управления. Техническим результатом является повышение скорости работы электропривода без превышения заданной динамической ошибки при текущей амплитуде входного гармонического сигнала и с учетом индуктивности его якорной цепи. Самонастраивающийся электропривод содержит последовательно соединенные сумматоры, устройство для корректировки величины ошибки электропривода, усилитель, электродвигатель с редуктором, на выходном валу которого установлен датчик положения, квадратор, блоки деления и блоки умножения, источники постоянного сигнала, интегратор, синусный функциональный преобразователь, задатчик амплитуды, блок извлечения квадратного корня. 2 ил.

 

Изобретение относится к электроприводам и может быть использовано при создании их систем управления.

Известен самонастраивающийся электропривод, содержащий последовательно соединенные первый сумматор, корректирующее устройство, усилитель, электродвигатель с редуктором, на выходном валу которого установлен датчик положения, выход которого подключен к первому входу первого сумматора, последовательно соединенные задатчик амплитуды, квадратор, блок деления, второй вход которого подключен к выходу первого источника постоянного сигнала, второй сумматор, первый блок извлечения квадратного корня, третий сумматор, второй вход которого подключен к выходу второго источника постоянного сигнала и второму входу второго сумматора, второй блок извлечения квадратного корня, интегратор, синусный функциональный преобразователь и блок умножения, второй вход которого подключен к выходу задатчика амплитуды, а выход - ко второму входу первого сумматора (см. патент РФ №2399080, Бюл. №25, 2010 г.).

Недостатком этого устройства является то, что ввиду приближенности описания используемой амплитудно-частотной характеристики оно не обеспечивает максимальную скорость работы электропривода, если индуктивностью его якорной цепи пренебречь нельзя.

Известен также самонастраивающийся электропривод, содержащий последовательно соединенные первый сумматор, корректирующее устройство, усилитель, электродвигатель с редуктором, на выходном валу которого установлен датчик положения, выход которого подключен к первому входу первого сумматора, последовательно соединенные квадратор, первый блок деления, второй вход которого подключен к выходу первого источника постоянного сигнала, и второй сумматор, последовательно соединенные интегратор, синусный функциональный преобразователь, первый блок умножения, второй вход которого подключен к выходу задатчика амплитуды, а выход - ко второму входу первого сумматора, последовательно соединенные второй источник постоянного сигнала и третий сумматор, последовательно соединенные второй блок умножения, первый вход которого соединен с выходом квадратора и первыми входами четвертого, пятого и шестого сумматоров, третий блок умножения, второй блок деления, блок извлечения квадратного корня, седьмой сумматор, второй вход которого подключен к выходу задатчика амплитуды и второму входу третьего сумматора, четвертый блок умножения и восьмой сумматор, второй вход которого подключен к выходу третьего сумматора и входу квадратора, а выход - ко входу интегратора, последовательно соединенные пятый блок умножения, первый и второй входы которого подключены, соответственно, к выходам второго сумматора и блока извлечения квадратного корня, и третий блок деления, выход которого подключен ко второму входу четвертого блока умножения, а второй вход - к выходу первого источника постоянного сигнала, ко вторым входам четвертого, пятого и шестого сумматоров и первым входам четвертого, пятого и шестого блоков деления, причем второй вход четвертого блока деления подключен к выходу пятого сумматора и второму входу второго блока умножения, второй вход пятого блока деления - к выходу шестого сумматора и второму входу третьего блока умножения, второй вход шестого блока деления - к выходу четвертого сумматора и второму входу второго блока деления, а выход - ко второму входу второго сумматора, третий и четвертый входы которого подключены, соответственно, к выходам четвертого и пятого блоков деления (см. патент РФ №2450300, Бюл. №13, 2012 г.).

Указанное устройство по своей технической сущности является наиболее близким к предлагаемому изобретению и принято за прототип. Его недостатком является то, что оно не позволяет сохранить заданную динамическую точность при изменении амплитуды задающего гармонического сигнала электропривода, если индуктивностью его якорной цепи пренебречь нельзя.

Задачей, на решение которой направлено заявляемое техническое решение, является обеспечение максимально возможной скорости работы электропривода с учетом индуктивности его якорной цепи при изменении амплитуды входного гармонического сигнала без снижения заданной динамической точности.

Технический результат, который может быть получен при реализации заявляемого технического решения, выражается в формировании дополнительного контура самонастройки, в котором формируется максимально возможное значение частоты входного сигнала, а следовательно, и максимально возможная скорость работы электропривода без превышения заданной динамической ошибки при текущей амплитуде входного гармонического сигнала и с учетом индуктивности его якорной цепи.

Поставленная задача решается тем, что в самонастраивающийся электропривод, содержащий последовательно соединенные первый сумматор, корректирующее устройство, усилитель, электродвигатель с редуктором, на выходном валу которого установлен датчик положения, выход которого подключен к первому входу первого сумматора, последовательно соединенные квадратор, первый блок деления, второй вход которого подключен к выходу первого источника постоянного сигнала, и второй сумматор, последовательно соединенные интегратор, синусный функциональный преобразователь и первый блок умножения, второй вход которого подключен к выходу задатчика амплитуды, а выход - ко второму входу первого сумматора, последовательно соединенные второй источник постоянного сигнала и третий сумматор, последовательно соединенные второй блок умножения, первый вход которого подключен к выходу квадратора и первым входам четвертого, пятого и шестого сумматоров, третий блок умножения, второй блок деления, блок извлечения квадратного корня, седьмой сумматор, второй вход которого подключен к выходу задатчика амплитуды и второму входу третьего сумматора, четвертый блок умножения и восьмой сумматор, второй вход которого подключен к выходу третьего сумматора и входу квадратора, а выход - ко входу интегратора, последовательно соединенные пятый блок умножения, первый вход которого подключен к выходу второго сумматора, и третий блок деления, второй вход которого подключен к выходу первого источника постоянного сигнала, ко вторым входам четвертого, пятого и шестого сумматоров и к первым входам четвертого, пятого и шестого блоков деления, а выход - ко второму входу четвертого блока умножения, причем вторые входы четвертого и пятого блоков деления подключены, соответственно, к выходам пятого и шестого сумматоров, второй вход шестого блока деления подключен к выходу четвертого сумматора и второму входу второго блока деления, а его выход - ко второму входу второго сумматора, третий и четвертый входы которого подключены, соответственно, к выходам четвертого и пятого блоков деления, дополнительно вводятся последовательно соединенные девятый сумматор, первый вход которого подключен к выходу квадратора, и седьмой блок деления, второй вход которого подключен к выходу первого источника постоянного сигнала и второму входу девятого сумматора, а выход - к пятому входу второго сумматора, а также шестой блок умножения, первый и второй входы которого подключены, соответственно, к выходам пятого и девятого сумматоров, а выход - ко второму входу третьего блока умножения, и седьмой блок умножения, первый вход которого подключен к выходу блока извлечения квадратного корня, второй вход - к выходу третьего сумматора, а выход - ко второму входу пятого блока умножения.

Сопоставительный анализ существенных признаков предлагаемого технического решения с существенными признаками аналога и прототипа свидетельствует о его соответствии критерию "новизна", эти существенные признаки явным образом не следуют из известного уровня техники, т.е. предлагаемое техническое решение удовлетворяет критерию «изобретательский уровень» и промышленно применимо.

При этом отличительные признаки формулы изобретения обеспечивают максимально возможную скорость работы электропривода с учетом индуктивности его якорной цепи, сохраняя заданную динамическую точность управления при изменении амплитуды входного гармонического сигнала.

На фиг.1 показана структурная схема самонастраивающегося электропривода, а на фиг.2 - объекты, поясняющие особенности и принцип работы предложенного устройства. На этих чертежах введены следующие обозначения: α- угол поворота выходного вала редуктора; αВХ - задающий (входной) гармонический сигнал, поступающий на вход электропривода; Арр - амплитуда и частота сигнала αВХ, соответственно; ε=αВХ-α и ε1 - соответственно, ошибка электропривода и заданное допустимое значение его динамической ошибки; [ωmin, ωmax] - диапазон изменения рабочих частот входного сигнала; U*, U соответственно, усиливаемый сигнал и сигнал управления электродвигателем 4. Цифрой 1 на фиг.2 обозначена амплитудно-частотная характеристика (АЧХ) рассматриваемого электропривода; цифрой 2 - секущая, соединяющая точки А и В на этой АЧХ; а цифрой 3 - касательная к АЧХ в точке С с абсциссой ω p * ; F (с абсциссой ω p 0 ), G, Н - точки пересечения горизонтальной прямой, имеющей ординату Ap1, с АЧХ 1, секущей 2 и касательной 3, соответственно; A(ωmin), A( ω p * ), A(ωmах) - значения АЧХ на частотах ωmin, ω p * и ωmax, соответственно.

Самонастраивающийся электропривод содержит последовательно соединенные первый сумматор 1, корректирующее устройство 2, усилитель 3, электродвигатель 4 с редуктором 5, на выходном валу которого установлен датчик 6 положения, выход которого подключен к первому входу первого сумматора 1, последовательно соединенные квадратор 7, первый блок 8 деления, второй вход которого подключен к выходу первого источника 9 постоянного сигнала, и второй сумматор 10, последовательно соединенные интегратор 11, синусный функциональный преобразователь 12 и первый блок 13 умножения, второй вход которого подключен к выходу задатчика 14 амплитуды, а выход - ко второму входу первого сумматора 1, последовательно соединенные второй источник 15 постоянного сигнала и третий сумматор 16, последовательно соединенные второй блок 17 умножения, первый вход которого подключен к выходу квадратора 7 и первым входам четвертого 18, пятого 19 и шестого 20 сумматоров, третий блок 21 умножения, второй блок 22 деления, блок 23 извлечения квадратного корня, седьмой сумматор 24, второй вход которого подключен к выходу задатчика 14 амплитуды и второму входу третьего сумматора 16, четвертый блок 25 умножения и восьмой сумматор 26, второй вход которого подключен к выходу третьего сумматора 16 и входу квадратора 7, а выход - ко входу интегратора 11, последовательно соединенные пятый блок 27 умножения, первый вход которого подключен к выходу второго сумматора 10, и третий блок 28 деления, второй вход которого подключен к выходу первого источника 9 постоянного сигнала, ко вторым входам четвертого 18, пятого 19 и шестого 20 сумматоров и к первым входам четвертого 29, пятого 30 и шестого 31 блоков деления, а выход - ко второму входу четвертого блока 25 умножения, причем вторые входы четвертого 29 и пятого 30 блоков деления подключены, соответственно, к выходам пятого 19 и шестого 20 сумматоров, второй вход шестого блока 31 деления подключен к выходу четвертого сумматора 18 и второму входу второго блока 22 деления, а его выход - ко второму входу второго сумматора 10, третий и четвертый входы которого подключены, соответственно, к выходам четвертого 29 и пятого 30 блоков деления, последовательно соединенные девятый сумматор 32, первый вход которого подключен к выходу квадратора 7, и седьмой блок 33 деления, второй вход которого подключен к выходу первого источника 9 постоянного сигнала и второму входу девятого сумматора 32, а выход - к пятому входу второго сумматора 10, а также шестой блок 34 умножения, первый и второй входы которого подключены, соответственно, к выходам пятого 19 и девятого 32 сумматоров, а выход - ко второму входу третьего блока умножения 21, и седьмой блок 35 умножения, первый вход которого подключен к выходу блока 23 извлечения квадратного корня, второй вход - к выходу третьего сумматора 16, а выход - ко второму входу пятого блока 27 умножения. Объект управления 36.

Самонастраивающийся электропривод работает следующим образом. Сигнал ошибки 8 на выходе сумматора 1, первый отрицательный (со стороны датчика 6) и второй положительный входы которого имеют единичные коэффициенты усиления, после коррекции в блоке 2, усиливаясь, поступает на вход электродвигателя 4, приводя его вал во вращательное движение с направлением и скоростью (ускорением), зависящими от поступающего сигнала U. Как известно, величина ошибки ε при установленном корректирующем устройстве 2 с постоянной структурой и постоянными параметрами будет увеличиваться при увеличении нагрузки на электропривод, т.е. при изменении амплитуды Aр и частоты ωр входного сигнала αВХ. Если при текущем значении Aр величина ε становится меньше допустимой ε1, то можно увеличивать ωр, а следовательно, и скорость (производительность) работы электропривода в пределах заданной динамической точности.

На выходе задатчика 14 формируется сигнал Aр, на выходе источника 9 - единичный сигнал, а на выходе источника 15 - сигнал, равный ωmin - kHA(ωmin). Первый (со стороны источника 15) и второй положительные входы сумматора 16, соответственно, имеют единичный коэффициент усиления и коэффициент усиления, равный kH1. В результате на его выходе формируется сигнал ω p * =kH(Ap1-A(ωmin))+ωmin, а на выходе квадратора 7 - сигнал ω p * 2 (где kH=(ωmахmin)/(A(ωmax)-A(ωmin))).

Первые положительные входы сумматоров 18, 19, 20 и 32 (со стороны квадратора 7) имеют коэффициенты усиления T 1 2 , T 2 2 , T 3 2 , T 4 2 , соответственно, а их вторые положительные входы - единичные коэффициенты усиления. В результате на выходе блока 23 формируется сигнал ( 1 + ω p * 2 T 1 2 ) / ( ω p * 2 ( 1 + ω p * 2 T 2 2 ) ( 1 + ω p * 2 T 3 2 ) ( 1 + ω p * 2 T 4 2 ) ) .

Первый (со стороны блока 23) отрицательный вход сумматора 24 имеет коэффициент усиления, равный К, а второй положительный - коэффициент усиления 1/ε1. В результате на его выходе формируется сигнал A p / ε 1 K ( 1 + ω p * 2 T 1 2 ) / ( ω p * 2 ( 1 + ω p * 2 T 2 2 ) ( 1 + ω p * 2 T 3 2 ) ( 1 + ω p * 2 T 4 2 ) ) .

На выходах блоков 8, 29, 30, 31 и 33, соответственно, формируются сигналы 1 / ω p * 2 ,  1/ ( 1 + ω p *2 T 2 2 ) ,  1/ ( 1 + ω p *2 T 3 2 ) ,  1/ ( 1 + ω p *2 T 1 2 ) ,  1/ ( 1 + ω p *2 T 4 2 ) . Первый (со стороны блока 8), третий (со стороны блока 29), четвертый (со стороны блока 30) и пятый (со стороны блока 33) отрицательные входы сумматора 10 имеют коэффициенты усиления, равные 1, T 1 2 , T 2 2 , T 3 2  и  T 4 2 , соответственно, а второй положительный вход (со стороны блока 31) - коэффициент усиления T 1 2 . В результате на выходе сумматора 10 формируется сигнал T 1 2 1 + ω p * 2 T 1 2  -  1 ω p *2  -  T 2 2 1 + ω p *2 T 2 2  -  T 3 2 1 + ω p *2 T 3 2  -  T 4 2 1 + ω p *2 T 4 2 , a на выходе блока 28 - сигнал [ 1 + ω p * 2 T 1 2 ( 1 + ω p * 2 T 2 2 ) ( 1 + ω p * 2 T 3 2 ) ( 1 + ω p * 2 T 4 2 ) ( T 1 2 1 + ω p * 2 T 1 2  -  1 ω p *2  -  T 2 2 1 + ω p *2 T 2 2  -  T 3 2 1 + ω p *2 T 3 2  -  T 4 2 1 + ω p *2 T 4 2 ) ] 1 . Первый (со стороны блока 25) и второй положительные входы сумматора 26 имеют коэффициенты усиления, равные 1/К и 1, соответственно. В результате, на его выходе формируется сигнал

ω p = [ K 1 + ω p * 2 T 1 2 ( 1 + ω p * 2 T 2 2 ) ( 1 + ω p * 2 T 3 2 ) ( 1 + ω p * 2 T 4 2 ) ( T 1 2 1 + ω p * 2 T 1 2  -  1 ω p *2  -  T 2 2 1 + ω p *2 T 2 2  -  T 3 2 1 + ω p *2 T 3 2  -  T 4 2 1 + ω p *2 T 4 2 ) ] 1 × × ( A p / ε 1 K ( 1 + ω p * 2 T 1 2 ) / ( ω p * 2 ( 1 + ω p * 2 T 2 2 ) ( 1 + ω p * 2 T 3 2 ) ( 1 + ω p * 2 T 4 2 ) ) ) + ω p * ,  (1)

определяющий частоту ωр, обеспечивающую максимально возможную скорость гармонического движения электропривода с ошибкой, не превышающей ε1.

На выходе интегратора 11, имеющего единичный коэффициент усиления, формируется сигнал ωpt, а на выходе функционального преобразователя 12 - сигнал sinωpt. В результате на выходе блока 13

формируется искомый гармонический сигнал αвхрsinωpt с задаваемой амплитудой Ар и автоматически формируемой частотой ωр, который и обеспечивает максимально возможную скорость работы электропривода с учетом его индуктивности (для заданных величин ε1 и Ар).

Для пояснения этого факта отметим, что корректирующее устройство 2, обеспечивающее устойчивость работы рассматриваемого электропривода, имеет вид:

W k ( S ) = T 1 S + 1 T 2 S + 1 ,

где T12=const, T1=1/ωcp=const, ωcp - частота среза амплитудно-частотной характеристики (АЧХ) электропривода. В результате передаточная функция прямой цепи этого электропривода с учетом указанного корректирующего устройства имеет вид:

W ( S ) = K ( T 1 S + 1 ) S ( T 2 S + 1 ) ( T 3 S + 1 ) ( T 4 S + 1 ) ,

а его АЧХ - вид:

A ( ω ) = K 1 + T 1 2 ω 2 ω ( 1 + T 2 2 ω 2 ) ( 1 + T 3 2 ω 2 ) ( 1 + T 4 2 ω 2 ) ,  (2)

где T 3 , 4 = R J 2 K M K ω ± R 2 J 2 4 K M 2 K ω 2 L J K M K ω (T3>T4); K = K y K ω i p ; R, L - соответственно, активное сопротивление и индуктивность якорной цепи электродвигателя; KM, Kω - соответственно, коэффициенты крутящего момента и противоЭДС; Ky - коэффициент усиления усилителя 3; J - суммарный момент инерции, приведенный к валу электродвигателя; ip - передаточное отношение редуктора.

Известно (см. Попов Е.П. Теория линейных систем автоматического регулирования и управления. М.: Наука, 1978. - 256 с.), что при гармоническом управлении электроприводом с рабочей амплитудой Ар, частотой ωр и динамической ошибкой, не превышающей величины ε1, должно выполняется неравенство

A ( ω p ) A p ε 1 ,  (3)

в результате с учетом выражений (2) и (3) можно записать равенство

A p ε 1 = K 1 + T 1 2 ω p 2 ω p ( 1 + T 2 2 ω p 2 ) ( 1 + T 3 2 ω p 2 ) ( 1 + T 4 2 ω p 2 ) .  (4)

Однако с учетом L получить аналитическое выражение, описывающие зависимость ωр=f(Ap1), весьма сложно (см. выражение (4)). Поэтому вначале целесообразно линейно аппроксимировать текущую АЧХ, а затем с помощью полученной линейной зависимости по известной ординате Ap1 уже находить частоту ωр.

Из фиг.2 видно, что аппроксимация участка падающей АЧХ в диапазоне рабочих частот [ωmin, ωmах] секущей 2, расположенной между точками с ординатами A(ωmin) и A(ωmах), приведет к тому, что при использовании этого отрезка для известной ординаты Ap1 будет найдена частота ω p * (см. абсциссу точки G на фиг.2), большая искомой частоты ω p 0 (см. абсциссу точки F). Но использование ω p * > ω p 0 при формировании входного сигнала неизбежно приведет к тому, что динамическая точность системы ухудшится, превысив ε1. Для устранения указанной негативной ситуации при поиске текущего значения частоты ωр в предлагаемом устройстве используется касательная 3 к АЧХ в точке С, которая имеет абсциссу ω p * . Используя уравнение этой касательной Ap1-A( ω p * )=A'( ω p * )(ωp- ω p * ), где A'( ω p * ) производная А(ω) в точке ω= ω p * , можно определить абсциссу ωр точки Н, имеющей ординату αp1. Эта абсцисса в предлагаемом устройстве формируется на входе блока 26 (см. выражение 1) и является искомой частотой задающего гармонического сигнала.

Очевидно, что указанный выбор ωр приводит к незначительному снижению быстродействия системы, поскольку ωр< ω p 0 (см. фиг.2), но при этом всегда будет выполняться главное неравенство ε≤ε1, для обеспечения которого и создавалось предлагаемое устройство. При этом ωр всегда будут незначительно меньше ω p 0 .

Самонастраивающийся электропривод, содержащий последовательно соединенные первый сумматор, устройство для корректировки величины ошибки электропривода, усилитель, электродвигатель с редуктором, на выходном валу которого установлен датчик положения, выход которого подключен к первому входу первого сумматора, последовательно соединенные квадратор, первый блок деления, второй вход которого подключен к выходу первого источника постоянного сигнала, и второй сумматор, последовательно соединенные интегратор, синусный функциональный преобразователь и первый блок умножения, второй вход которого подключен к выходу задатчика амплитуды, а выход - ко второму входу первого сумматора, последовательно соединенные второй источник постоянного сигнала и третий сумматор, последовательно соединенные второй блок умножения, первый вход которого подключен к выходу квадратора и первым входам четвертого, пятого и шестого сумматоров, третий блок умножения, второй блок деления, блок извлечения квадратного корня, седьмой сумматор, второй вход которого подключен к выходу задатчика амплитуды и второму входу третьего сумматора, четвертый блок умножения и восьмой сумматор, второй вход которого подключен к выходу третьего сумматора и входу квадратора, а выход - ко входу интегратора, последовательно соединенные пятый блок умножения, первый вход которого подключен к выходу второго сумматора, и третий блок деления, второй вход которого подключен к выходу первого источника постоянного сигнала, ко вторым входам четвертого, пятого и шестого сумматоров и к первым входам четвертого, пятого и шестого блоков деления, а выход - ко второму входу четвертого блока умножения, причем вторые входы четвертого и пятого блоков деления подключены, соответственно, к выходам пятого и шестого сумматоров, второй вход шестого блока деления подключен к выходу четвертого сумматора и второму входу второго блока деления, а его выход - ко второму входу второго сумматора, третий и четвертый входы которого подключены, соответственно, к выходам четвертого и пятого блоков деления, отличающийся тем, что в него дополнительно введены последовательно соединенные девятый сумматор, первый вход которого подключен к выходу квадратора, и седьмой блок деления, второй вход которого подключен к выходу первого источника постоянного сигнала и второму входу девятого сумматора, а выход - к пятому входу второго сумматора, а также шестой блок умножения, первый и второй входы которого подключены, соответственно, к выходам пятого и девятого сумматоров, а выход - ко второму входу третьего блока умножения, и седьмой блок умножения, первый вход которого подключен к выходу блока извлечения квадратного корня, второй вход - к выходу третьего сумматора, а выход - ко второму входу пятого блока умножения.



 

Похожие патенты:

Изобретение относится к автоматизированному управлению, в частности к управлению группой (командой, коллективом) интеллектуальных агентов различного назначения, и может быть использовано для построения систем управления сложными организованными мультиагентными объектами (МА-объектами).

Изобретение относится к адаптивным системам управления и может найти применение в химической, нефтехимической, металлургической и других отраслях промышленности.

Изобретение относится к электронной технике и автоматике и может использоваться в цифровых и аналоговых автоматических системах управления, регулирования и стабилизации различных физических величин (температуры, давления, производительности, скорости и т.д.) с обратной связью, применяемых в различных отраслях промышленности и в научных исследованиях для управления объектами управления, склонными к колебаниям.

Изобретение относится к автоматике и может быть использовано в системах управления для скалярных объектов, параметры которых - неизвестные постоянные или медленно меняющиеся во времени величины.

Изобретение относится к технической кибернетике и может быть использовано в системах автоматического управления априорно неопределенными нестационарными динамическими объектами периодического действия.

Изобретение относится к системе с двойным шестеренчатым приводом и способу управления, связанному с ней, и, в частности, изобретение относится к упреждающему демпфированию колебаний в системе с двойным шестеренчатым приводом с переменной скоростью.

Изобретение относится к электронной технике и автоматике и может использоваться в цифровых и аналоговых автоматических системах управления, регулирования и стабилизации различных физических величин (температуры, давления, производительности, скорости и т.д.) с обратной связью, применяемых в различных отраслях промышленности и в научных исследованиях для управления объектами управления, склонными к колебаниям.

Изобретение относится к системам управления. Технический результат заключается в обеспечении асимптотической устойчивости системы.

Изобретение относится к области систем автоматического управления. Технический результат заключается в повышении быстродействия системы управления.

Изобретение относится к области электроизмерительной техники, управления коммутацией и сигнализации состояния трехфазной электрической сети, а именно к многофункциональным многотарифным приборам учета электрической энергии.

Изобретение относится к автоматическому управлению. Технический результат - расширение функциональных возможностей и обеспечение работоспособности системы регулирования объекта с рециклом при смене режимов технологического процесса. Это достигается тем, что в систему регулирования для объектов с рециклом, содержащую объект управления, последовательно соединенные делитель потока и первый датчик, последовательно соединенные первый блок рецикла объекта управления и второй блок запаздывания, второй датчик, модель объекта управления, включающую последовательно соединенные первый блок вычитания, модель блока первого канала управления, третий сумматор, второй блок вычитания, регулирующий блок, последовательно соединенные экстраполятор и первый исполнительный блок, первый задатчик, введены третий блок вычитания, последовательно соединенные второй блок рецикла объекта управления и третий блок запаздывания, последовательно соединенные обратная модель блока первого канала управления и третий блок задержки, последовательно соединенные блок вычисления модуля сигнала, фильтр низких частот, ключ, четвертый блок вычитания, второй регулирующий блок и второй исполнительный блок, последовательно соединенные второй задатчик и компаратор, третий задатчик, блок расчета коэффициентов, включающий последовательно соединенные четвертый задатчик, первый блок умножения и четвертый сумматор, пятый задатчик, последовательно соединенные шестой задатчик, пятый блок вычитания, второй блок умножения и пятый сумматор, последовательно соединенные седьмой задатчик и третий блок умножения, последовательно соединенные восьмой задатчик, четвертый блок умножения, шестой блок вычитания, интегратор, пятый блок умножения и шестой сумматор, девятый-двенадцатый задатчики. 3 ил., 1 табл.

Изобретение относится к области цифровой вычислительной техники и может быть использовано в автоматических и автоматизированных системах управления объектами с терминальным управлением. Технический результат - повышение точности оценивания и снижение вычислительной сложности алгоритма управления маневрирующим объектом. Указанный технический результат достигается за счет устройства управления объектом со свободным выбором поведения, которое содержит следующие блоки: блок хранения констант; первый, второй, третий блоки формирования модуля; блок возведения числа в степень (-1); первый, второй, третий, четвертый, пятый блоки формирования произведения; первый, второй блок формирования интегрирования; блок формирования отрицательного значения числа; блок формирования производной; блок формирования деления; первый, второй блоки формирования разности; блок формирования знака числа. Указанный технический результат достигается за счет постановки задачи в форме оптимизационной и ее решение без использования инвариантного погружения. 1 ил.

Устройство пеленгации источников лазерного излучения относится к области оптико-электронного приборостроения, а более конкретно к устройствам обнаружения и пеленгации источников лазерного излучения для систем защиты подвижных объектов военной техники. Устройство содержит приемную оптическую систему, оптически связанный с ней многоэлементный фотоприемник, n каналов обработки сигналов, каждый из которых состоит из предусилителя, порогового устройства и двухвходовой схемы «ИЛИ», ждущий мультивибратор, n формирователей сигналов контроля, каждый из которых содержит двухвходовую схему «И», аналоговый ключ, схему нормирования длительности импульса и стабилизированный источник напряжения. Достигаемый технический результат - обеспечение проверки правильности обработки выходных сигналов фотоприемника в эксплуатации без использования источника излучения, находящегося в поле зрения устройства. 1 ил.

Изобретение относится к робототехнике. Технический результат - компенсация вредных переменных моментных воздействий на электропривод при движении манипулятора. Для этого в электропривод манипулятора дополнительно введены последовательно соединенные шестнадцатый блок умножения, первый и второй входы которого подключены, соответственно, к выходу тринадцатого блока умножения и через четвертый косинусный функциональный преобразователь - к выходу третьего датчика положения, и семнадцатый блок умножения, выход которого подключен к четвертому входу десятого сумматора, последовательно соединенные дифференциатор и восемнадцатый блок умножения, второй вход которого подключен к выходу шестнадцатого блока умножения, а выход - к пятому входу десятого сумматора, последовательно соединенные пятый синусный функциональный преобразователь, подключенный входом к выходу третьего датчика положения, девятнадцатый блок умножения, второй вход которого подключен к выходу тринадцатого блока умножения, двадцатый блок умножения и двадцать первый блок умножения, второй вход которого подключен к выходу третьего датчика скорости, а выход - к шестому входу десятого сумматора, последовательно соединенные двадцать второй блок умножения, первый вход которого подключен к выходу второго датчика скорости, а второй - к выходу тринадцатого сумматора, двадцать третий блок умножения, второй вход которого подключен к выходу первого синусного функционального преобразователя, двадцать четвертый блок умножения, выход которого подключен к седьмому входу десятого сумматора, а второй вход - к выходу двадцать пятого блока умножения, первый вход которого подключен к выходу четвертого косинусного функционального преобразователя, а второй - к выходу четвертого датчика ускорения, входу дифференциатора и вторым входам семнадцатого и двадцатого блоков умножения. 2 ил.

Изобретение относится к робототехнике. Технический результат - компенсация переменных воздействий на электропривод. Для этого в электропривод дополнительно введены последовательно соединенные третий датчик положения, девятый косинусный функциональный преобразователь, двадцать седьмой, двадцать восьмой и двадцать девятый блоки умножения, причем выход последнего подключен к седьмому входу четвертого сумматора, последовательно соединенные десятый синусный функциональный преобразователь, вход которого подключен к выходу третьего датчика положения, тридцатый блок умножения, второй вход которого подключен к второму входу двадцать седьмого блока умножения и к выходу четвертого косинусного функционального преобразователя, тридцать первый блок умножения, второй вход которого подключен к выходу второго датчика скорости, восемнадцатый сумматор, тридцать второй блок умножения, девятнадцатый сумматор и тридцать третий блок умножения, второй вход которого подключен к второму входу двадцать восьмого блока умножения и выходу пятого сумматора, а выход - к девятому входу третьего сумматора, последовательно соединенные одиннадцатый синусный функциональный преобразователь, вход которого подключен к выходу четырнадцатого сумматора, тридцать четвертый блок умножения, второй вход которого подключен к выходу девятого косинусного функционального преобразователя, и тридцать пятый блок умножения, второй вход которого подключен к выходу двенадцатого сумматора, а выход - к второму входу восемнадцатого сумматора, последовательно соединенные четвертый датчик ускорения, второй дифференциатор и тридцать шестой блок умножения, второй вход которого подключен к выходу двадцать седьмого блока умножения, а выход - к второму входу девятнадцатого сумматора, причем вторые входы двадцать девятого и тридцать второго блоков умножения подключены к выходу четвертого датчика ускорения. 2 ил.

Изобретение относится к системам управления и контроля за функционированием оборудования систем жизнеобеспечения и защиты в заданных режимах специальных объектов и предназначена для системы жизнеобеспечения специальных объектов Министерства обороны Российской Федерации. Техническим результатом является повышение надежности. Система в том числе содержит модуль управления и контроля, служащий для сбора, обработки и передачи информации от датчиков и исполнительных устройств систем жизнеобеспечения, и автоматического управления исполнительными устройствами систем жизнеобеспечения, блок, содержащий источники бесперебойного питания, модуль, служащий для хранения базы данных и программирования режима работы всех блоков системы, пульт управления, блок для обучения персонала, содержащий учебно-модельный тренажер, модуль, управляющий устройством отображения текстовой и информации о состоянии систем жизнеобеспечения, при этом к общей схеме системы подключены через каналы связи вспомогательные подсистемы. 1 ил.

Изобретение относится к области сельскохозяйственного машиностроения, в частности к способу автоматической настройки, по меньшей мере, одного из нескольких участвующих в процессе уборки рабочих органов самоходной уборочной машины. Способ включает этап, в котором выполняют начальное моделирование процесса уборки с помощью, по меньшей мере, одной трехмерной графической характеристики (KFAi, KFRi) на основе базы данных, характерной для подлежащего выполнению процесса уборки. Далее на основе начального моделирования определяют начальную рабочую точку (APi), по меньшей мере, одного рабочего органа. Затем адаптируют, по меньшей мере, одну трехмерную графическую характеристику (KFA(n), KFR(n)) на основе текущих полученных путем измерений данных, влияющих на процесс уборки, и определяют новую рабочую точку (AP(n)), по меньшей мере, одного рабочего органа в зависимости от адаптации трехмерной графической характеристики (KFA(n), KFR(n)). Далее выполняют итеративное приближение к новой рабочей точке (AP(n+1)). После шага (AS) приближения к новой рабочей точке (АР(n)) выдерживают время достижения квазиустановившегося поведения машины и оставляют полученные значения установочных параметров рабочих органов в зависимости от результата проверки на достоверность трехмерной графической характеристики (KFA(n), KFR(n)) или возвращаются к их значениям, соответствующим предыдущей рабочей точке (АР(n-1)). Способом обеспечивается гибкое реагирование на изменяющиеся граничные условия в ходе процесса уборки. 10 з.п. ф-лы, 6 ил.

Изобретение относится к области систем автоматического управления электромеханическими объектами, в частности объектами с неконтролируемыми возмущениями и неизвестными переменными параметрами. Технический результат, заключающийся в уменьшении времени переходного процесса и увеличении запаса устойчивости конечной системы управления, достигается за счет того, что сигнал, пропорциональный вектору состояния объекта управления, поступает на регулятор состояния, коэффициенты которого перестраиваются методом наименьших квадратов, сводя к минимуму разность между эталонной и измеренной координатами. 1 з.п. ф-лы, 2 ил.

Изобретение относится к области электротехники и может быть использовано для выбора оптимального по точности режима работы электрического двигателя. Технический результат - увеличение точности управления за счет применения эффективного математического метода решения обратных задач. Устройство содержит: блок хранения констант; первый, второй, третий, четвертый, пятый, шестой, седьмой, восьмой, девятый блок произведения; блок возведения в степень (-1); первый, второй, третий, четвертый блок сложения; первый, второй, третий блок модуля; блок деления; блок формирования знака выражения; первый, второй, третий блок инверсии; первый, второй блок интегрирования; блок производной; блок вычитания. 1 ил.

Изобретение относится к управлению производственным процессом с использованием экономической целевой функции. Технический результат - оптимизация управления процессом при наличии возмущений. Система и способ для координации усовершенствованного управления технологическим процессом и оптимизации в реальном времени производственного процесса принимают данные процесса и экономические данные, соответствующие производственному процессу, которым будут управлять и который будут оптимизировать. На основании данных процесса, экономических данных и модели нелинейного устойчивого состояния процесса экономическую целевую функцию вычисляют с помощью модели оптимизации в реальном времени. Нелинейная аппроксимация с уменьшенным порядком экономической целевой функции вычисляется после этого с помощью модуля оптимизации в реальном времени и передается в модуль усовершенствованного управления технологическим процессом. Модуль усовершенствованного управления технологическим процессом использует нелинейную аппроксимацию с уменьшенным порядком экономической целевой функции для управления производственным процессом в направлении ограниченного экономического оптимума. 3 н. и 15 з.п. ф-лы, 9 ил.
Наверх